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Abstract: The recent advances in creating pluripotent stem cells from somatic cells and differentiating
them into a variety of cell types is allowing us to study them without the caveats associated with
disease-related changes. We generated induced Pluripotent Stem Cells (iPSCs) from eight Alzheimer’s
disease (AD) patients and six controls and used lentiviral delivery to differentiate them into excitatory
glutamatergic neurons. We then performed RNA sequencing on these neurons and compared the
Alzheimer’s and control transcriptomes. We found that 621 genes show differences in expression
levels at adjusted p < 0.05 between the case and control derived neurons. These genes show significant
overlap and directional concordance with genes reported from a single-cell transcriptome study
of AD patients; they include five genes implicated in AD from genome-wide association studies
and they appear to be part of a larger functional network as indicated by an excess of interactions
between them observed in the protein–protein interaction database STRING. Exploratory analysis
with Uniform Manifold Approximation and Projection (UMAP) suggests distinct clusters of patients,
based on gene expression, who may be clinically different. Our research outcomes will enable the
precise identification of distinct biological subtypes among individuals with Alzheimer’s disease,
facilitating the implementation of tailored precision medicine strategies.

Keywords: iPSCs; Alzheimer’s disease; excitatory neurons; transcriptomics

1. Introduction

Alzheimer’s disease (AD) and dementia globally affect more than 55 million people,
and the cases are projected to triple by 2050 [1], causing a major and worsening public
health crisis.

Even with the newly approved drugs (lecanemab and donanemab), there is no clin-
ically effective treatment for AD. Lecanemab only minimally delays progression of AD
symptoms, and does not fully treat the disease. The newly approved drug lecanemab
only minimally delays progression of AD symptoms, and does not fully treat the disease.
Lacking disease therapies that reverse or substantially delay progression of AD symp-
toms, it is important to continue to improve our understanding of its biology including
both genetic and environmental contributions. Despite significant progress in the AD
genetics, including the identification of three genes (PSEN1, PSEN2, and APP) [2–4] that
cause familial AD, the discovery of APOE as a major risk factor [5,6] and the identification
of over 30 other genes with smaller but significant contributions [7–10], the etiological
treatments currently approved have not shown substantial improvements in managing the
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disease progress. A promising solution to this problem may be the application of precision
medicine to allow for a better match between patients and candidate treatments. At the
Johns Hopkins Richman Family Precision Medicine Center of Excellence in Alzheimer’s
Disease (JH-AD-PMC), we are continuously looking for new ways to achieve this goal.

One of the most promising ways to accurately characterize patients in order to identify
biomarkers that can help towards the goal of precision medicine is the study of their
biological materials. Among the samples and materials most likely to provide answers
are the cells directly involved in the disease under study. For diseases of the human
brain such as AD, this poses a significant problem, as there are multiple limitations in the
study of brain cells. The brain is not easily accessible and cannot be sampled without risk.
Even if sampled, a mix of cells would be acquired (neurons, astrocytes, microglia etc.) at
varying relative abundance. Further, these cells would have been subjected not only to the
ongoing disease process, but also to the medications used against it and to many unknown
environmental variables. Recent advances in cell engineering have opened new possibilities
for brain tissue at the individual level. Accessible cells such as skin fibroblasts or peripheral
blood mononuclear cells (PMNCs) can be easily acquired and then reprogrammed into
iPSCs, erasing the epigenetic marks of differentiation, and allowing new differentiation
to a variety of cell types [11–14]. Induced PSCs were first established more than a decade
ago using the four Yamanaka transcription factors (OCT3/4, SOX2, KLF4, c-MYC) to
reprogram mouse adult fibroblast cells [15]. Since then, different technological advances
have contributed to reliably establish human iPSCs from different cells, including new
combinations of transcription factors, using small molecules, or reprogramming with
episomal vectors [16]. Advances in differentiation methods have allowed the generation
of multiple cell types from iPSCs, including many types of neuronal and glial cells [17,18]
that resemble in vivo counterparts; these have become a popular tool for preclinical disease
modeling in scientific research [17,19]. At the same time, advances in DNA sequencing
allow for the accurate characterization of the transcriptomic state of cells and tissues, a
window into their metabolic state and genomic make-up.

