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Abstract: The ability to recapitulate muscle differentiation in vitro enables the exploration of mecha-
nisms underlying myogenesis and muscle diseases. However, obtaining myoblasts from patients
with neuromuscular diseases or from healthy subjects poses ethical and procedural challenges that
limit such investigations. An alternative consists in converting skin fibroblasts into myogenic cells
by forcing the expression of the myogenic regulator MYOD. Here, we directly compared cellular
phenotype, transcriptome, and nuclear lamina-associated domains (LADs) in myo-converted human
fibroblasts and myotubes differentiated from myoblasts. We used isogenic cells from a 16-year-old
donor, ruling out, for the first time to our knowledge, genetic factors as a source of variations between
the two myogenic models. We show that myo-conversion of fibroblasts upregulates genes control-
ling myogenic pathways leading to multinucleated cells expressing muscle cell markers. However,
myotubes are more advanced in myogenesis than myo-converted fibroblasts at the phenotypic and
transcriptomic levels. While most LADs are shared between the two cell types, each also displays
unique domains of lamin A/C interactions. Furthermore, myotube-specific LADs are more gene-rich
and less heterochromatic than shared LADs or LADs unique to myo-converted fibroblasts, and they
uniquely sequester developmental genes. Thus, myo-converted fibroblasts and myotubes retain cell
type-specific features of radial and functional genome organization. Our results favor a view of myo-
converted fibroblasts as a practical model to investigate the phenotypic and genomic properties of
muscle cell differentiation in normal and pathological contexts, but also highlight current limitations
in using fibroblasts as a source of myogenic cells.

Keywords: chromatin; fibroblast; lamina-associated domain; myotube; myogenic conversion;
myogenesis; transcriptome

1. Introduction

Myogenesis is a highly regulated process underlying muscle development and regen-
eration [1]. Muscle fibers are post-mitotic multinucleated cells generated through the fusion
of myoblasts derived from muscle precursor cells. Muscle precursor cells are responsible for
the growth and repair of muscle fibers; they are quiescent and express the paired-homeobox
transcription factor PAX7 [2]. Upon muscle growth or regeneration, they exit quiescence,
become activated, and proliferate. All activated cells initiate expression of the myogenic
regulator factors MYOD and MYF5, both involved in myogenic commitment [2]; however,
whereas a minority returns to quiescence to replenish the progenitor pool, others engage in
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differentiation. These cells, called myoblasts, can proliferate and, upon extracellular cues,
exit the cell cycle, downregulate PAX7, and express myogenin (MYOG) [2], another regula-
tor factor involved in myoblast engagement into myogenic differentiation. Differentiated
cells, called myocytes, fuse to form multinucleated myofibers [3].

Being able to recapitulate myogenesis in vitro has proven invaluable in investigating
mechanisms of muscle differentiation and muscle pathologies [4]. In vitro muscle differ-
entiation recapitulates myoblast fusion to form multinucleated cells named myotubes [4].
However, obtaining myoblasts from patients with neuromuscular disorders depends on
availability and raises ethical issues that limit such investigations.

As an alternative, myogenic cellular models have been developed, among which are
myogenic cells derived from skin fibroblasts [5,6]. MYOD is the first transcription factor
identified that, when expressed ectopically, is able to elicit a myogenic gene expression
program [7,8]. Human fibroblasts can be immortalized by transduction of telomerase [9],
and myo-converted by induced expression of the Myod gene. This forces the fibroblasts to
withdraw from the cell cycle, express muscle-specific markers and fuse into multinucleated
cells resembling myotubes differentiated from myoblasts in vitro [6]. This system has been
used to investigate pathophysiological mechanisms [10–13] or therapeutic strategies [5,14,15]
in neuromuscular disorders. However, rigorous comparisons of phenotype, transcriptome
and genome organization on an isogenic background in myogenic cells derived from Myod-
induced fibroblasts or from muscle biopsy-derived myoblasts have not been reported.

An important regulator of gene expression during differentiation is the association
of chromatin with the nuclear lamina at the periphery of the nucleus [16]. The nuclear
lamina is a meshwork of A-type lamins (the lamins A and C splice variants) and B-type
lamins (lamins B1 and B2) [17]. A- and B-type lamins associate with chromatin via lamina-
associated domains (LADs), regions that are typically gene-poor, enriched in heterochro-
matin marked by di- and tri-methylated histone H3 lysine K9 (H3K9me2/me3) and contain-
ing mostly repressed genes [18]. While most LADs are conserved between cell types [19,20],
others differ by being repositioned, for example, during differentiation [21–25].

