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Abstract: The mechanical properties of yeast play an important role in many biological processes,
such as cell division and growth, maintenance of internal pressure, and biofilm formation. In
addition, the mechanical properties of cells can indicate the degree of damage caused by antifungal
drugs, as the mechanical parameters of healthy and damaged cells are different. Over the past
decades, atomic force microscopy (AFM) and micromanipulation have become the most widely used
methods for evaluating the mechanical characteristics of microorganisms. In this case, the reliability
of such an estimate depends on the choice of mathematical model. This review presents various
analytical models developed in recent years for studying the mechanical properties of both cells
and their individual structures. The main provisions of the applied approaches are described along
with their limitations and advantages. Attention is paid to the innovative method of low-invasive
nanomechanical mapping with scanning ion-conductance microscopy (SICM), which is currently
starting to be successfully used in the discovery of novel drugs acting on the yeast cell wall and
plasma membrane.
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1. Introduction

A significant contribution to the determination of cell functions lies in the study of their
structures, which in turn are characterized by mechanical properties. The elastic properties
of cells change depending on their state. Therefore, the evaluation of these properties can
be applied in cellular studies to obtain information about the state of health of cells or their
level of damage [1]. There are two widely used approaches to the study of the mechanical
properties of cells: (a) the study of the mechanical properties of the cell by an integral
method, in which the cell is considered as a whole, and (b) the study of the mechanical
properties of the structural components of the cell, in which lipid bilayers, biomembrane,
and cytosolic proteins are studied in detail [2]. Probe microscopy methods are capable of
visualizing and measuring the mechanical properties of soft or brittle biological objects
both as a whole and in parts.

The classic method for studying the mechanical properties of yeast is cell rupture
and the determination of the force required for this by micromanipulation [3]. At the
moment, the most advanced method for studying the biomechanical properties of such
cells is single probe microscopy (SPM), which has a high spatial resolution, allows research
in biological media, and does not lead to cell death [4]. Significant progress has been made
recently in the use of the atomic force microscopy (AFM) [5] and scanning ion-conductance
microscopy (SICM) [6–9] methods to assess the physical properties of microorganisms.
The main advantages of these SPM methods include the ability to conduct studies in
physiological solutions, a small non-destructive mechanical effect on the biological object,
and absence of the need for chemical fixation of the object, which makes it possible to study
living cells. In addition, the high scanning speed (5 µm/s) and resolution (40 nm/pixel)
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make it possible to study the dynamics of nanoscale structures. Even though the resolution
of AFM is higher than that of SICM, for living cells, the lateral resolution of SICM and
AFM is comparable and is on the order of 10–20 nm. At the same time, the AFM method
can mechanically affect the sample for local mechanical measurements, cell activation,
or nanoscale “surgery”, while the SICM method can visualize fragile objects without
contact [10]. As we have demonstrated earlier [6], it is impossible to visualize and measure
the stiffness of drug-induced structural neoplasms on the surface of yeast using AFM.

In addition to visualization and obtaining mechanical properties, it is possible to
record the physicochemical properties of samples via the AFM method when modify-
ing the equipment. For example, using AFM-based force spectroscopy (AFM-FS), which
makes it possible to study the forces of biomolecular adhesion at the level of individual
molecules [11], one can obtain information about the intramolecular interactions of proteins
and DNA/RNA chains [12] as well as analyze the molecular interactions of two single
biomolecules attached to the substrate surface and AFM tip [13]. There are data on the
implementation of the wavelet cross-correlation (XWT) technique in atomic force spec-
troscopy with simultaneous excitation of high cantilever modes to reproduce complex force
dynamics with probe–sample contact [14]. XWT analysis provides parameters such as
displacement, speed, and acceleration of the tip simultaneously for each contact; based
on these data, it is possible to study the energy dissipation [15], which in turn provides
information about the composition of the surface. Another application is nanoscale in-
frared AFM (AFM-nanoIR). It is based on the photothermal expansion of the absorbing
regions of the sample by focusing the IR beam on the same region of the sample as the
tip of the AFM, which causes the cantilever to oscillate in proportion to the aforemen-
tioned IR absorption [16]. AFM-nanoIR correlates topographic images from local areas of
samples with chemical mapping. This can be used to determine the location of protein
receptors on carcinogenic cells [17] or the interaction of amyloidogenic proteins with lipid
layers [18]. Another combination that is gaining popularity is scanning electrochemical
microscopy (SECM) with AFM or SICM. In these approaches, the probes are modified
with a voltammetric ultramicroelectrode, making it possible to obtain the surface topog-
raphy and electrochemical parameters. The method can be applied to various biological
samples (living cells, yeast, bacteria, and DNA) as well as to record both extracellular and
intracellular voltammograms [19,20].

It is worth noting alternative methods for extracting the mechanical properties of
biological samples. For example, the recently presented parallel rheology model combines
conventional viscoelastic elements with fractional calculus to record the macroscopic
relaxation response of epithelial monolayers [21]. Because the model parameters are
material properties, they are mechanical factors of the state of a biological object that can
be used for diagnostics or as a target for regenerative medicine. Unfortunately, a significant
limiting factor for the wide application of this model is the mathematical complexity of its
fractional derivatives and the current lack of convenient numerical methods for analysis.

Another method for studying the elasticity of biological soft substances involves
optical tweezers (OT). This method is based on a focused laser beam capable of influencing
optical forces on micro- and nanoobjects due to momentum conservation during the
interaction of light with matter [22]. Among its advantages are the non-contact method, the
ability to study objects in the environment passing through the target, and a wide range
of object sizes (from atomic [23] to micron size [24]) and cell types (living cells, bacteria,
viruses, yeast [25–28]). Optical tweezers allow parameters such as the persistence length,
Young’s modulus, and shear viscosity of liquid to be obtained; however, for visualization
this method needs to be combined with other relevant methods, for example, multicolor
epiluminescent fluorescence microscopy [29].

Unlike mammalian cells, microorganisms are endowed with a mechanically strong cell
wall which is responsible for various cellular functions [30]. In this regard, the determina-
tion of the mechanical properties of the cell wall and the factors affecting them is important
in the study of yeast or bacteria [31]. However, to extract useful information about the
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properties of the cell wall, the obtained experimental data must be mathematically modeled.
The choice of a mathematical model is a decisive factor in the analysis of the obtained
experimental data, as the plausibility of the determined physical quantity depends on it. At
the moment, for the methods of probe microscopy and micromanipulation there are many
different analytical models applicable to microorganisms. In this regard, the purpose of
this review is to present the currently available mathematical models for various methods
of studying the mechanical properties of yeast. We caution that the reader should refer to
the original publication for the use of the presented equations. The equations presented
in this paper are needed to verify whether the experiments conducted by the researchers
contain the input parameters of the functions.

In the future, this review may contribute to the selection of optimally suitable func-
tions of the energy of deformation, compression, or tension to create a new technique for
obtaining the elastic modulus using the SICM method. At the same time, the combination
of models of individual components of an animal cell with yeast models can expand the
application of the SICM technique in study of the mechanical properties of both healthy
yeast and yeast subjected to biological action, which can lead to the formation of soft
structures on the cell surface with a modulus of elasticity of about kPa.

2. Mathematical Models for Measuring Mechanical Properties by Micromanipulation

One of the common methods for characterizing the mechanical properties of cells is
micromanipulation compression [32–34]. In such experiments, force–deformation data are
obtained by compressing the entire cage between flat parallel plates and measuring the
force acting on it. As a result, the data obtained can be mathematically modeled to provide
information about the mechanical properties of the cell wall. The mathematical models
considered in this chapter are shown in Table 1, and their schemes are provided in Figure 1.

Table 1. Analytical models applicable to micromanipulation techniques.