Here we investigate whether cells derived from iPSC of individual AD patients show
transcriptomic differences when compared to cells derived from cognitively unimpaired
individuals, after they have been first reprogrammed to pluripotency followed by differen-
tiation into excitatory glutamatergic neurons. Such differences could not only be useful in
predicting disease, but also in categorizing patients into different evidence-based clusters
that might predict their course and response to treatment, a big step forward for precision
medicine in AD.

2. Materials and Methods
2.1. Patients and Controls

Blood from patients (JHU-AD-01 to -06 and JHU-AD-08), as well as from healthy indi-
viduals (JHU-WT-03, -04, -07, and -08) was collected through the Johns Hopkins Alzheimer’s
Disease Research Center (ADRC) and the Johns Hopkins Memory and Alzheimer’s Treatment
Center (MATC). Blood from patient JHU-AD-07 was provided to us from collaborators
through the ongoing S-CitAD clinical trial (ClinicalTrials.gov Identifier: NCT03108846).
Patients recruited in the latter study had AD dementia, Mini-Mental State Examination
(MMSE) scores of 5–26, and met criteria for agitation syndrome [20]. Adult skin fibroblasts
from cognitively unimpaired individuals (JHU-WT-01 and -05) were obtained from the
Coriell Institute for Medical Research [21]. AD patients had a mean age of 71.4 years and
controls had a mean age of 71.7 years. Table 1 shows the age and sex of all participants. The
participants were overwhelmingly female with only 3 males among the patients. Blood was
collected by venipuncture into yellow-top tubes (containing trisodium citrate, citric acid,
and dextrose) and shipped to the Johns Hopkins Genetics Core facility for the isolation of
PMNCs which were then stored in liquid nitrogen until used. All patients had sporadic AD.
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Table 1. Diagnosis and demographics of patients and healthy individuals used in the transcriptomic
studi-s.

Tracking ID Phenotype Age Gender Source of iPSC

JHU-AD-01 AD 68 F PBMC

JHU-AD-02 AD 60 F PBMC

JHU-AD-03 AD 70 M PBMC

JHU-AD-04 AD 62 F PBMC

JHU-AD-05 AD 72 M PBMC

JHU-AD-06 AD 55 F PBMC

JHU-AD-07 AD 89 F PBMC

JHU-AD-08 AD 81 M PBMC

JHU-WT-01 Normal 56 F Skin Fibroblast

JHU-WT-03 Normal 81 F PBMC

JHU-WT-04 Normal 85 F PBMC

JHU-WT-05 Normal 56 F Skin Fibroblast

JHU-WT-07 Normal 88 F PBMC

JHU-WT-08 Normal 84 F PBMC

This study was approved by the Johns Hopkins Institutional Review Board (IRB).

2.2. Induced Pluripotent Stem Cell (iPSC) Generation, Culture and Maintenance

Peripheral blood mononuclear cells (PMNCs) were isolated from the blood samples
of the individuals who consented to their participation in the study. They were then
reprogrammed to iPSCs by using a transient expression method (nucleofection) involving
three plasmid vectors (MOS, MMK and GBX) under feeder-free/xeno-free culture on 4D
Nucleofector (Lonza, Basel, Switzerland) [12,22–24]. Generated iPSCs were characterized
by immunocytochemistry for pluripotency markers, including Nanog, OCT4 and TRA-1-60,
flow cytometry, and karyotyping. Established cell lines were cultured (250 K cells/well in
6 well plate) on vitronectin-coated tissue culture plates in Essential-8 (E8) medium with
10 uM Rock inhibitor (Y-27632) during seeding and then maintained in E8 medium till
80–90% confluency [12,23].

2.3. Lentivirus Transduction of iPSCs with NgN2

To acquire a high yield of functional neurons, we transduced the generated human
iPSCs with Ngn2 and rTTA expressing lentivirus (lentivirus was purchased by Cellomics
Technology, Arbutus, MD, USA). We followed an established protocol for the generation of
induced neuronal cells in 21 days [18,25]. Once we established iPSCs confluency at 40–50%,
the cells were transduced with Ngn2 (1.5 uL) and rtTA (1.5 uL) expressing lentivirus.
Further polybrene (1 ug/mL, Santa Cruz, CA, USA) was added at the time of transduction
and cells were incubated for 6 h at 37 ◦C. After 6 h, culture medium was replaced with fresh
E8 medium and cells were incubated for 24 h or until 90% confluency was achieved. Cells
were hereafter passaged only in rock inhibitor supplemented E8 medium. Transduced cells
(250 k cells/well in a 6-well plate) were used for neuronal differentiation in this study.