Alterations in LADs have been linked to diseases such as cancer [26] or laminopathies [18].
Laminopathies include a wide spectrum of rare diseases, including neuromuscular disor-
ders, mainly caused by dominant mutations in the LMNA gene [27,28]. In this pathological
context, LMNA mutations have been associated with defects in LAD organization and
gene expression at the nuclear periphery [11,29–36]. These observations highlight the
importance of LADs as genome organizers.

Here, we compare phenotypic, transcriptomic, and LAD features in myo-converted
fibroblasts and in myotubes differentiated from myoblasts, in an isogenic context. Our
results favor a view of myo-converted fibroblasts as a practical model to investigate the
cellular and genomic properties of cells from patients with muscle pathologies, but also
point to current limitations in using this model.

2. Materials and Methods
2.1. Myogenic Induction of Myoblasts and Fibroblasts

Fibroblasts and myoblasts from a 16-year-old individual were derived by the MyoLine
cell culture platform of the Center of Research in Myology (https://recherche-myologie.fr/
technologies/myoline/; accessed on 29 June 2023) from skin or muscle biopsies from the
same individual obtained anonymously from MyoBank (Authorization to distribute human
samples ref. AC-2019–3502). Myoblasts and fibroblasts were derived from a paravertebral
muscle biopsy and a dorsal skin biopsy, respectively, both carried out at the same time.
Myoblasts and fibroblasts were immortalized by transduction of human telomerase (hTERT)
(fibroblasts) [5] or hTERT and CDK4 (myoblasts) [37]. Of note, an earlier transcriptomic
study comparing primary and immortalized myoblasts and myotubes did not reveal any
significant transcriptional alterations [38].

Immortalized myoblasts were cultured in DMEM supplemented with 16% M199
(Invitrogen, Waltham, MA, USA), 4.5 g/L glucose, 20% fetal bovine serum, 0.1% Penicillin-
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Streptomycin, 5 µg/mL insulin, 0.2 µg/mL dexamethasone (Sigma-Aldrich; Burlington,
MA, USA), 25 µg/mL fetuin, 5 ng/mL human epidermal growth factor, and 0.5 ng/mL
basic fibroblast growth factor (Life Technologies; Carlsbad, CA, USA). For differentiation,
cells were plated on dishes coated with 1% Matrigel (Sigma-Aldrich) at high density in
DMEM with 10 µg/mL insulin and 50 µg/mL Penicillin-Streptomycin. After 5 days,
myotubes were harvested for assays.

For myo-conversion, immortalized fibroblasts were transduced with a Tet-on inducible
lentiviral vector encoding mouse Myod [5]. Cells were cultured in DMEM with 4.5 g/L
glucose, 10% fetal bovine serum, and 0.1% Penicillin-Streptomycin. For differentiation, cells
were then plated on dishes coated with 1% Matrigel at high density and cultured in DMEM
with 10 µg/mL insulin, 4 µg/mL doxycycline, and 50 µg/mL Penicillin-Streptomycin.
After 5 days, unless otherwise noted, myo-converted fibroblasts were harvested for assays.

All experiments were completed in three independent replicates, each from a separate
cell batch.

2.2. Immunofluorescence

Cells were differentiated for 5 days on 4-well plates with Nuclon Delta Surface (Thermo
Fisher Scientific; Waltham, MA, USA). Cells were fixed for 10 min in 4% paraformaldehyde,
permeabilized for 6 min in PBS/0.5% TX-100 and blocked for 30 min with 5% BSA. Primary
antibodies (anti-myosin heavy chain (MHC) MF20, DSHB, 1:100; anti-vimentin (D21H3)
Cell Signaling No. 5741, 1:100) and secondary antibodies (Alexa Fluor™ 488 goat anti-
mouse IgG (H + L), Thermo Fisher Scientific A-11001, 1:500; Alexa Fluor™ 568 goat
anti-rabbit IgG (H + L), Thermo Fisher Scientific A-11011, 1:500) were incubated for 45
and 30 min, respectively, in 5% BSA. Slides were mounted in Vectashield/DAPI (Vector
Laboratories). Images were taken on a Nikon Ti-2 microscope at 100× or on a Zeiss
Axio Observer Apotome at 20× and analyzed with ImageJ (https://imagej.nih.gov/ij/
download.html; accessed on 29 June 2023). The fusion index was calculated as the ratio of
the number of nuclei per MHC-positive cell over the total number of nuclei per field. Five
random fields were analyzed per differentiation, in three differentiation replicates. A total
of 15 images were taken per cell type, with more than 100 nuclei per image. Statistics were
acquired using GraphPad Prism v.8.3.0.