Source Model Function An Object Description

J.D. Stenson
et al. [31,35]

Sea urchin egg
model

Infinitely small deformation in
Equations (10)–(12), final
deformation in Equations

(13)–(15), Hankey’s deformation in
Equations (16)–(18)

yeast cell wall

In the model, cells are
thin-walled, liquid-filled spheres;

the desired characteristics
depend on the Poisson’s ratio

and the thickness of the cell wall.
It is possible to neglect cell wall
permeability at high strain rates.
Fixing the initial stretch factor

leads to an inaccurate estimate of
the elastic modulus.

Feng and Yang
[36]

Model of
compression of
hollow spheres
filled with gas

Equations (4)–(7) constitutive
equations for contact and

non-contact regions

cell wall of
tomato cells

The cell wall in this model is
divided into areas in contact and

areas not in contact with
compressive forces.

Banavar et al.
[37] Shell theory

Local normal balance of forces of
the cell wall in Equation (19)

Stresses in the cell wall according
to Equations (20) and (21)

growing cell wall
dynamics

The growing cell wall behaves
like an inhomogeneous viscous
liquid with a spatially changing

viscosity that increases with
distance from the growth apex

Mercade’-Prieto
et al. [38]

Core-shell
model

wall stiffness
F/r(Eh)out

cell wall
The model gives an estimate of
the overall stiffness of the cell

wall (Figure 1D).



Cells 2023, 12, 1946 4 of 23

Figure 1. (A) Illustration of a sea urchin model, showing a yeast cell when compressed between two
large rigid plates. (B) Illustration of a model of a hollow sphere filled with gas; cell geometry: ψ0 is
the angular position of a point on the cell wall from the vertical axis of symmetry before compression
and ψ determines the angle of a point on the edge of the contact area between the compression surface
and the cell after compression. (C) Illustration of the shell model showing the geometry of the system
and the image of the increase in the viscosity of the cell wall. (D) Illustration of the core–shell model;
normalized compression force with total wall stiffness F/r(Eh)total under parallel compression for a
two-layer model with an inner wall hin/r = 0.01 and an outer wall hout/r = 0.04 with different ratios of
Young’s moduli.

A simple model used in the micromanipulation method and suitable for the structure
of yeast cells is the hollow sphere model. There are works that consider the modeling of
compression of hollow spheres based on spherical shells filled with gas or spherical shells
filled with an incompressible liquid [36,39]. They assume that the wall of the sphere is
thin enough to be considered as a thin elastic shell in which stresses are expressed as wall
tension and the wall cannot withstand out-of-plane shear stresses or bending moments.
Because non-zero stresses are in the plane of the cell wall (axes OY and OX), this position
is described as a plane stress (the principal stress along the OZ axis is assumed to be
zero). In this case, the volume of the liquid is assumed to be constant, which indicates the
impermeability of the sphere wall. An alternative finite element analysis approach based
on the sea urchin model [40] was described and applied in [41], and the finite element
method was applied with the assumption of cell wall permeability in [42], specifically, a
variable volume of liquid inside the sphere.

The analysis of force–deformation data in compression can be carried out using the
equation relating the stresses and deformations of the cell wall. Assuming that the cell
wall is hyperplastic, the stress components can be derived from the strain energy function.
There are different variants of the strain energy function applicable to cell walls. Examples
of such functions are briefly provided in the work of J.D. Stanson et al., where they were
used to interpret data on cell compression [35]. For example, certain models assume that
the wall is incompressible [39,43], while others consider the strain energy function, which
includes the Poisson ratio (for yeast, the Poisson’s ratio is assumed to be 0.5) [40,42]. When
the constitutive equation or strain energy function is adopted, fitting the experimental
data should allow the characterization of the properties of the cell wall material. However,
to obtain an unambiguous value of the modulus of elasticity it is necessary to accurately
measure such geometric parameters as the initial degree of stretching, the thickness of the
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cell wall, and the loss of fluid volume [42]. After this, the final equation must be evaluated
using various types of mechanical tests.

For example, in the work of J.D. Stanson et al. an analytical model was developed
and experimentally confirmed to describe the compression of a single yeast cell between
parallel flat surfaces [35]. Based on the strain energy function of the sea urchin egg model
(Figure 1A), the strain energy function of the cell wall is expressed as follows [40]:

W =
Eh0

2(1− v2)
(ε2

1 + ε2
2 + 2vε1ε2) (1)

where W is the strain energy per unit of initial volume, ε is the infinitesimal strain, (with ε1
being the index meridional direction and ε2 the longitudinal direction), E is the modulus of
elasticity, h0 is the initial wall thickness, and v is Poisson’s ratio.

Based on the assumption that this is the infinitesimal strain limit of the general large
strain equivalent, which is assumed to be applicable to all deformations, the authors of
the above work extended Equation (1) to large deformations, replacing infinitesimal strain
directly with the Green strain (Ei)

W =
E

2(1− v2)
(E2

1 + E2
2 + 2vE1E2) (2)

and Hencky strain (Hi)

W =
E

2(1− v2)
(H2

1 + H2
2 + 2vH1H2) (3)

In another publication, Feng and Yang described the compression of a spherical
membrane filled with liquid (Equations (4)–(7), Figure 1B) [36]. The cell wall in this model
is divided into areas in contact with and not in contact with the compressive regions. There
are separate groups of defining equations for the contact and non-contact regions:

dλ1

dψ
= − λ1

λ2sinψ

(
f3

f1

)
−
(

λ1 − λ2cosψ

sinψ

)(
f2

f1

)
; (4)

dλ2

dψ
=

λ1 − λ2cosψ

sinψ
; (5)

dλ1

dψ
=

(
δcosψ−ωsinψ

sin2ψ

)(
f2

f1

)
−
(ω

δ

)( f3

f1

)
; (6)

dλ2

dψ
=

(
ωsinψ− δcosψ

sin2ψ

)
; (7)

where ψ is the angular position of the point measured from the vertical axis of symmetry, fi
represents the functions of the principal tensions, and δ = λ2sinψ; andω = dδ/dψ.

Cell compression consists of axisymmetric deformation; thus, λ1 and λ2 are principal
stretches in the meridian and circumferential directions. The last modeling step is to use the
strain energy functions from Equations (1)–(3) in Equations (4)–(7) to obtain the stresses.

Another approach was proposed in [44] as a simplification of an earlier model [34]
which adopted the method of infinitesimal deformations. In this model, a cell is considered
a fluid-filled sphere with thin, compressible, and linear elastic walls. Any change in the
initial uninflated cell wall thickness h0 and the final cell wall thickness h is considered
negligible. The principal Cauchy stresses in the wall are expressed as follows:

T1 =
Eh0

1− v2 {(λ1 − 1) + v(λ2 − 1)} (8)
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T2 =
Eh0

1− v2 {(λ2 − 1) + v(λ1 − 1)} (9)

where λ1 and λ2 are the principal stretch ratios, equal to the ratio of the length of the
membrane section before and after deformation; indices 1 and 2 correspond to the merid-
ional and circumferential directions, respectively; T1 and T2 are the tensions in the wall
corresponding to λ1 and λ2, respectively; E is the Young’s modulus of the cell wall; v is
Poisson’s ratio; and h0 is the initial thickness of the cell wall.

In their model [35], Stanson et al. introduced the functions of infinitesimal strain
(Equations (10)–(12)) based on the method of infinitesimal deformations [44]. Through the
generated strain energy functions in terms of the second Piola–Kirchhoff stress and using
the definition of the Green strain, the authors determined the main stresses in the case of
finite strain in Equations (13)–(15) [45]. Using the definition of Hencky strain, the main
stresses are expressed in Equations (16)–(18).