2.4. Neuronal Differentiation of Ngn2 Transduced iPSCs

The iPSCs were differentiated into glutamatergic excitatory neurons as described
in a previously published protocol [18,25,26]. Ngn2-transduced cells (250 K cells/well)
were plated on vitronectin coated 6-well culture plates. After 48 h, culture medium was
replaced with fresh E8 medium. To start the differentiation, Doxycycline was added to
induce Ngn2 expression (Day 0) using the iN-N2 induction medium {DMEM/F12 (Gibco,
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Grand Island, NY, USA), N-2 supplement (Gibco, Grand Island, NY, USA), D-Glucose
(Millipore Sigma, St. Louis, MO, USA), 2-β-mercaptoethanol (Gibco, Grand Island, NY,
USA), Primocin (Invivogen, San Diego, CA, USA), BDNF (10 ng/mL, Peprotech, Cranbury,
NJ, USA), NT3 (10 ng/mL, Peprotech, Cranbury, NJ, USA), Laminin (200 ng/mL, Millipore
Sigma, St. Louis, MO, USA), and Doxycycline (2 µg/mL, Sigma-Aldrich, St. Louis, MO,
USA). On Day 1, the induction medium was supplemented with puromycin (2 µg/mL)
for 24 h for the selection of transduced cells. On Day 2, surviving cells were passaged on
Matrigel-coated 6-well plates at a concentration of 500 K cells/well in neural differentiation
medium (Neurobasal medium (Gibco, Grand Island, NY, USA), B27 supplement (Gibco,
Grand Island, NY, USA), Glutamax (1% v/v, Gibco, Grand Island, NY, USA), Penicillin-
Streptomycin (Pen/Strep, 5000 units/mL and 5000 µg/mL respectively, Gibco, Grand
Island, NY, USA), D-Glucose (Sigma-Aldrich, St. Louis, MO, USA), BDNF (10 ng/mL,
Peprotech, Cranbury, NJ, USA), NT3 (10 ng/mL, Peprotech, Cranbury, NJ, USA), Laminin
(200 ng/mL, Millipore Sigma, St. Louis, MO, USA), and Doxycycline (2 µg/mL, Sigma-
Aldrich, St. Louis, MO, USA). On Day 4, 50% of the medium was replaced with Neural
maturation medium (Neurobasal medium A (Gibco, Grand Island, NY, USA), B27 (Gibco,
Grand Island, NY, USA), Glutamax (1% v/v, Gibco, Grand Island, NY, USA), Pen/Strep,
Glucose Pyruvate mix (1:100, final concentration of 5 mM glucose and 10 mM sodium
pyruvate), BDNF (10 ng/mL, Peprotech, Cranbury, NJ, USA), NT3 (10 ng/mL, Peprotech,
Cranbury, NJ, USA), Laminin (200 ng/mL, Millipore Sigma, St. Louis, MO, USA), and
Doxycycline (2 µg/mL, Sigma-Aldrich, St. Louis, MO, USA) supplemented with 4 µM of
Cytosineβ-D-arabinofuranoside hydrochloride (Ara-C, Sigma-Aldrich, St. Louis, MO, USA)
to inhibit the non-neuronal cell proliferation. From Day 6, 70% of neuronal maturation
medium was changed every other day until Day 12. From Day 15, non-doxycycline
supplemented maturation medium was used to replace 50% of the medium every 48 h
thereafter until Day 21. Mature neuronal cells were collected on Day 21 for RNA isolation
and transcriptomic analysis.

2.5. Immunocytochemistry Staining for Pluripotency

Immunocytochemistry staining was performed to confirm the pluripotency by using
nucleus markers (OCT4 and NANOG) and TRA-1-60 antibodies were used for surface
markers. We cultured the iPSCs in the 12-well plates (60,000 cells/well) for 3 days, then
cells were quickly washed with PBS and 4% PFA (paraformaldehyde) was used for fixation
up to 20 min in 4 ◦C. Cells were washed with PBS and incubated with blocking buffer
with 10% goat serum for 1 h. Primary antibodies OCT4 (#SC-9081), NANOG (#BD-560482),
and TRA-1-60 (#MAB4360) were used for staining overnight at 4 ◦C. Next day cells were
washed with PBS and incubated at 37 ◦C with secondary antibodies and counterstained
with DAPI for 20 min at 4 ◦C.