2.3. RNA-Sequencing and RNA-Seq Analysis

Total RNA was extracted with TRIzol (Thermo Fisher Scientific), eluted in 20 µL RNase-
free water, and its concentration was estimated by A260. RNA integrity was assessed on an
Agilent 2100 Bioanalyzer using the RNA 6000 Nano kit. RNA-seq libraries were prepared
using the KAPA mRNA HyperPrep kit (Roche; Basel, Switzerland), and 100 bp paired-end
sequencing was completed on a NovaSeq 6000 (Illumina; San Diego, CA, USA).

RNA-seq reads were filtered to remove low-quality reads using fastp (v 0.23.2) [39].
Transcripts were quantified using Salmon package 36 v1.7.0 [40] and Ensembl GRCh38.p13
release 108 [41]. Transcript abundance values were imported into R and summarized
with tximport v1.28.0 [42]. DESeq2 v1.36.0 [43], as implemented in SARTools [44], was
used to normalize raw counts and apply analyses. Transcripts per million (TPM) were
calculated for each transcript. Heatmaps were generated by Ward’s clustering of expression
z-scores in R (https://biocorecrg.github.io/CRG_RIntroduction/heatmap-2-function-from-
gplots-package.html; accessed on 21 July 2023). Gene Set Enrichment Analysis (GSEA)
was completed on normalized read counts [45]. Gene ranking was generated for each
comparison with Pearson correlation metrics and analyzed against the mSigDB Hallmarks
v7.5.1 gene sets [46].

2.4. Chromatin Immunoprecipitation (ChIP)-Sequencing and ChIP-Seq Analysis

Lamin A/C ChIP-seq was completed as described [22,25] from myotubes and myo-
converted fibroblasts harvested on day 5 from triplicate differentiations. Cells were fixed
in 1% formaldehyde, lysed in 50 mM Tris-HCl, pH 8, 10 mM EDTA, 1% SDS, protease
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inhibitors, and Na-butyrate, and sonicated into ~200 bp fragments using a Picorupter (Di-
agenode). After sedimentation, the chromatin supernatant was incubated with anti-lamin
A/C antibodies (Santa Cruz sc7292x) at 10 µg/5 × 106 cells. Cross-links were reversed and
DNA purified. ChIP of H3K9me3 was completed using anti-H3K9me3 antibodies (Diagen-
ode C15410056) at 2.5 µg/106 cells [22]. ChIP libraries were prepared using a Microplex kit
(Diagenode) and sequenced (150 bp paired-end) on a NovaSeq 6000 (Illumina).

ChIP and input sequence reads were mapped to hg38 with Bowtie2 v2.4.1 (https:
//github.com/BenLangmead/bowtie2; accessed on 21 July 2023) [47]. after removing du-
plicates using Picard MarkDuplicates (http://broadinstitute.github.io/picard/; accessed
on 21 July 2023) and the data were processed as described [25]. Each pair of mapped ChIP
and input read files contained the same read depth after down-sampling reads for each
chromosome to avoid normalization bias. Lamin A/C and H3K9me3 Log2(ChIP/input)
ratios were computed with wiggletools v1.2 (https://github.com/Ensembl/WiggleTools;
accessed on 21 July 2023) [48]; bigwig tracks were generated from these ratios in 1 kilo-
base (kb) bins using bamCompare from Deeptools v3.5.1 (https://github.com/deeptools/
deepTools/releases/tag/3.5.1; accessed on 21 July 2023) [49].

For each lamin A/C ChIP replicate, mapped reads were used to call LADs using
10 runs of Enriched Domain Detector (http://github.com/CollasLab/edd; accessed on 1 June
2023) [50] in auto-estimation mode, and mean GapPenalty and BinSize outputs were used for
a last EDD run. The final LADs were the union of LADs from the three replicates. Pearson
correlations between replicates were computed for LAD overlaps. ChIP-seq data were viewed
in the Integrative Genomic Browser (IGV) (www.igv.org; accessed on 1 June 2023) [51].

2.5. Intersections between LADs and Genomic Features

Intersects between LADs and genes or H3K9me3 were determined using BEDTools
v2.29.2 (https://github.com/arq5x/bedtools2; accessed on 21 July 2023) [52] and BEDOPS
v2.4.37 (https://github.com/bedops/bedops/blob/master/CHANGELOG.md; accessed
on 21 July 2023) [53]. Intersects required at least one base-pair overlap between features.
Gene Ontology Enrichment (GO biological process) was analyzed using Protein ANalysis
THrough Evolutionary Relationships (PANTHER) v.14.0 (http://www.pantherdb.org/;
accessed on 21 July 2023) [54].