Infinitesimal strain:
f1 =

Eh0

1− v2 (10)

f2 =
vEh0

1− v2 (11)

f3 =
Eh0(λ1 − λ2)

1 + v
(12)

Finite (Green) strain:

f1 =
Eh0

2(1− v2)
{3λ2

1 + vλ2
2 − (1 + v)} (13)

f2 =
Eh0

2(1− v2)

λ1

λ2
2

{
vλ2

2 + λ2
1 + (1 + v)

}
(14)

f3 =
Eh0

2(1− v2)
{λ1

λ2
[λ2

1 − (1 + v)− λ2

λ1
[λ2

2 − (1 + v)} (15)

Hencky strain:

f1 =
2Eh0

3λ2
1λ2
{2− ln

(
λ2

1λ2

)
} (16)

f2 =
2Eh0

3λ1λ2
2
{1− ln

(
λ2

1λ2

)
} (17)

f3 =
2Eh0

3λ1λ2
ln{λ1

λ2
} (18)

By fitting the force–strain curves obtained through numerical simulation to exper-
imental data, Stenson et al. determined the elastic modulus and the initial stretching
coefficient [35]. The experimental data obtained by the authors are consistent with their
mechanical model of the cell wall; however, the desired characteristics depend on the
Poisson’s ratio and the thickness of the cell wall. In their subsequent work, Stenson et al.
conducted an experiment on compression using micromanipulation at already high strain
rates [31]. The data of the force–strain curves for yeast cells confirmed the operability
of the previously used mechanical model of the cell and the possibility of neglecting the
permeability of the cell wall at high strain rates, which made it possible to find the initial
coefficient of cell expansion with the appropriate modulus of elasticity. In addition, the
value of the elastic modulus agrees with the AFM data [46]. In this case, fixing the initial
stretching coefficient leads to an inaccurate estimate of the elastic modulus.
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Cellular expansive growth, typical of fungal cells, has mechanical aspects that are
important in creating theoretical, mechanical, and biophysical models. Based on the work of
A. Geitmann et al. [47] on the mechanics and modeling of cell wall growth and V. Fliert [48]
on the expansion of thin viscous shells, Banavar et al. derived equations that determine the
dynamics of the growing cell wall. The local normal cell wall force balance is [37]:

σssks + σϕϕkϕ = P; σssks = P/2, (19)

where s is the parametrized arc length from the projection vertex, ]ϕ is the azimuth angle,
ks and kϕ are differential equations with respect to s and ϕ, P is the internal turgor pressure
of the cell, and σss(s,t) and σϕϕ(s,t) are stresses along s and ϕ in the cell wall.

The response of a cell wall to stresses applied to it depends on its mechanical properties.
It should be considered that the yeast cell wall is elastic for short periods of time [49] but
expands irreversibly during division [50], with a characteristic liquid-like behavior of the
cell wall in the growth areas. Therefore, Banavar et al. [37] suggested that the growing cell
wall behaves as an inhomogeneous viscous liquid with a spatially changing viscosity µ(s)
that increases with distance from the growth apex (Figure 1C). The local tangential velocity
u(s,t) of a cell wall with a constant density is equivalent to its deformation rate
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ϕ = (1/r)(dr/dt), where r is the local radius of the cell wall, and is related to
stresses in the cell wall by Equations (20) and (21) [48]:

σss = 4µh
[

Cells 2023, 12, x FOR PEER REVIEW 7 of 23 
 

 

determine the dynamics of the growing cell wall. The local normal cell wall force balance 
is [37]: 𝜎 𝑘 + 𝜎 𝑘 = 𝑃; 𝜎 𝑘 = 𝑃/2, (19) 

where s is the parametrized arc length from the projection vertex, φ is the azimuth angle, 
ks and kφ are differential equations with respect to s and φ, P is the internal turgor pressure 
of the cell, and σss(s,t) and σφφ(s,t) are stresses along s and φ in the cell wall. 

The response of a cell wall to stresses applied to it depends on its mechanical prop-
erties. It should be considered that the yeast cell wall is elastic for short periods of time 
[49] but expands irreversibly during division [50], with a characteristic liquid-like behav-
ior of the cell wall in the growth areas. Therefore, Banavar et al. [37] suggested that the 
growing cell wall behaves as an inhomogeneous viscous liquid with a spatially changing 
viscosity µ(s) that increases with distance from the growth apex (Figure 1C). The local 
tangential velocity u(s,t) of a cell wall with a constant density is equivalent to its defor-
mation rate ὲs = δu/δs as well as to ὲφ = (1/r)(dr/dt), where r is the local radius of the cell 
wall, and is related to stresses in the cell wall by Equations (20) and (21) [48]: 𝜎 = 4𝜇ℎ ὲ + ὲ2 ; (20) 

𝜎 = 4𝜇ℎ ὲ2 +  ὲ , (21) 

where h is the cell wall thickness. 
As a result, we can summarize the main points that should be considered when de-

veloping an analytical model. First, the uniqueness of the obtained modulus of elasticity 
depends on the accuracy of measuring the parameters of the cell wall thickness, the initial 
degree of stretching, and the loss of fluid volume. Second, at high strain rates it is possible 
to neglect the permeability of the cell wall and use the impermeable sphere model. Third, 
not all parts of the cell are always elastic, meaning that during cell growth the behavior of 
the cell wall has a fluid-like character. 

3. Mathematical Models for Measuring Mechanical Properties by the AFM Method 
Atomic force microscopy is a well-established method that allows the study of vari-

ous parameters of biological objects, including the mechanical properties of cells. The 
basic principle of AFM operation is based on recording the force interaction between a 
probe and the sample surface [51]. The probe is a tip mounted on a flexible cantilever that 
is illuminated by a laser beam. When the tip is mechanically deflected from the sample, 
the laser beam deflection is fixed by a photodiode, the magnitude of which depends on 
the forces of interaction between the tip and the sample (Figure 2). During the existence 
of this method many analytical models have been developed, the most relevant of which 
are presented in this section (Table 2). Model schemes are shown in Figure 3. 

s +

Cells 2023, 12, x FOR PEER REVIEW 7 of 23 
 

 

determine the dynamics of the growing cell wall. The local normal cell wall force balance 
is [37]: 𝜎 𝑘 + 𝜎 𝑘 = 𝑃; 𝜎 𝑘 = 𝑃/2, (19) 

where s is the parametrized arc length from the projection vertex, φ is the azimuth angle, 
ks and kφ are differential equations with respect to s and φ, P is the internal turgor pressure 
of the cell, and σss(s,t) and σφφ(s,t) are stresses along s and φ in the cell wall. 

The response of a cell wall to stresses applied to it depends on its mechanical prop-
erties. It should be considered that the yeast cell wall is elastic for short periods of time 
[49] but expands irreversibly during division [50], with a characteristic liquid-like behav-
ior of the cell wall in the growth areas. Therefore, Banavar et al. [37] suggested that the 
growing cell wall behaves as an inhomogeneous viscous liquid with a spatially changing 
viscosity µ(s) that increases with distance from the growth apex (Figure 1C). The local 
tangential velocity u(s,t) of a cell wall with a constant density is equivalent to its defor-
mation rate ὲs = δu/δs as well as to ὲφ = (1/r)(dr/dt), where r is the local radius of the cell 
wall, and is related to stresses in the cell wall by Equations (20) and (21) [48]: 𝜎 = 4𝜇ℎ ὲ + ὲ2 ; (20) 

𝜎 = 4𝜇ℎ ὲ2 +  ὲ , (21) 

where h is the cell wall thickness. 
As a result, we can summarize the main points that should be considered when de-

veloping an analytical model. First, the uniqueness of the obtained modulus of elasticity 
depends on the accuracy of measuring the parameters of the cell wall thickness, the initial 
degree of stretching, and the loss of fluid volume. Second, at high strain rates it is possible 
to neglect the permeability of the cell wall and use the impermeable sphere model. Third, 
not all parts of the cell are always elastic, meaning that during cell growth the behavior of 
the cell wall has a fluid-like character. 