2.6. Flow Cytometry

In order to validate the pluripotency of the cells, the flow cytometry analysis was com-
pleted on a BD LSR Fortessa Analyzer (BD Biosciences, Franklin Lakes, NJ, USA) and data
were analyzed by using flowJo software (v10.8.1). Induced PSCs were dissociated into sin-
gle cells with TrypLE (Gibco, Grand Island, NY, USA) and washed with BD-FACS staining
buffer (Thermofischer, #00422257, Carlsbad, CA, USA). Then cells were resuspended in the
BD-FACS staining buffer and labelled through anti-human TRA-1-60 antibody (Millipore
Sigma, St. Louis, MO, USA) and anti-mouse IgM control, PE conjugated (#IC015P), and
incubated at 4 ◦C for 40 min. After incubation, 2 mL of PBS was added in the labelled cells
and centrifuged for 5 min at 1500 RPM. Finally, a 200 uL FACS-buffer was used to resuspend
the cell and analyzed in BD-Fortessa analyzer (BD, Biosciences, San Jose, CA, USA).

2.7. RNA Extraction and Quality Control

Total RNA was isolated from neuronal cell pellets using the Quick-RNA MiniPrep
Kit (Zymo Research #R1054) according to the manufacturer’s protocol. Total RNA was
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quantified using Nanodrop (Thermo Scientific, Waltham, MA, USA). Total RNA of final
concentration (400 ng) was aliquoted and shipped to Novogene (Novogene Corporation
Inc., Sacramento, CA, USA) for 150 bp paired-end RNA sequencing. Once all the samples
passed the primary quality control, library preparation was initiated. See the previously
published paper from our group for the descriptive methodology of RNA sequencing and
analysis [26,27].

2.8. RNA Sequencing and Data Analysis

Next-generation sequencing was outsourced to Novogene Corporation Inc. (Sacra-
mento, CA, USA). The 12 libraries passed Novogene’s quality control and were sequenced
in one batch. The company returned to us .fastq files including on average 44.9 million
reads per sample with a maximum of 52.7 million and a minimum of 39.8 million. In order
to analyze the samples, the 150 bp paired-end reads were aligned to the human reference
genome GRCH38 using the package Hisat2 (version 2.2.1) [28], then SAMtools (version
1.1.4) [29] was utilized to produce the corresponding BAM files, and stringtie (version
2.1.7) [30] was used to assemble RNAseq alignments into potential transcripts and estimate
their abundance according to GRCh38 human genome annotations [31]. Subsequently, raw
counts were computed via the Bioconductor package tximport [32]. Only transcripts with
at least 10 reads across all samples were considered for further analysis. The Bioconductor
package DESeq2 was used for deferential gene expression analysis [33] and adjusted p
(Padj) was calculated using the Benjamini–Hochberg adjustment.

2.9. Bioinformatics Analysis

To identify possible outliers due to experimental conditions, we performed principal
component analysis using read counts as input and the ggplot2 and ggfortify R packages.
For UMAP analysis, we used the R functions prcomp and umap.

To validate the results through comparison with other datasets, the differentially
expressed genes (DEG) were filtered by the adjusted p-values by DEseq2 (FDR 0.05, 0.1 and
0.2 for our dataset) and intersected with the data reported by Mathys et al. [34] for excitatory
cortical neurons (FDR between 5 × 10−5, 5 × 10−6, and 5 × 10−7 for the Mathys dataset
due to the larger number of positives).

To confirm that the DEGs were a valid gene set that could potentially indicate func-
tional differences between AD and control-derived neurons, we utilized the STRING
database of protein–protein interactions [35] version 11.5 (https://string-db.org/, accessed
on 3 May 2023) to determine whether these genes exhibited more frequent interactions
than predicted by chance. Input genes were those with adjusted p-value < 0.05 of which
485 were recognized by STRING. The default parameters were used in the STRING in-
terface, including a medium interaction confidence (0.4) and restricting to only the query
genes without an additional level of interactors, as suggested by the authors for meaningful
edge (interaction) enrichment results.