3. Results
3.1. Myo-Converted Fibroblasts Recapitulate the Phenotypic Characteristics of Myotubes

To assess a practical model to investigate phenotypic and genomic aspects of muscle
differentiation, we set up two experimental systems (Figure 1): (i) skin fibroblasts from
a healthy 16-year-old donor, transduced with inducible Myod and stimulated for 5 days
with doxycyclin to elicit myogenic conversion; (ii) myoblasts isolated from the same
donor and differentiated into myotubes for 5 days. Both fibroblasts and myoblasts were
immortalized, which was necessary given the relative scarcity of such dual cell-type donors
and to alleviate replicative senescence [55]. Importantly, previous transcriptomic profiling
comparing primary and immortalized myoblasts and myotubes has shown no significant
transcriptional alterations as a result of immortalization [38].

Both fibroblasts (from here on, FB) and myoblasts (MB) acquire within 5 days of
differentiation an elongated and multinucleated cell morphology (Figure 2a). We refer
to differentiated Myod-induced fibroblasts as myo-converted fibroblasts (McF) to distin-
guish them from myotubes (MT) differentiated from myoblasts. Reduced expression of
vimentin [56] and enhanced expression of Myosin Heavy Chain (MHC), a myotube and
myofiber marker [57], confirm the myogenic phenotype of MT and McF (Figure 2b). Cell
fusion indices (ratios of the number of nuclei in MHC-positive cells over the total number
of nuclei) are not statistically different (44%) between both models (Figure 2c). We also note
that nuclei are more aggregated towards the cell center in McF, in contrast to the central
alignment observed in MT (Figure 2b). We conclude so far that myo-converted fibroblasts
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display a myogenic phenotype, with some features being similar to those of myotubes
while nuclear positioning is distinct.
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croscopy images of FB, MB, McF and MT; bars, 200 µm. (b) Immunofluorescence staining of vimentin
and MHC; bars, 50 µm. Zoomed-in areas are outlined in yellow. (c) Fusion indices of McF and MT
(no significant difference; p > 0.05, Mann-Whitney test).
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3.2. Myod-Induced Fibroblasts Transcriptionally Commit to Myogenesis

To gain insights into the ‘FB-McF’ and ‘MB-MT’ models, we characterized by RNA-seq
the transcriptome of each cell type. Principal component analysis (PCA) shows that McF
and MT are distinct from their undifferentiated counterparts and show proximity along
the first principal component axis (PC1); however, they remain distinct along the PC2 axis
(Figure 3a). Thus, Myod induction elicits in fibroblasts a myogenic gene expression program
that resembles, but is not identical to, that of myotubes.
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Figure 3. Transcriptome profiling reveals myogenic commitment of Myod-induced fibroblasts.
(a) Principal component analysis of gene expression in FB, MB, McF and MT. Data for each triplicate
are shown. (b) Enriched Molecular Signature Database Hallmarks in McF vs. FB, MT vs. MB, and MT
vs. McF, from GSEA. NES, normalized enrichment score; FDR, false discovery rate; Count, numbers
of genes. (c) Ward hierarchical clustering of gene expression z-scores across cell types for genes in the
hallmark ‘Myogenesis’. Clusters and subclusters addressed in the main text are highlighted.

Gene Set Enrichment Analysis (GSEA) reveals the Molecular Signature Database
Hallmark ‘Myogenesis’ as the most significant in MT and McF (day 5) relative to MB and
FB (FDR = 0.000; Figure 3b), asserting the myogenic commitment of McF. The hallmark
‘Myogenesis’ is also enriched in MT relative to McF (FDR = 0.007), suggesting a more
pronounced myogenic fate of the MB-MT model than the FB-McF model. Furthermore,
enrichment of the hallmarks ‘E2F targets’ and ‘G2M checkpoint’ in FB and MB relative to
McF and MT (FDR = 0.000; Figure 3b) reflects exit from the cell cycle after induction of
differentiation. We also note the negative enrichment (which barely reaches significance)
of the epithelial-mesenchymal transition (EMT) hallmark (Figure 3b; Figure S1) in McF
relative to FB. A number of genes involved in EMT are enriched in the McF system,
including interleukins, extracellular matrix components, chemokines and transcription
factors. However, the lack of upregulation of other EMT markers in McF (Figure S1) reflects
resilience to full mesenchymal commitment of transdifferentiated fibroblasts, in contrast to
myotubes (Figure 3b; Figure S1) which stem from myoblasts of already mesenchymal origin.
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Clustering gene expression z-scores within the hallmark ‘Myogenesis’ reveals three
main clusters (Figure 3c; Figure S2). Cluster 1 reveals (1i) genes upregulated in MT vs. MB
but expressed at lower levels in McF, (1ii) genes expressed in FB and downregulated in
McF to a level comparable to MT, and (1iii) genes upregulated in FB and McF relative to
MB and MT, suggesting partial retention of fibroblast gene expression in McF. Cluster 2
contains genes upregulated in McF and MT and includes genes important for myogenesis
and muscle function. Cluster 3 reveals: (3i) genes induced in MT by differentiation; (3ii)
genes less expressed in FB and McF than in MB or MT; (3iii) genes expressed in MB and
downregulated in MT that retain no/low expression in the FB-McF system; and (3iv) genes
upregulated only in McF relative to all other cell types.