3. Mathematical Models for Measuring Mechanical Properties by the AFM Method 
Atomic force microscopy is a well-established method that allows the study of vari-

ous parameters of biological objects, including the mechanical properties of cells. The 
basic principle of AFM operation is based on recording the force interaction between a 
probe and the sample surface [51]. The probe is a tip mounted on a flexible cantilever that 
is illuminated by a laser beam. When the tip is mechanically deflected from the sample, 
the laser beam deflection is fixed by a photodiode, the magnitude of which depends on 
the forces of interaction between the tip and the sample (Figure 2). During the existence 
of this method many analytical models have been developed, the most relevant of which 
are presented in this section (Table 2). Model schemes are shown in Figure 3. 

ϕ

2

]
; (20)

σϕϕ = 4µh
[

Cells 2023, 12, x FOR PEER REVIEW 7 of 23 
 

 

determine the dynamics of the growing cell wall. The local normal cell wall force balance 
is [37]: 𝜎 𝑘 + 𝜎 𝑘 = 𝑃; 𝜎 𝑘 = 𝑃/2, (19) 

where s is the parametrized arc length from the projection vertex, φ is the azimuth angle, 
ks and kφ are differential equations with respect to s and φ, P is the internal turgor pressure 
of the cell, and σss(s,t) and σφφ(s,t) are stresses along s and φ in the cell wall. 

The response of a cell wall to stresses applied to it depends on its mechanical prop-
erties. It should be considered that the yeast cell wall is elastic for short periods of time 
[49] but expands irreversibly during division [50], with a characteristic liquid-like behav-
ior of the cell wall in the growth areas. Therefore, Banavar et al. [37] suggested that the 
growing cell wall behaves as an inhomogeneous viscous liquid with a spatially changing 
viscosity µ(s) that increases with distance from the growth apex (Figure 1C). The local 
tangential velocity u(s,t) of a cell wall with a constant density is equivalent to its defor-
mation rate ὲs = δu/δs as well as to ὲφ = (1/r)(dr/dt), where r is the local radius of the cell 
wall, and is related to stresses in the cell wall by Equations (20) and (21) [48]: 𝜎 = 4𝜇ℎ ὲ + ὲ2 ; (20) 

𝜎 = 4𝜇ℎ ὲ2 +  ὲ , (21) 

where h is the cell wall thickness. 
As a result, we can summarize the main points that should be considered when de-

veloping an analytical model. First, the uniqueness of the obtained modulus of elasticity 
depends on the accuracy of measuring the parameters of the cell wall thickness, the initial 
degree of stretching, and the loss of fluid volume. Second, at high strain rates it is possible 
to neglect the permeability of the cell wall and use the impermeable sphere model. Third, 
not all parts of the cell are always elastic, meaning that during cell growth the behavior of 
the cell wall has a fluid-like character. 

3. Mathematical Models for Measuring Mechanical Properties by the AFM Method 
Atomic force microscopy is a well-established method that allows the study of vari-

ous parameters of biological objects, including the mechanical properties of cells. The 
basic principle of AFM operation is based on recording the force interaction between a 
probe and the sample surface [51]. The probe is a tip mounted on a flexible cantilever that 
is illuminated by a laser beam. When the tip is mechanically deflected from the sample, 
the laser beam deflection is fixed by a photodiode, the magnitude of which depends on 
the forces of interaction between the tip and the sample (Figure 2). During the existence 
of this method many analytical models have been developed, the most relevant of which 
are presented in this section (Table 2). Model schemes are shown in Figure 3. 

s

2
+

Cells 2023, 12, x FOR PEER REVIEW 7 of 23 
 

 

determine the dynamics of the growing cell wall. The local normal cell wall force balance 
is [37]: 𝜎 𝑘 + 𝜎 𝑘 = 𝑃; 𝜎 𝑘 = 𝑃/2, (19) 

where s is the parametrized arc length from the projection vertex, φ is the azimuth angle, 
ks and kφ are differential equations with respect to s and φ, P is the internal turgor pressure 
of the cell, and σss(s,t) and σφφ(s,t) are stresses along s and φ in the cell wall. 

The response of a cell wall to stresses applied to it depends on its mechanical prop-
erties. It should be considered that the yeast cell wall is elastic for short periods of time 
[49] but expands irreversibly during division [50], with a characteristic liquid-like behav-
ior of the cell wall in the growth areas. Therefore, Banavar et al. [37] suggested that the 
growing cell wall behaves as an inhomogeneous viscous liquid with a spatially changing 
viscosity µ(s) that increases with distance from the growth apex (Figure 1C). The local 
tangential velocity u(s,t) of a cell wall with a constant density is equivalent to its defor-
mation rate ὲs = δu/δs as well as to ὲφ = (1/r)(dr/dt), where r is the local radius of the cell 
wall, and is related to stresses in the cell wall by Equations (20) and (21) [48]: 𝜎 = 4𝜇ℎ ὲ + ὲ2 ; (20) 

𝜎 = 4𝜇ℎ ὲ2 +  ὲ , (21) 

where h is the cell wall thickness. 
As a result, we can summarize the main points that should be considered when de-

veloping an analytical model. First, the uniqueness of the obtained modulus of elasticity 
depends on the accuracy of measuring the parameters of the cell wall thickness, the initial 
degree of stretching, and the loss of fluid volume. Second, at high strain rates it is possible 
to neglect the permeability of the cell wall and use the impermeable sphere model. Third, 
not all parts of the cell are always elastic, meaning that during cell growth the behavior of 
the cell wall has a fluid-like character. 

3. Mathematical Models for Measuring Mechanical Properties by the AFM Method 
Atomic force microscopy is a well-established method that allows the study of vari-

ous parameters of biological objects, including the mechanical properties of cells. The 
basic principle of AFM operation is based on recording the force interaction between a 
probe and the sample surface [51]. The probe is a tip mounted on a flexible cantilever that 
is illuminated by a laser beam. When the tip is mechanically deflected from the sample, 
the laser beam deflection is fixed by a photodiode, the magnitude of which depends on 
the forces of interaction between the tip and the sample (Figure 2). During the existence 
of this method many analytical models have been developed, the most relevant of which 
are presented in this section (Table 2). Model schemes are shown in Figure 3. 

ϕ

]
, (21)

where h is the cell wall thickness.
As a result, we can summarize the main points that should be considered when

developing an analytical model. First, the uniqueness of the obtained modulus of elasticity
depends on the accuracy of measuring the parameters of the cell wall thickness, the initial
degree of stretching, and the loss of fluid volume. Second, at high strain rates it is possible
to neglect the permeability of the cell wall and use the impermeable sphere model. Third,
not all parts of the cell are always elastic, meaning that during cell growth the behavior of
the cell wall has a fluid-like character.

3. Mathematical Models for Measuring Mechanical Properties by the AFM Method

Atomic force microscopy is a well-established method that allows the study of various
parameters of biological objects, including the mechanical properties of cells. The basic
principle of AFM operation is based on recording the force interaction between a probe
and the sample surface [51]. The probe is a tip mounted on a flexible cantilever that is
illuminated by a laser beam. When the tip is mechanically deflected from the sample, the
laser beam deflection is fixed by a photodiode, the magnitude of which depends on the
forces of interaction between the tip and the sample (Figure 2). During the existence of
this method many analytical models have been developed, the most relevant of which are
presented in this section (Table 2). Model schemes are shown in Figure 3.
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Figure 2. (A) Schematic representation of the elements of the AFM setup. The spherical tip interacts
with the surface of the sample, which leads to the deflection of the microcantilever, which is recorded
by the photodetector using a laser beam reflected from the microcantilever. In a typical measurement
of mechanical curves, the base of the micro console is approached or retracted at a constant vertical
speed and the force is recorded. (B) An example of the resulting F-Z curves, in which the arrow
indicates the point of contact of the probe with the sample. (C) An example of converting an F-Z
curve to a force–indentation curve, from which Young’s modulus is obtained.