3. Results
3.1. Generation of iPSCs and Excitatory Neurons

Human iPSCs were generated through PMNCs acquired from the Johns Hopkins Core
facility. Cells were reprogrammed through the transient expression method by using episomal
vectors. Nucleofector cells were grown in the culture for a minimum of two weeks to develop
iPSC-like colonies [12,23]. The morphological identity of the iPSCs was captured by brightfield
microscopy (Figure 1a). The immunofluorescence staining with nucleic markers (NANOG
and OCT4) and surface marker (TRA-1-60) confirmed pluripotency which was also validated
by flow cytometry for TRA-1-60 positive cells (Figure 1c). The functional pluripotency of
the iPSCs was assessed by the in vitro trilineage differentiation into three germ layers as
previously reported [22]. We did not observe any chromosomal abnormality by karyotyping.

To assess the excitatory neuronal identity of the cells produced by Ngn2 induction,
we used the RNA sequencing results to assess the expression of the expected marker

https://string-db.org/
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genes. A list of genes and their expression levels is shown in Table 2. We note that
we, as well as others, have used this protocol repeatedly and consistently to obtain cells
with transcription profiles resembling those of excitatory neurons [17,25–27,36,37]. For
comparison, we provide Figure 2, a heatmap for the expression of these genes in human
excitatory neurons from the single-cell expression database available by the Allen Brain
Atlas (https://celltypes.brain-map.org/rnaseq/human_m1_10x, accessed on 26 July 2023).
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Figure 1. Characterization of iPSCs: (a) Brightfield microscope shows the iPSC morphology (Scale
bars: 400 µm). (b) Fluorescent immunostaining by using pluripotency markers (TRA-1-60, OCT4,
Nanog) (Scale bars: 100 µm). (c) Flow-cytometry shows the purity of the iPSCs by pluripotency
marker (TRA-1-60+ cells).

Table 2. Expression of excitatory neuronal markers in iPSC-derived neurons.

Marker Gene Name Identity PFKM

NeuN RBFOX3 Neuronal 22.5

MAP2 MAP2 Neuronal 197

160 kDa neurofilament Medium NEFM Neuronal 2428

200 kDa neurofilament Heavy NEFH Neuronal 6.5

Synaptophysin SYP Neuronal 207

PSD95 DLG4 Neuronal 134

TUJ1 TUBB3 Neuronal 1384

vGluT1 SLC17A7 Glutamatergic 24

vGluT2 SLC17A6 Glutamatergic 107

NMDAR1 GRIN1 Glutamatergic 5.4

Glutaminase GLS Glutamatergic 29.3

Glutamine synthetase GLUL Glutamatergic 27

https://celltypes.brain-map.org/rnaseq/human_m1_10x
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Figure 2. Expression of marker genes in human brain. Heatmap of the expression of the genes in
Table 2 in human excitatory neurons from the single-cell expression database available from the Allen
Brain Atlas. For details on subtypes and single cells, see the Allen Brain Atlas database.

3.2. RNA Sequencing

We received an average of 45.1 million paired reads per sample (min = 39.8, max = 52.7)
with an error rate of 0.03%, of which at least 96.3% had a Phred score of 20 and at least
90.1 of those had a Phred score of 30. Principal component analysis (PCA) using all genes
and the Fragments Per Kbp per million (FPKM) showed that sample AD06 was an outlier,
likely the result of unknown differences during cell growth and differentiation, and it
was removed from further analysis (Figure 3). The remaining samples were then used
for differential expression (DE) analysis. This analysis identified 621/22,011 DE genes at
Padj < 0.05, 204 higher in AD, and 417 lower.
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3.3. Bioinformatics Analysis

The main question of this project is whether the transcriptome of neuronal cells
derived from AD patients shows detectable differences as compared to those derived from
the controls, making them appropriate for the study of the disease and potentially the
identification of biomarkers. Having identified a significant number of genes changing
expression, we set out to test whether these genes are a meaningful set and related to AD
rather than a collection of random genes from experimental noise. Therefore, we asked
three specific questions: Are the identified genes related to each other? Do they overlap
with genes identified by comparable in vivo studies? Do they contain genes that are known
to be involved in Alzheimer’s disease? Lastly, we investigated whether the transcriptome
of neurons derived from patients and controls could potentially be used for meaningful
classification of individuals to facilitate precision medicine.