We then explored changes in expression of fibroblast genes, myogenic regulator
factors, and their target genes (Figure 4). The fibroblast markers PDGFRA and VIM are
downregulated in McF compared with FB, the latter in line with protein detection (see
Figure 2b) (p < 0.0001; one-way ANOVA). MYF5 is not expressed in McF. This could be
explained by the lack of PAX7 expression (Figure 4) [58], or more likely by the forced
induction of MYOD, which, downstream of MYF5, bypasses the need for MYF5 to elicit
myogenesis in McF. Consequently, MYOG, downstream of MYOD, is expressed in MT and
McF. Myocyte and myofiber markers are induced in McF (p < 0.007–p < 0.0001) to levels
comparable to (MYOG, MYH8, MYMK, and MYMX) or lower than (DES, MYH1-3, MYH7)
those in MT (Figure 4).
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We then assessed whether prolonged Myod induction with Doxycylin in McF would
enable the myogenic gene expression program to extend closer to that of MT. PCA of
RNA-seq data after a 7-day induction reveals that McF do not transition closer to MT than
day-5 McF; in fact, day-7 McF are more distant from MT than day-5 McF along the PC1
axis (Figure S3a). In day-7 McF, several genes follow an expression profile expected from
prolonged myogenic induction (DES, MYOD1, MYH4, MYMK, MYMX) (Figure S3b). These
include myogenin (MYOG), which is expected to decrease as it is, in muscle, only tran-
siently expressed early during muscle differentiation to induce expression of the myogenic
program [1]. We also note, however, that several other genes do not follow anticipated
expression profiles (Figure S3b). Possibly explaining these results, we noted that induction
of Myod overexpression beyond 7 days elicited detachment of differentiated, multinucleated
cells from the culture; thus, we limited induction to 5 days. An account of this observation
is given in the Discussion.

Our transcriptome analysis indicates that the McF model supports the induction of
a myogenic gene expression program. However, subsets of genes remain expressed at a
lower level than in myoblast-derived MT; a minor proportion fails to be downregulated,
and others are upregulated only in McF. Thus, although they show myogenic commitment,
McF do not engage in a myogenic program to the same extent as myotubes.

3.3. Features of Lamin A/C LADs in Myotubes and Myo-Converted Fibroblasts

To explore the architectural context of both myogenic models, we mapped LADs by
ChIP-seq of lamin A/C in MT and McF. For each differentiation replicate, we computed
lamin A/C enrichment levels and called them LADs (Figure 5a). Pearson correlations of
LAD overlaps between replicates show high reproducibility among the three replicates
(Table S1). This allowed us to identify with high confidence, from the union of these
LADs, 631 LADs in McF and 739 LADs in MT (Figure 5b; Table S2). Global LAD coverage
and mean LAD size are comparable in MT and McF (Figure 5c; Table S2), and most LAD
coverage is conserved between the two cell types, with 652 LADs altogether covering
605 Mb (Figure 5b,c); we refer to these shared, or conserved, LADs as cLADs. This is in line
with LADs being overall conserved between cell types [20].

To corroborate this view, we assessed the extent of overlap of these McF-MT cLADs
with LADs we previously identified by ChIP-seq of lamin A/C in skin fibroblasts from three
unrelated donors [30]. We find that 86% of the genome coverage of the McF-MT cLADs
(523 Mb out of 605 Mb) are also LADs in these fibroblasts (Figure S4). Thus, the McF-MT
cLADs identified here are largely conserved in unrelated skin fibroblasts from unrelated
donors. This argues that these cLADs constitute an architectural feature shared between
McF and MT. Moreover, 8–10% of the genome is marked as unique LADs specific to McF
or MT (Figure 5c,d; Table S2). Thus, these two isogenic myogenic cell types also display
differences in radial genome organization, which may reflect their cell type of origin.