Table 2. Analytical models applicable to the AFM method.

Source Model Function An Object Description

H. Hertz [52] Hertz Model

Cantilever Force Equation (22),
effective Young’s modulus

Equation (23)
(When the material of the tip is
significantly harder than the

material of the sample,
Equation (24))

homogeneous smooth
bodies

The model is used under the assumptions
that the indenter shape is parabolic, and

the sample thickness is much greater than
the indentation depth.

The model does not allow the probe to stick
to the sample.

B. Derjaguin [53] DTM model cell wall

The model is applicable in the presence of
long-range surface forces outside the area

of contact between the probe and the
sample and is valid in the event of weak
adhesion between the nanoindenter and

the outer surface of the sample. Its use is a
priority for objects with low cohesion and a

small radius of curvature.

Zhao et al. [46] Cylindrical shell
model

The modulus of elasticity of
the cell wall in Equation (28) cell wall

In the technique, F and δ are linearly
dependent on each other, while the cell

wall elasticity constant kw depends on the
mechanical properties and dimensions of
the cell wall but does not depend on the

internal pressure of the cell.

Vella et al. [54] Elastic shell
model

internal pressure in
yeast cells

Young’s modulus is an order of magnitude
higher than the values obtained using the

Hertz model.
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Table 2. Cont.

Source Model Function An Object Description

Mercade’-Prieto
et al. [38]

Single layer
sphere

The values of F and Eh are
calculated from Equations (28)

and (29)
cell wall

Corrected values of the Young’s modulus
are higher than using Hertz–Sneddon

analysis but lower than using
micromanipulation compression.

Mercade’-Prieto
et al. [38]

Double layer
model

Force profile at small
deformations in Equation (31). cell wall

The model of a two-layer cell wall suggests
the possibility of estimating the elastic

modulus by AFM only for the outer layer.

E. A-Hassan,
S.P. Timoshenko

[55,56]

Theory of elastic
shells

Young’s modulus is estimated
from the ratio between the
effective Young’s modulus,
shell thickness and bending

modulus

cells Cells in the model are represented as shells
filled with liquid.

P. Garcia & R.
Garcia [57] Non-Hertz model

In the case of a paraboloid
probe, the force is expressed

by Equation (33).

mammalian cells
attached to a solid

support

The cell’s Young’s modulus depends on the
solid substrate, and the bottom effect

artifact is determined by the ratio between
the contact radius and cell thickness. The

model is applicable when the indentation is
less than or equal to the tip radius.

R. Vargas-Pinto
et al. [58]

Hertz Model and
Contact Model

The force, in the case of a
spherical tip, is expressed by

Equation (29)
In the case of a sharp tip, the
model is used Rico et al. [59]
and Briscoe et al. [60], where

the force is expressed in
Equation (34)

mammalian cells with
cortex

Combining the models resolved the issue
of inaccuracy in determining the rigidity of
the cage. Sharp probes examine the cortical

layer, and spherical probes record the
rigidity of the cortical layer together with

the cytoskeleton.
In the model presented, the elastic
component and the active stress

component are combined into an effective
elastic response for ease of calculation.

Y. Efremov
et al. [61]

Elastic-
Viscoelastic
Compliance

Ting’s solution for indentation
of a viscoelastic sample with a
rigid spherical tip Equations

(35) and (36).

living cells and
hydrogels

It reflects the approach-retraction
hysteresis well but requires an appropriate

choice of the viscoelastic function.

Y. Efremov
et al. [61]

P. Cai et al. [62]

Standard Linear
Solid-State

Rheology and
Power Rheology

Relaxation time Equations (35)
and (36),

Kohlrausch–Williams–Watts
function Equation (37).

living cells

The standard linear rigid body model is a
combination of a spring and damper, in

which the spring is parallel to the Maxwell
element.

Y. Efremov
et al. [63]

Johnson-Kendall-
Roberts
model

The indentation depth, contact
radius, and maximum

adhesive force are presented in
Equations (38)–(40),

respectively)

living cells and
hydrogels

The model fits the retraction part well with
force-distance curves.

The Hertz model is used in most works devoted to evaluating the Young’s modulus
of cells by AFM; this model describes a simple case of elastic deformation of two ideally
homogeneous smooth bodies in contact under load (Figure 3A) [52]. The following assump-
tions are used in the model: (a) the shape of the indenter is parabolic, and (b) the sample
thickness is much greater than the indentation depth.
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Figure 3. (A) Scheme of the Hertz model, where E is Young’s modulus, v is Poisson’s ratio, and X is
indentation. Indexes 1 and 2 refer to two bodies, respectively. (B) Scheme of the DMT model, where R
is the radius of the elastic sphere, a is the contact radius, and α is the shift from the center of the elastic
sphere. (C) Diagram of a cylindrical shell model, where the AFM cantilever tip applies a normal
force F, indenting (δ) a hypha with internal pressure P, radius R, and thickness h. (D) Illustration
of the elastic shell model. A spherical shell with thickness h and undeformed radius R experiences
internal pressure P and is loaded with a vertical point force F at the pole. This causes a vertical
deflection w(r) and, in particular, a displacement w(0) = −w0 at the point of application of the force.
(E) Illustration of the Non-Hertz Model. (F) Schematic of the FEM for sharp tip (1) or spherical tip (2).
(G) Viscoelastic models can be used to relate the stress and strain by using elastic (springs, denoted E)
and viscous (dashpots, denoted η) parts. (H) Scheme of the Johnson–Kendall–Roberts model, where
a is the contact radius and Fad is the maximum adhesive force.

The force exerted by a cantilever with a probe of radius R on the cell is determined by
the equation

F(h) =
4
√

R
3

Eh
3
2 (22)

where h is the indentation depth and E* is the effective modulus of the probe–sample
system, which is calculated by the equation:

1
E∗

=
1− v2

tip

Etip
E∗h

3
2 (23)
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where Etip, vtip, Esample, and vsample are the Young’s moduli and Poisson’s ratios for the tip
and sample materials, respectively. In the case where the tip material is much harder than
the sample material, the following equation is used [64]:

E∗ ≈
Esample

1− v2
sample

(24)

The Hertz theory does not allow the probe to stick to the sample; for this case, Kendall
and Roberts modified the model [65]; to characterize the elastic properties of cells, Mahaffy
et al. used the dynamic Young’s modulus [66]. However, the cell surface is heterogeneous,
and there is an error in the evaluation of the cell’s Young’s modulus by the Hertz model.
In 1975, Derjaguin et al. presented the Deryagin–Muller–Toporov (DMT) model, which
includes cohesive forces outside the contact surface (Figure 3B) [53]. In their theory, the
profile of the deformed surface corresponds to the Hertz model. The DMT model is appli-
cable in the presence of long-range surface forces outside the region of contact between the
probe and the sample, and is valid when there is weak adhesion between the nanoindenter
and the outer surface of the sample. Ricardo et al. used the DMT model to determine
the AFM Young’s modulus of yeast cells as well as the change in cell wall stiffness under
chemical stress caused by acetic acid [67,68]. It should be noted that in the DMT model,
due to geometric limitations the real contact area and the depth of the dent are considered
negligible. In this connection, the use of the model is a priority for objects with low cohesion
and a small radius of curvature.

Another model for studying the elastic properties of cells by AFM is a model based
on the theory of elastic shells [55,56], in which cells are represented as shells filled with
liquid. In this model, the effective Young’s modulus is estimated from the ratio between
the effective Young’s modulus, the shell thickness, and the bending modulus. The main
problem with this approach is the determination of the boundary conditions and the
contact radius of the probe with the sample. In addition, when evaluating the mechanical
characteristics by the AFM method, the finite element model can be used [69].