3.4. Dysregulated Genes Are Part of a Gene Network

To explore whether the observed set of dysregulated genes is an apparently ran-
dom collection or a functionally meaningful set, we queried the STRING database which
systematically collects and integrates physical interactions and functional associations.
Additionally, for the interactive visualization of these interactions in a provided gene set, it
allows the assessment of excess of edges (connections) between the nodes (proteins/genes)
compared to a random set. Of the 485 genes corresponding to known proteins at Padj < 0.05,
there were 801 interactions, compared to an expected 662 (p-enrichment 9 × 10−8). The
genes corresponding to the interacting proteins were enriched for those expressed in the
brain (FDR = 3 × 10−5).

3.5. Validation through Comparison with External Data

As opposed to most transcriptomic studies of AD that examine bulk tissue from the
brain, our data come from a more homogeneous population of cells after reprogramming
and differentiation to excitatory neurons. We sought an appropriate dataset to examine
the validity of our results by comparing the identified differentially regulated genes.
No published dataset fully matched our conditions, yet one recent study performed
single-cell sequencing providing data specific to excitatory neurons from the prefrontal
cortex of 48 individuals with varying degrees of AD pathology (Mathys et al. [34] from
their Supplementary Table 3, tab Ex, no pathology vs. pathology). Due to our small
sample size, we examined genes with a corrected p-value of <0.05, 0.1, and 0.2 in our
study, while we examined p-value thresholds <5 × 10−5, 5 × 10−6, and 5 × 10−7, for
the Mathys et al. [34] study which reported many more positive results (Table 3). We
consistently found a significant excess of overlap from that expected by chance (lowest
p = 3.5 × 10−5). We also consistently observed significantly more concordance in the
direction of change than that expected by chance (Table 3), reaching a binomial test
p-value of 3.2 × 10−4. The enrichment exceeded 1.5-fold and the concordance rate was
75% for some thresholds. These results suggest that many of the genes we found to have
expression differences mirror changes observed in disease despite our small sample
size and despite coming from blood cells that have been reprogrammed and undergone
differentiation. It further suggests that the genes driving this overlap represent primary
expression changes related to disease risk and not secondary changes due to the disease
itself and/or the prescribed medications.

Many genes related to AD were among the differentially expressed (DE) genes in
AD patients versus the control-derived samples. A complete list of genes with p-values
is provided in Supplementary Table S1. Notably, among genes at p-adjusted <0.05 was
APOE that was expressed less in patient-derived neurons, with an additional four genes
identified by large GWAS for AD: CD2AP, RBFOX1, TMEM132C, and NPAS2. A complete
list of genes with all normalized counts in excitatory neurons (RNAseq) for all individuals
included in the analysis is also provided in Supplementary Table S2.
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3.6. Use of Transcriptome Data as a Patient Classification Tool

Having shown that iPSC-derived neurons from individuals with AD show transcrip-
tome differences from controls, we performed exploratory analysis to determine whether
the transcriptome of such cells may also be used to cluster affected individuals in groups
that might be helpful in determining the course and/or best treatment options, a major
goal of precision medicine. Given our small sample size, we did not expect statistical
support, but perhaps an indication of whether this might be a useful path going forward.
To determine whether the AD patient transcriptome could be used as a multidimensional
variable for patient classification, we used Uniform Manifold Approximation and Projec-
tion for Dimension Reduction (UMAP), a technique that can be used to visualize patterns
of clustering in high-dimensional data [38] that is frequently used for the analysis of single-
cell data. Figure 4 shows the results of this analysis. We observed that the seven patients
appeared to form two clusters on the UMAP1 axis, one containing patients 1, 3, 5, and 8
and the other containing patients 2, 4, and 7. We compared cognitive data between clusters
for the individuals with detailed clinical data (all but AD_06 and AD_08). Interestingly,
despite having similar clinical dementia ratings (CDR) in the CDR scale [39], the two groups
were significantly different in age at examination but despite that the younger group, had
consistently lower performance in letter fluency [40] “Number of words” test and on the
Mini-Mental State Examination (MMSE) [41] (Table 4). These differences did not reach
statistical significance, as would be expected by the very small numbers. Moreover, while
the three male patients do cluster together, AD_01 who is female, also clusters in the middle
of them, making it unlikely that this is a sex effect. Given that the patient sample alone is
small, this is not unlikely to be by chance.