Underscoring this view, MT-specific LADs are the most gene-rich (6.8 genes/Mb;
Figure 5e), suggesting a weaker heterochromatic feature. Accordingly, levels of H3K9me3,
a mark of constitutive heterochromatin, are lower in MT-specific LADs than in cLADs or
McF-specific LADs (p < 0.0001; ANOVA with Welch’s correction; Figure 5f; exemplified
in Figure 5g–i). Weaker H3K9me3 enrichment in MT-specific LADs is also reflected at the
level of genes found in these domains (see also Section 3.4), which display depletion of
H3K9me3, in contrast to genes in McF-specific and cLADs (Figure S5a). Thus, genes in
MT-specific LADs are less heterochromatic than genes localized in McF LADs, and this is
despite of a similar H3K9me3 enrichment throughout the genome in both cell types (Figure
S5b). In addition, H3K9me3 levels in regions defined as McF-specific LADs or MT-specific
LADs are similar in corresponding domains in the other cell type: for example, H3K9me3
levels in McF-specific LADs are similar in the same regions in MT (Figure 5f) despite the fact
that the latter are not LADs in MT (Figure 5i); conversely, H3K9me3 levels in MT-specific
LADs are similar in the same genomic (non-LAD) regions in McF (Figure 5f,g). Altogether,
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these findings highlight a weaker heterochromatic state of LADs uniquely identified in MT
relative to McF LADs or LADs common to both cell types.
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Figure 5. Lamin A/C LADs in myo-converted fibroblasts and myotubes. (a) Genome browser view
of Log2(lamin A/C ChIP/input) ratios (range −0.4 to +0.4) and LADs on chromosome 1 in McF
and MT, for each differentiation replicate (Rep1–3). (b) LADs resulting from the union of LADs
from each replicate. H3K9me3 enrichment as Log2(H3K9me3 ChIP/input) ratios (range: 0–3) and
RNA-seq tracks (counts per million average of the 3 replicates) are shown. (c) Venn diagram of LAD
genome coverage overlap (in Mb) between McF and MT. Total LAD coverage in McF and MT is
912 and 868 Mb, respectively. (d) Genome coverage by McF- and MT-specific LADs and by cLADs,
expressed as % of the genome. (e) Gene density of McF-specific LADs, MT-specific LADs and cLADs.
(f) H3K9me3 enrichment in McF-specific LADs, MT-specific LADs and cLADs, for corresponding
domains in the other cell type; cross, mean; bar, median; box, 25–75% percentile; whiskers, min-max;
**** p < 0.0001, ANOVA with Welch’s correction. (g–i) Genome browser views of (g) low H3K9me3
level in MT-specific LADs (box), (h) higher H3K9me3 in cLADs (boxes) than in cell type-specific
LADs, (i) similar H3K9me3 levels in a region of McF-specific LADs (boxes).
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3.4. A Subset of Myogenic Genes Is Localized and Expressed in LADs

To appreciate the functionality of MT and McF LADs, we interrogated Gene Ontology
(GO) terms enriched for genes uniquely found in these LADs, regardless of their expression.
First, we identify 834, 1791, and 2128 protein-coding genes in McF-specific LADs, MT-
specific LADs, and cLADs, respectively (Figure S5c; Tables S2 and S3). Second, GO analysis
reveals that McF LADs, similarly to cLADs, are enriched in genes pertaining to signaling
and metabolic functions (Figure S5d), in line with gene ontologies found in LADs in
other cell types [20]. Signaling functions are also found in MT-specific LADs, but with
lower significance. However, MT-specific LADs also contain genes involved in early
developmental processes and cell locomotion (Figure S5d). This finding concurs with
the view of stronger lineage commitment of myotubes than fibroblasts, even after their
myo-conversion.

In line with the lower level of H3K9me3 at genes within MT-specific LADs, expres-
sion of LAD-associated genes is overall higher, although it remains low, in these LADs
than in McF-specific LADs (p < 0.0001; one-way ANOVA) or cLADs (p = 0.023; one-way
ANOVA; Figure 6a). However, most genes making up the hallmark ‘Myogenesis’ discussed
above are localized outside LADs in both McF and MT (Figure 6b) and thus reside in a
transcriptionally permissive environment; these genes are indeed expressed in the McF
and MT systems (see Figure 3c). Nonetheless, a handful reside in cell type-specific LADs or
in cLADs (Figure 6c), even though they are expressed in the McF and/or MT systems (see
Figure 3c). Thus, their expression cannot be explained by differential lamin A/C association
(see, however, below).

As an example, the MYH8, MYH4, MYH1, and MYH2 clusters are in a cLAD and
genes within (MYH8, MYH1, and MYH2) are expressed in either or both MT and McF
(Figure 6d; see also Figure 4). None of these genes are enriched in H3K9me3 (Figure 6d),
which, as we [25] and others [59] have shown, is compatible with gene expression in LADs.
Similarly, the cLAD gene MYL1 is upregulated upon differentiation in the McF and MT
systems (see Figure S2, Cluster 2), which is again likely enabled by local H3K9me3 depletion
(Figure 6e,f). The MYL1 locus is also marked by lower lamin A/C levels than the rest of the
LAD (Figure 6f). The localization of myogenic genes in H3K9me3-poor or depleted regions
in LADs contrasts with the heterochromatic H3K9me3-rich composition of LADs harboring
inactive genes (see Figure 5g,h). These expressed LAD genes are reminiscent of differentially
expressed LAD genes identified in cLADs during differentiation of adipose stem cells,
which are restricted to local lamin-poor and euchromatin subdomains of LADs [25].