Another way to model the mechanical characteristics of yeast is to represent the
cell as a cylindrical shell. To test the finite element model, Zhao et al. [46] compared
simulation results with theoretical results in cases where the shell is inflated [56] and
indented (Figure 3C) [70]. In the case when the edges of the shell are free from restrictions,
the internal pressure p creates only a hoop stress, and the radius of the cylinder increases
by [56]

δ =
pR2

Eh
, (25)

where δ is the radial displacement, R is the cell radius, h is the wall thickness, and E is the
modulus of elasticity.

In the case where the cylinder is subjected to equal and opposite radial loads, the
equation for radial indentation is [70]

δ(x, θ) =
F

Eh
f (

R
h

, x, θ), (26)

where f is a complex function of R/h and the coordinate parameters x and θ.
Assuming that the cell wall is incompressible, L. Zhao et al. [46] modeled the mechan-

ical model using the finite element model. At the end of each simulation, the maximum
radial displacement is obtained with predetermined values of the elastic modulus E, the
force F applied to the cage, the cage radius R, and the wall thickness h. The authors found
that F and δ are linearly dependent on each other, while the cell wall elasticity constant kw
depends on the mechanical properties and dimensions of the cell wall but does not depend
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on the internal pressure of the cell. By transforming the correlation, they calculated the
elastic modulus of the cell wall:

E = 0.8
kw

h
(

R
h
)

1.5
(27)

The main problem in studying the mechanical properties of the yeast cell wall is the fre-
quent discrepancy between the elastic modulus obtained by AFM and micromanipulation
methods. Thus, according to the data obtained by the AFM method, the Young’s modulus is
about 0.2–1.6 MPa [71–73], while in studies using the micromanipulation method the value
is about 100–200 MPa [31,74]. The reason for this discrepancy is the use of the classical
Hertz–Sneddon analysis in AFM measurements, where it is assumed that the entire cell
is a single continuous material [75]. The cell membrane is considered unstressed, and
the force resisting deformation is negligible compared to the force of reaction from the
cytoskeleton [76]. Therefore, AFM experiments analyzed using the Hertz–Sneddon equa-
tions provide information about the mechanical properties of the cytoskeleton, not the cell
membrane. Because the cell wall is much stiffer than the cytoskeleton, the Young’s modulus
of the cell wall obtained using the Hertz–Sneddon analysis has no physical meaning.

Vella et al. [54] considered the internal pressure in yeast cells and, using the elastic
shell model (Figure 1D), calculated the Young’s modulus from the published AFM data of
yeast cells [77], obtaining corrected values of 12–46 MPa, which is an order of magnitude
higher than the values obtained using the Hertz model. However, their work is based on
the theory of shells, in which the thickness of the shell h is much smaller compared to the
radius of the cell sphere. Mercade’-Prieto et al. considered the case where the thickness of
the yeast cell wall is large [38] and its analysis using the shell theory is impossible. They
considered the indentation of spheres using finite element method (FEM) modeling, which
considers Green strains and Hencky strains.

Using FEM during compression of a spherical shell (h/r = 0.05) with a sharp indenter
(rind/r = 0.01) in the case of a single-layer cell wall, Mercade’-Prieto et al. confirmed [38]
that the Reissner equation (Equation (28)) is applicable only to thin shells (h/r < 0.02); in
the case of thicker shells, in which the probe is pressed into the shell, the Hertz–Sneddon
equations are valid [78]. The values of the point loading F and wall stiffness Eh (where h is
the wall thickness) in this case are calculated according to Equations (28) and (29):

F =
4Eh2√

3(1− v2)

d
r

; (28)

Eh =
2kwd

f (h/r)
, (29)

where f (h/r) is a function depending on the deformation model and kwd is the cell wall
elasticity constant.

In studies by Mercade’-Prieto et al., the corrected value of the Young’s modulus is
10 MPa [38], which is higher than when using the Hertz–Sneddon analysis but lower than
when using micromanipulation compression [31].

The authors then considered a double-layer model (Figure 1D) in which it is assumed
that the outer layer (shell) of the cell wall has a thickness hout with a Young’s modulus Eout
and is attached to an inner layer (core) of the cell wall which has a thickness hin with a
Young’s modulus Ein. For the micromanipulation method, in the case of compression of a
two-layer core-shell sphere to large deformations, the Young’s modulus is calculated by
Equation (30). The results of the FEM are consistent with the micromanipulation data, and
the Young’s modulus Ein is about 0.4–0.8 GPa.

Etotal = (Eh)in + (Eh)out (30)

When using the AFM method and a sharp indenter, the behavior of a two-layer cell
wall at small deformations depends on the thicknesses of the two layers and the relative
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values of their elastic moduli Ein/Eout. When Ein/Eout = 1, the system behaves as a single-
layer wall; when Ein/Eout = ∞, however, the system is analogous to the cell wall being
pressed against a very rigid substrate [79]. In this regard, it is incorrect to use the Hertz–
Sneddon analysis when Ein/Eout is low, while its use is optimal when Ein/Eout is high. FEM
results obtained by Mercade’-Prieto et al. using the double layer model were determined
using the pseudo-Hertz Equation (31) with pseudo-Hertz Young’s modulus (EpH) and
Hencky strain ε = 0.004, in which the vertex displacement (d) is equal to the indentation
depth (dind) [38].

Fparaboloid =
4r0.5

ind
(
2r)1.5

3(1− v2)
EpHε1.5 (31)

Equation (31) describes the force profile only for small deformations (d < 0.2hout).
At a higher value of Ein/Eout, the inner layer behaves as a rigid substrate, in which case
d ≈ dind and EpH~Eout. It is worth considering that when a rigid inner layer is present the
outer layer is highly deformed even with low indentation. Thus, the model of a two-layer
cell wall suggests the possibility of estimating the elasticity modulus by the AFM method
(with a sharp probe) of only the outer layer and using the micromanipulation method to
estimate the total stiffness of the wall. It should be noted that the determination of the
Young’s modulus is affected by the contribution of the inner layer and by the rigidity of
the substrate.

From models of contact mechanics based on the theories of Hertz, Boussinesq, and
Sneddon [80–82], analytical expressions can be derived that relate the Young’s modulus,
indentation, and force [81–83]. The main assumption in these models is the consideration
of the sample as a layer of infinite thickness. In models of semi-infinite contact mechanics
the rigidity of the substrate is not considered, which can lead to errors in determining the
Young’s modulus of the cell. This is due to the reflection of the voltage applied by the
probe back to the cell surface. This effect has been described as an artifact of the bottom
effect [84].

P. Garcia and R. Garcia presented a method for determining the elasticity modulus
of mammalian cells attached to a solid substrate (Figure 3E) [57]. The authors used a
non-Hertz model to express the change in the area of contact with the imprint. In the
presented theory, the force is defined as a function of the imprint and the contact radius as
the sum of terms expressed in reciprocal powers of the sample thickness. In the case of a
paraboloid probe with a shape calculated according to Equation (32), the force is expressed
by Equation (33), while the expression is applicable only when the indentation is less than
or equal to the radius of the tip:

f (r) =
r2

2R
(32)

Fspere = F0

[
1
h0

+ 1.133
√

δR
h + 1.497δR

h2 + 1.469δR
√

δR
h3 +

0.755
(

δ2R2
)

h4

]
,

F0 = 16
9 Ecell

√
Rδ3/2

(33)

where radial coordinate r = ((x2) + (y2))1/2, R is the radius of the probe, h is the height
of the sample, δ is the indentation, F0 is the applied force, and Ecell is the Young’s modulus
of the cell.