Table 4. Clinical differences of the identified patient clusters. Sum of FAS is the sum of number of
words starting from F, A, and S. MMSE is the score on the MMSE including serial 7s.

Patient Age-at-
Examination Sum of FAS MMSE Overall CDR

Rating
CDR Sum of

Boxes

AD-4 62 17 18 1 4.5
AD-2 60 23 17 0.5 3.5
AD-1 68 48 24 0.5 2.5
AD-3 70 47 25 0.5 3
AD-5 72 27 19 1 8.5

t-test p 0.01 0.108 0.123 0.789 0.81
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4. Discussion

We generated iPSCs from 14 individuals and after differentiation to excitatory neurons,
we found that the patients with AD and the controls showed significant transcriptomic
differences. The genes involved appear functionally connected to each other and overlap
with genes identified in prior in vivo analysis by another research group, supporting
the validity of our results. This is an important observation as it supports the use of
measurements from patient-derived cells differentiated into neurons for the identification
of biomarkers for AD. Further, our exploratory patient-only analysis of clustering suggested
two possible clusters, indicating it might be possible to group patients into biologically
meaningful groups that may advance precision medicine.

The genes differing between the cases and controls included APOE, a very well-
established AD risk gene that was found to be expressed lower in patient-derived cells,
and others previously linked to AD (CD2AP, RBFOX1, TMEM132C, NPAS2). CD2AP,
whose levels were decreased in the patient-derived cells, is a scaffolding molecule
reported to be associated with AD [42]. Its mRNA levels have also been found to
be decreased in peripheral lymphocytes of sporadic AD patients and CD2AP loss of
function has been linked to enhanced Aβ production, Tau-induced neurotoxicity, ab-
normal neurite structure modulation, and reduced blood–brain barrier integrity [43].
RBFOX1, whose levels were increased in the patient derived cells is another AD associ-
ated gene [44], linked to multiple additional psychiatric traits [45]. It is an RNA-binding
protein that regulates alternative splicing [46] including that of APP [47] and vari-
ants near it also regulate gene co-expression modules in the aging human brain [48].
TMEM132C, whose levels were increased in the patient-derived cells, encodes a neural
adhesion molecule associated with AD [44] which is also independently associated with
cognitive impairment in a hypotensive population [49] and with high-altitude adap-
tation in Tibetans. NPAS2, whose levels were decreased in the patient-derived cells,
is a circadian rhythm gene, a system that has been linked to many diseases including
dementia [50]. Interestingly, NPAS2 has also been implicated in prion diseases [51,52]
and is a regulator of genes controlling inflammation in AD [53].

The highest ranked genes in our study, HS6ST2 and FBXO2, have also been previously
linked to AD. HS6ST2, along with its isoform HS3ST2, have been found to increase in
AD and HS3ST2, which through further study, was found to be critical for the abnormal
phosphorylation of tau [54]. Most notably, FBXO2 has been found to regulate amyloid
precursor protein levels and processing [55] and alter cognitive behavior in mice [56].
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While there seem to be biologically relevant differences between the transcriptomes
of iPSC-derived neurons from patients and controls, our sample is too small to reach
conclusions about the possible classification of patients based on these transcriptomes.
Our exploratory analysis using UMAP, a tool for visualizing the proximity of different
samples in a multidimensional space (transcriptome) in two dimensions, suggests two
possible clusters. Interestingly the clusters showed some clinical differences, with one
cluster (AD_2, and 4) having a lower age at presentation, showing similar clinical dementia
ratings, but showing potentially worse scores in MMSE and the “Number of words” test.
We expect that with larger samples more of these differences will emerge that might reflect
patient subgroups and determine the usefulness of this clustering approach for precision
medicine. Incorporated in our mainstream analysis of patients for precision medicine, this
could become a powerful tool. Despite the small sample size, our positive results indicate
that the differences we observed are likely only the tip of the iceberg of information we
might achieve with large patient samples when studying iPSC-derived excitatory neurons.
These preliminary findings suggest that this methodology has the potential for better
understanding AD mechanisms and identifying potential targets for treatment, as well as
better understanding the heterogeneity of mechanisms within AD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12151990/s1, Table S1: Complete list of the differentially
expressed (DE) genes in AD patient versus control-derived samples with p-values; Table S2: Nor-
malized counts in excitatory neurons (RNAseq) for patients and healthy individuals used in the
transcriptomic studies.
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