We conclude that (i) while LADs overall share features between McF and MT, LADs
unique to MT display weaker heterochromatic features than McF-specific LADs or cLADs.
(ii) MT LADs uniquely sequester developmental genes. (iii) A number of myogenic genes
are expressed in MT-specific LADs, McF-specific LADs, or in cLADs. This extends the grow-
ing evidence of gene activity in LAD subdomains accessible to transcription factors [25] and
argues for the regulation of a subset of myogenic genes independently of their localization
in LADs, in both systems.
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4. Discussion

The scarcity of patient samples available when studying a rare disease, the degree
of invasiveness of muscle biopsies, and ethical and practical issues in obtaining muscle
biopsies from patients with a muscular disorder together prompt a need for a practical
and reproducible alternative to investigate phenotypic and genomic aspects of muscle
development and pathologies. Skin biopsies constitute, in most cases, a more convenient
source of patient material.

We used skin fibroblasts in which ectopic MYOD expression elicits a myogenic pro-
gram conferring muscle cell features that are similar, in some aspects, to those of myoblast-
derived myotubes: (i) phenotype with elongated and polynucleated cells expressing the
differentiation marker MHC; (ii) gene expression profiles showing that myo-conversion elic-
its cell cycle exit and triggers myogenic pathways; (iii) high-order chromatin organization
at the level of lamin A/C LADs. As discussed below, there are, however, noticeable distinc-
tions between myo-converted fibroblasts and myoblast-derived myotubes. Importantly,
we used isogenic myoblasts and fibroblasts, ruling out for the first time to our knowledge,
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genetic factors as a source of variations between the MT and McF models and enabling a
direct comparison of genomic data between cell types across differentiation replicates.

We compared immortalized fibroblasts from a single 16-year-old donor with immor-
talized myoblasts from the same donor. Obtaining fibroblasts and myoblasts from the
same individual remains a challenge, and our work would benefit from an assessment
of the myogenic potential of these cell types in a large number of donors. This would
allow us to consider donor age, which affects the proliferative potential of fibroblasts and
myoblasts [55], as well as the potential geographical location of the donors (see below).
Immortalization is a practical option given the relative scarcity of dual-cell-type donors
if one is to carry out multiple and reproducible phenotypic, functional, and epigenomic
studies across multiple laboratories. Immortalization of fibroblasts is also necessary for
Myod transduction and selection to prevent replicative senescence. Immortalization also
alleviates the interference of senescence on differentiation, and importantly, it has been
shown not to significantly alter the transcriptome of myoblasts and myotubes [38].

A fibroblast-based model presents advantages over reported induced pluripotent
stem cell (iPSC)-based models [60]. McFs are simpler (fewer steps and factors), quicker
(days vs. weeks), cheaper, and arguably more efficient in generating differentiated cells
than iPSCs. As such, McF constitutes an alternative worth exploring further to investigate
muscle differentiation and muscle cell function.

There are, however, limitations to the McF system. First, skin fibroblasts are subject to
ultra-violet light-induced mutations, arguably more so than myoblasts. Different climates
could result in sufficient genotype variations in skin fibroblasts (the donor used in our study
lives in a temperate European climate). A heavy mutational load may present potential
risks for using skin fibroblasts for biomedical purposes, as shown in skin fibroblast-derived
iPS cells [61], and negatively affect differentiation and cell function. Second, as discussed
below, because it is a trans-differentiation system, the McF model lacks developmental
aspects of myogenesis and shows a delay in myogenic differentiation.

McF displayed a less mature myogenic phenotype than MT on day 5, which was
not significantly improved at the transcriptional level by extending differentiation to
day 7. In fact, we noted that both multinucleated MT and McF detach from the culture
starting around day 5 of differentiation. Our ongoing and unpublished work indicates
that this is due to the spontaneous contraction of the differentiated myocytes. Since it
occurs with both cell types, this detachment is unlikely to be a direct consequence of
an altered differentiation program per se in McF but rather the result of cells being in
culture. Myogenic differentiation protocols have been adapted to extend myotube culture
over longer periods without cell detachment, including an overlay with a thick layer of
Matrigel [62]; this was not applied in our study.