By performing finite element simulations, the authors confirmed that the Young’s
modulus of cells measured by AFM depends on the solid substrate and that the artifact of
the bottom effect is determined by the ratio between the contact radius and the thickness
of the cell. The bottom effect theory of elasticity describes the above features, allowing
the determination of the true elastic modulus of the cell without the influence of a solid
substrate. However, there are cases in which the inaccuracy in determining cell rigidity is
not caused by the bottom effect but by the presence of the cortical layer of the cell, which is
much more rigid than the underlying internal cytoskeleton.
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R. Vargas-Pinto et al. used the example of endothelial cells of the human umbilical
vein to determine the reason for the discrepancy between the data on cell elasticity obtained
for sharp and spherical probe tips (Figure 3F) [58]. Using FEM, the authors modeled the tip
of the probe as a solid body [85], then the geometry of the sharp tip was simplified from a
pyramid to a cone. The cell cytoskeleton was modeled as a cylindrical disk with a given
radius and thickness and with a cortical layer surrounding the cell of a given thickness. The
authors calculated the values for a spherical tip using Equation (22), while in the case of a
sharp tip they used the previously described models of Rico et al. [59] and Briscoe et al. [60]
for pyramidal and conical indenters, respectively, where it is taken into account that the
sharp pointed tips are not an ideal cone but have a spherical cap at the top, meaning that
the model behaves as a spherical tip at small indentations (δ < b2/R) and as a conical tip for
large deformations:

F = 2E
1−v2

(
aδ−m a2

tanθ

[
π
2 − sin−1

(
b
a

)]
− a3

3R +
(

a2 − b2)
1
2

[
mb

tanθ +
a2−b2

3R

])
,

δ− a
R

[
a−

(
a2 − b2)

1
2

]
− na

tanθ

[
π
2 − sin−1

(
b
a

)]
= 0,

(34)

where b = Rcosθ; a is the contact radius; R is the radius of the spherical tip; m = 21/2/π and
n = 23/2/π for the top of the pyramid; and m = 1/2 and n = 1 for the cone.

Based on experimental data and simulations, R. Vargas-Pinto et al. concluded that the
cortical layer is examined with sharp probes, while the rigidity of the cortical layer and
cytoskeleton is recorded with spherical probes [58]. Work hardening or the influence of a solid
substrate is unlikely due to the increase in the Young’s modulus with increasing indentation
value; therefore, the presence of the cortical layer directly affects the discrepancy between the
results obtained with a spherical or sharp probe. However, in the presented model, the elastic
component and the active stress component are combined into an effective elastic response for
ease of calculation. Accounting for these components would make it possible to characterize
the mechanical characteristics of individual cell structures in more detail.

The main limitation of the use of the Hertz model in the study of biological objects is
the impossibility of studying the viscoelastic properties, as in this model the curves of the
approach and withdrawal forces coincide (i.e., there is no hysteresis). As the viscoelasticity
of the sample is the main source of hysteresis in liquid media, the hysteresis area of the
force curve is used to evaluate the viscoelastic properties of cells.

Ting’s viscoelastic solution reflects the approach–retraction hysteresis well, although
it requires an appropriate choice of the viscoelastic function. In a recent work, Y. Efremov
et al. presented a method based on the principle of elastic viscoelasticity (Figure 3G) and
confirmed its applicability using FEM and experiments on living cells and hydrogels with
known mechanical characteristics [61]. Equations (35) and (36) describe Ting’s solution for
indentation of a viscoelastic sample with a rigid spherical probe tip:

F(t, δ(t)) =


4
√

R
3(1−v2)

∫ t
0 E(t− ξ) ∂δ

3
2

∂ξ dξ, 0 ≤ t ≤ tm

4
√

R
3(1−v2)

∫ t1(t)
0 E(t− ξ) ∂δ

3
2

∂ξ dξ, tm ≤ t ≤ tind

, (35)

∫ t

t1(t)
E(t− ξ)

∂δ

∂ξ
dξ = 0, (36)

where F is the force acting on the tip of the cantilever; δ is the indentation depth; t is the
time initiated at the moment of initial contact (with tm being the duration of the rendezvous
phase and tind the duration of the full indentation cycle); t1 is an auxiliary function defined
by Equation (36); ξ is a dummy time variable required for integration; E(t) is Young’s
modulus of relaxation; v is Poisson’s ratio; and R is the radius of the indenter.

Y. Efremov et al. described the function of the relaxation modulus by rheological
models (standard linear solid-state rheology and power-law rheology) as presented in
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Equations (37) and (38) (Figure 3G), respectively [61]. The standard linear rigid body model
is a combination of a spring and damper, with the spring parallel to the Maxwell element.
With the successive addition of a Maxwell element different from the existing one (spring
to shock absorber or shock absorber to spring), a power-law rheology model is obtained in
which there are several relaxation times:

E(t) = E∞ + (E0 − E∞)e−
t
τ , (37)

E(t) = E0(1 +
t
t′
)−α, (38)

where E0 is the instantaneous modulus, E∞ is the long-term modulus, and τ is the relaxation time.
Another example of using a viscoelastic model with continuous relaxation spectra is

presented by P. Cai et al. [62], where a stretched Kohlrausch–Williams–Watts exponential
function was used for stepwise data analysis [86]:

E(t) = E∞ + (E∞ − E∞)e−(
t

τr )
β

(39)

where β is the exponent used to represent relaxation time dispersion processes in the system
and τr is the characteristic relaxation time.

In an earlier study by Y. Efremov et al., the Johnson–Kendall–Roberts model was
applied to retraction curves to account for adhesion [63]. In the Johnson–Kendall–Roberts
model (Figure 3H), the indentation depth δ, contact radius a, and maximum adhesive force
Fad are represented by the following equations:

δ =
a2

R
− 3

4

√
aFad
RK

; (40)

a =

√[
R
K
(
√

Fad +
√

F + Fad)2
]

; (41)

Fad =
3
2

πγR, (42)

where K = (4/3)E(1 − ν2) is the sample elasticity constant, F is the normal loading force,
and γ is Dupre’s work of adhesion [65].

The Johnson–Kendall–Roberts model fits the retraction part well, with force–distance
curves obtained at medium indentation speeds and low retention times to obtain data on
the maximum adhesive force, Young’s modulus, and zero indentation point.

Summing up this section, we note the following conditions for choosing an analytical
model. The Hertz model, which is the most widely used, does not provide for sticking of
the probe to the sample; because of this, when choosing this model it is possible to obtain
only the elastic properties of the object of study. In the theory of elastic shells, the main
problem is the definition of boundary conditions. Moreover, due to the large thickness of
the cell wall, its analysis using shell theory is not possible. While the core–shell model is
well suited for studying the cell wall, it should be considered that the AFM method can
only evaluate the outer layer of the cell, and this model does not consider the bottom effect.
It is worth considering the discrepancy between the results obtained on spherical and sharp
probes as well.

Despite significant progress in the understanding of cell mechanics, several provisions
have not yet been studied. Combining AFM with other methods, such as scanning ion-
conductance microscopy [87], could allow for obtaining data on mechanical properties that
can effectively complement each other.
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4. Mathematical Models for Measuring Mechanical Properties by the SICM Method

Recently, the use of the SICM method in the study of microbial cells, including yeast,
has been developing [6–9]. The reason for this is the possibility of studying biological
samples in their biological environment, as well as its low invasiveness. Scanning is non-
contact and can provide the true topography of soft samples at a resolution comparable to
AFM. Other advantages of the SICM method compared to AFM are the absence of lateral
forces from the probe impacting on the sample and the reduction of the “height artifact”
(10% underestimation of the height of a soft object by the SICM method versus 70% by
the AFM method). The tilt angle of the nanocapillary used in the SICM method is smaller,
which makes it possible to visualize details with almost vertical surface slopes. Due to
its insensitivity to viscous drag forces, the imaging speed of SICM is higher than that of
AFM [10]. The analytical models presented in this section are presented in Table 3.

Table 3. Analytical models applicable to the SICM method.

Source Model Function An Object Description

D. Sanchez et al. [88],
Rheinlaender, J., &

Schäffer [89]

Hydrodynamic
model

The force exerted on a flat
surface in Equation (43).
Young’s modulus of the
sample in Equation (41).

cell membrane

To obtain the mechanical
properties of the cell,

hydrostatic pressure is applied
through a nanopipette, which

can lead to a mechanical
response of the cell.