Maturation delay was reflected by the lower expression of markers specific to differen-
tiation stages, including genes of the myosin heavy chain (MHC) family. We also noted
a misalignment of nuclei and their clustering in the cell center in McF, contrasting with
their alignment in MT or myofibers [63]. This could reflect atypical differentiation and be a
sign of potential pathological processes arising from incomplete myogenic differentiation
and improper nucleo-cytoskeletal connections [64–71] if it persists at later timepoints [63].
However, nuclear clustering is also an expected phenomenon in the early steps of in vitro
muscle differentiation [63,72].

Another factor influencing the extent of myogenic maturation in McF is the differential
expression of MYH genes, including MYH1 and MYH7, between McF and MT. This might
also reflect the ‘natural history’ of muscle ‘stem cells’ used in our systems: in vivo for MT
and forced, ex vivo, myogenesis for McF.

At the molecular level, the lack of full myogenic commitment in the McF model may
involve the absence of MYF5 expression. Myogenesis entails chromatin remodeling through
histone modifications [73]. MYF5 remodels chromatin by increasing DNA accessibility and
acetylates histone H4 at its binding sites, enabling the expression of MYF5 target genes [74].
In turn, at the same sites [74], MYOD also elicits further chromatin remodeling and histone
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acetylation [75–77] and recruits RNA Pol II for activation of muscle-specific genes [74].
Unlike during myoblast differentiation, the McF system bypasses MYF5 [78], so a lack
of proper epigenetic priming by MYF5 in the McF system could hamper full develop-
mental myogenic commitment. Improvements in the efficiency of myogenic conversion
would entail the induction of early chromatin remodeling and histone acetylation events,
recapitulating the early steps of satellite cell and myoblast induction [75–77].

Since its publication in 1989 [7], the myo-converted fibroblast model still lacks a
rigorous characterization of chromatin organization, including LADs. McF have been
compared with undifferentiated myoblasts to postulate that, based on transcriptomic and
DNA accessibility patterns, myogenic trans-differentiation of fibroblasts is incomplete [79].
Similarly, 3-dimensional chromatin interactions in myo-converted mouse embryonic fibrob-
lasts remain substantially different from those of C2C12 myoblasts [80]. However, these
conclusions are debatable because they rely on comparisons of myo-converted fibroblasts
to undifferentiated cells and on cell lines or cell types with different genetic backgrounds.

MT-specific LADs show higher gene density, higher gene expression levels (though
this remains low), and weaker heterochromatic features manifested by reduced H3K9me3
than McF-specific LADs or shared LADs. These differences may be explained by the distinct
lineage origins of skin fibroblasts (ectoderm) and myoblasts (mesoderm), so that even McF
could retain fibroblast characteristics of genome organization. It is remarkable that these
genomic properties of MT-specific LADs are similar in McF, in which these domains are not
LADs. Conversely, the more pronounced heterochromatic H3K9me3 state of McF-specific
LADs is conserved in MT, where these domains are not LADs. This suggests that these
properties are not defined by cell type or lamin interactions but rather by gene expression,
underlying epigenetic states, or DNA sequence [81–83]. Regardless, these findings support
increasing evidence of chromatin regulation and gene expression control in LADs [25,84,85]
that are uncoupled from association with the nuclear lamina [86,87].

It will be relevant in future studies to monitor LAD repositioning in relation to chro-
matin states during the actual myo-conversion or differentiation process in isogenic systems
to pin-point myogenic-specific mechanisms in these models. Approximately one third of
LAD coverage in McF or MT is unique to that cell type. Thus, whether LADs are more
divergent in undifferentiated fibroblasts and myoblasts and converge by repositioning
after myogenic induction, or whether LADs are already ‘genomically equidistant’ in these
cell types and minimally change after myogenic induction, remains to be examined. Gene
ontologies associated with McF- or MT-specific LADs further argue that MT uniquely
sequesters sets of early developmental and specification genes in LADs, presumably re-
inforcing the repression of these genes in these terminally differentiated cells [20,25]. The
localization of developmental genes in a non-LAD chromatin context in McF may still
reflect the potential of fibroblasts to acquire characteristics of other cell types through
factor-induced ‘trans-differentiation’ [5,8,88–92].

5. Conclusions

Our data globally favor a view of myogenic conversion of human skin fibroblasts
as an alternative system to myoblast differentiation and allow us to investigate some
aspects of chromatin organization and genome regulation in muscle cells. Our results also
point to differences in phenotype, higher-order genome organization, and gene expression
between myo-converted fibroblasts and myotubes, the latter not being directly linked to
LAD differences.
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shared between McF and MT are also LADs in unrelated fibroblasts; Figure S5: Ontology of genes in
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GEO Gene expression omnibus
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