R. Clarke et al. [90]
Internal
colloidal

pressure model

The modulus of elasticity of
the cell wall in Equation (28)

cells with
glycocalyx and cells
without glycocalyx

Indentation is performed by
means of internal colloidal
pressure between the cell

surface and the surface of the
nanopipette tip, which

significantly reduces the
invasiveness of the method.

Kolmogorov et al.
[61], Savin N.

et al. [8]
Hertz Model The internal force is

presented in Equation (51).
Mammalian cells
[61], yeast cells [8]

The technique is based on the
deformation of a double

electric layer of decan-saline
solution with a nanopipette.

The displacement from the tip
surface to the cell surface is

minimized. However, there is
no method for obtaining

viscoelastic properties in all
presented SICM models.

The innovative SICM method uses a nanopipette as a scanning probe. The scanning
system feeds back a constant ion current flowing through the nanopipette to approach
the cell surface while maintaining a constant tip-to-surface distance approximately equal
to the inner radius of the nanopipette. Based on the obtained capillary heights, a three-
dimensional topographic image of the cell membrane is created near the sample [91]
(Figure 4A). To obtain the mechanical properties of the cell, Rheinlaender, J. and Schäffer
applied hydrostatic pressure through a nanopipette [89].



Cells 2023, 12, 1946 17 of 23

Figure 4. (A) Schematic representation of obtaining topography via the SICM method, where the
probe stops when the ion current drops by 0.5% while being approximately at the nanocapillary
radius from the sample surface. (B) Schematic representation of the measurement of sample stiffness
by indenting it due to the internal colloidal pressure of the nanocapillary; the ion current drop is 2%.

To convert the tangent of the curve (IZ-curves) of the fall of the ion current from the
vertical position of the probes into the local stiffness of the sample in terms of Young’s
modulus, the authors created a model based on finite element calculations. By simulating
the fluid flow caused by a pressure p0 applied to the upper end of the pipette and calculating
the resulting deformation of an elastic sample as a function of z, the authors obtained IZ
curves and their s between 98% and 99% of the current for various E/p0 ratios. The
empirically subject relationship between s and the Young’s modulus of the sample is
described by the following equation:

E(s) = p0 A(
S∞

S
− 1)

−1
, (43)

where S∞ is the s for an infinitely rigid sample and A is a constant depending on the
geometry of the pipette.

Previously, D. Sanchez et al. simulated hydrodynamics inside and outside the nanopipette
tip [88]. Based on the Hagen–Poiseuille law, an equation was derived that relates the flow of
ion current I0 through a nanopipette with the pressure drop ∆P of the liquid in the capillary
and the environment:

I0 =
3πtanθ

8η
r3

i ∆P, (44)

where ∆P is the hydrostatic pressure drop between the nanopipette tip and the environment,
ri is the radius of the inner hole of the nanopipette tip, θ is the semi-cone angle of the inner
wall of the nanopipette tip, and h is the viscosity of the liquid.

D. Sanchez et al. used FEM to simulate the fluid flow in the nanopipette and the force
at the tip boundary acting on a flat non-deformable sample [88]. They derived Equation
(45) for the total normal force exerted on a flat surface of a non-deformable sample.

F = 2π
∫ ∞

0
P(r)rdr (45)

At small distances between the nanopipette tip and the sample surface, the total
impact force of the probe is greater, and depends on the distance from the tip to the surface
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(z) and the speed of approach of the probe (v). Thus, the tangential shear stress, presented
in Equation (46), is determined by the viscosity h multiplied by the derivative with respect
to the velocity component dvr/dz tangential to the surface; it is maximum at r = ri and is
equal to 12 nN/mm2 [88].

F
A

=
ηdvr

dz
(46)

Measurement of the mechanical properties of the cell membrane via the SICM method
is possible by applying hydrostatic pressure as well as by indentation via internal colloidal
pressure between the cell surface and the surface of the nanopipette tip [92]. R. Clarke et al.
presented a new approach to the study of the Young’s modulus of mammalian cells [90].
The self-voltage in terms of the ion current drop ∆I as the probe approaches the sample is
presented in Equation (47):

σ = H/6π(
( r

x

)
ln(I0/∆I))3, (47)

where H is Hamaker’s constant, r is the nanopipette radius, x is an empirically determined
constant equal to 3.6 ± 0.2, I0 is the ion current far from the sample surface, and ∆I is the
drop in the ion current when approaching the sample.

Thus, for cells without a glycocalyx, the Young’s modulus is

E =
σ

(1− h
h0
)

, (48)

where σ is the stress from Equation (47), h0 is the cell height, and h is the height of the
indented cell area.

For cells with a glycocalyx, the total Young’s modulus is

E = (hc + hs)/(
(

hc

Ec

)
+ (

hc

Ec
)), (49)

where hc is the height of the cell cortex, hs is the height of the soft area of the cell cytoskeleton,
Ec is the Young’s modulus of the cell cortex, and Es is the Young’s modulus of the cell
cytoskeleton.

The most relevant technique for measuring the Young’s modulus via the SICM method
has been presented by Kolmogorov et al. [93] based on the deformation of a double
electric layer of decan–saline solution from a nanopipette [90]. The surface deformation is
calculated from the dependence of the ion current on the distance to the sample surface and
the dependence of the ion current on the distance to the undeformed surface (Figure 4B).
The internal force is calculated from the force balance equation:

→
F = 2

→
Fσ, (50)

where Fσ is the surface tension force of the decan–salt layer.
In the described work, it is assumed that the deformed region has the shape of a

sphere with a contact radius a; according to the Hertz model, this parameter is expressed
by Equation (51). The surface tension force is calculated using the Laplace Equation (52),
in which R is the inner radius of the nanopipette, a is the distance between the point of
maximum indentation depth (d) and the point of zero indentation of the surface, and σ is
the surface tension parameter. From the combination of Equations (50)–(52), the internal
force is calculated according to Equation (53).

a =
√

R ∗ d, (51)

Fσ = 2πaσ, (52)
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F = 4πσ
√

R ∗ d (53)

Summing up, the considered methods demonstrate the possibility of mapping the
mechanical properties of mammalian cells with high resolution. In the case of AFM, it is
possible to study the viscoelastic properties of biological objects; however, when studying
soft cells this method is subject to scanning artifacts associated with large impact forces on
the sample [8]. The SICM method in the no-pressure mode is free from this disadvantage,
and the displacement from the tip surface to the cell surface is minimized. Unfortunately,
at the moment there is no SICM method for obtaining viscoelastic properties. In this
connection, the combination of these two methods has the potential to expand the study of
numerous processes in the field of biophysics.

5. Conclusions

The correct choice of an analytical model for measuring the mechanical properties
of cells plays a key role in obtaining relevant parameters. Despite the large amount of
experimental data obtained, the choice of an appropriate mechanical model for a particular
biological sample remains a matter of debate. The main reason for this is the complexity of
the cell structure as well as the impact of third-party factors or instrumental impacts on
the sample. The studies presented in this review can provide an approximate idea of the
currently available models used to study the elastic and viscoelastic properties of cells. The
currently available SICM method for determining cell stiffness does not accurately reflect
the properties of the yeast cell wall. Familiarization with the generalized models presented
in this work can allow the choice of the most appropriate cell model in the SICM method,
which can contribute to progress in obtaining the elastic modulus of yeasts and of various
structures on their surface. Moreover, the combination of SICM with AFM can become an
advanced tool in the development and testing of mechanical models of cells, which can later
be used in the development of antifungal drugs or the evaluation of antimicrobial therapies.
In the near future, we plan to modernize the SICM method based on the presented models
in order to obtain the viscoelastic properties of biological objects, including yeast cells.
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