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Abstract: Frontotemporal lobar degeneration (FTLD) includes a heterogeneous group of disorders 

pathologically characterized by the degeneration of the frontal and temporal lobes. In addition to 

major genetic contributors of FTLD such as mutations in MAPT, GRN, and C9orf72, recent work has 

identified several epigenetic modifications including significant differential DNA methylation in 

DLX1, and OTUD4 loci. As aging remains one of the major risk factors for FTLD, we investigated 

the presence of accelerated epigenetic aging in FTLD compared to controls. We calculated epigenetic 

age in both peripheral blood and brain tissues of multiple FTLD subtypes using several DNA 

methylation clocks, i.e., DNAmClockMulti, DNAmClockHannum, DNAmClockCortical, GrimAge, and 

PhenoAge, and determined age acceleration and its association with different cellular proportions 

and clinical traits. Significant epigenetic age acceleration was observed in the peripheral blood of 

both frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP) patients compared 

to controls with DNAmClockHannum, even after accounting for confounding factors. A similar trend 

was observed with both DNAmClockMulti and DNAmClockCortical in post-mortem frontal cortex 

tissue of PSP patients and in FTLD cases harboring GRN mutations. Our findings support that 

increased epigenetic age acceleration in the peripheral blood could be an indicator for PSP and to a 

smaller extent, FTD. 

Keywords: frontotemporal lobar degeneration; frontotemporal dementia; progressive supranuclear 

palsy; DNA methylation aging; epigenetic clock 

 

1. Introduction 

Frontotemporal lobar degeneration (FTLD) refers to a heterogeneous group of 

disorders that are pathologically characterized by the degeneration of the frontal and 

temporal lobes resulting in clinical manifestations that predominantly include a 

progressive decline in behavior or language [1,2]. FTLD is the third most common cause 

of dementia (termed frontotemporal dementia (FTD)) following Alzheimer’s disease (AD) 

and Dementia with Lewy Bodies [3]. Patients presenting with dementia due to FTLD can 

typically be grouped into one of three clinical categories based on their early and 

predominant symptoms: behavioral variant frontotemporal dementia (bvFTD), and two 

Citation: Murthy, M.; Rizzu, P.; 

Heutink, P.; Mill, J.; Lashley, T.; 

Bettencourt, C. Epigenetic Age 

Acceleration in Frontotemporal 

Lobar Degeneration: A 

Comprehensive Analysis in the 

Blood and Brain. Cells 2023, 12, 1922. 

https://doi.org/10.3390/cells12141922 

Academic Editors: Naweed I. Syed 

and Antonella Caccamo 

Received: 18 May 2023 

Revised: 22 June 2023 

Accepted: 17 July 2023 

Published: 24 July 2023 

 

Copyright: © 2023 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Cells 2023, 12, 1922 2 of 14 
 

 

language variants, semantic dementia (SD), and primary progressive non-fluent aphasia 

(PNFA) [3]. In addition, FTLD encompasses a spectrum of other neurodegenerative 

clinical phenotypes, including atypical forms that overlap with motor neuron 

disease/amyotrophic lateral sclerosis (MND/ALS) (FTD-MND, FTD-ALS) and with 

atypical parkinsonian disorders such as corticobasal degeneration (CBD), and progressive 

supranuclear palsy (PSP) [1,4]. Based on the neuropathology and nature of the 

proteinaceous aggregates, FTLD can be characterized mainly into, FTLD with inclusions 

of hyperphosphorylated tau (FTLD-tau); FTLD with ubiquitin immunoreactive neuronal 

inclusions, which include the 43 kDa transactive response DNA-binding protein (TDP-43) 

inclusions (FTLD-TDP), the fused in sarcoma (FUS) inclusions (FTLD-FUS), and the 

unidentified ubiquitin-positive inclusions (FTLD-UPS); and a small population of FTLD 

with no inclusions (FTLD-ni) [1,5].  

Familial forms of FTLD account for up to 30–40% of all cases, with mutations in 

MAPT, GRN, and C9orf72 accounting for a majority of the cases [4]. Recent studies have also 

reported several epigenetic modifications in various FTLD subtypes including significant 

differential methylation in the 17q21.31 locus (which includes MAPT) in the peripheral 

blood of individuals with PSP, and to a lesser extent in FTD [6]; hypermethylation in DLX1 

was also reported in the prefrontal cortex of individuals with PSP [7]. A recent study by 

Fodder et al. also conducted a meta-analysis and identified that hypomethylation in OTUD4 

was associated with FTLD across pathological subgroups and subtypes [8]. 

One of the major risk factors for most complex neurodegenerative disorders and 

dementia is aging. FTD is a predominantly early onset form of dementia, typically seen in 

individuals under the age of 65 years, and although only 20–25% of the cases present in 

old age, aging remains to be one of the biggest risk factors [9]. Therefore, in addition to 

deciphering the complex etiology and molecular mechanisms that occur due to the 

heterogeneity brought about by the genetic, epigenetic, and environmental factors, it is 

also important to address the effect of aging in the development and progression of 

diseases within the FTLD spectrum. However, the association of biological markers of 

aging with risk of this disease spectrum remains largely unexplored.  

Epigenetic clocks have proven to be excellent estimators of biological age and have 

been repeatedly used as biomarkers of biological age. Epigenetic clocks are DNA 

methylation (DNAm) based biomarkers that use penalized regression models, such as 

elastic net regression to select a subset of DNAm sites that can be used to estimate the 

DNAm age of any tissue or cell type [10]. Epigenetic age acceleration can then be 

calculated by comparing the difference between DNAm age and chronological age, 

wherein a positive age acceleration value indicates that the tissue is biologically older than 

expected and vice versa for a negative age acceleration value. The first pan-tissue 

epigenetic clock was created by Horvath, followed by multiple other tissue specific clock 

such as the blood tissue specific clock created by Hannum et al., and a more recent cortical 

tissue specific clock created by Shireby et al. [11–13]. These first-generation predictors of 

age were followed by several other epigenetic clocks called the second-generation clocks, 

which were developed as predictors of lifespan and health (PhenoAge), mortality 

(GrimAge), and clocks which showed strong associations with other phenotypic traits 

[14,15]. Accelerated epigenetic aging has been shown to be associated with various clinical 

traits, disease phenotypes, as well as altered cellular proportions in several tissues and 

disease contexts including AD and other neurodegenerative diseases [16,17]. A previous 

study in C9orf72 mutation carriers with FTD, FTD-ALS, and ALS clinical phenotypes 

identified that an increase in DNAm age acceleration was associated with an earlier age 

of onset and shorter disease duration in the blood, but with just earlier onset in the frontal 

cortex and spinal cord tissue, thus reflecting the severity/progression of the disease [18].  

Therefore, with the aim of comprehensively investigating the role of these DNAm 

based biomarkers of aging in the different subtypes of FTLD, in both peripheral blood and 

post-mortem brain tissue, we performed DNA methylation-based clock analyses using 

multiple blood, cortical, and pan-tissue epigenetic clocks. 
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2. Materials and Methods 

2.1. Study Overview/Design 

2.1.1. Peripheral Blood Samples 

Cohort 1 comprised publicly available peripheral blood epigenome-wide DNA 

methylation profiles of FTD, PSP, and control individuals (Gene Expression Omnibus—

GEO accession number GSE53740) [6]. The dataset originally consisted of DNA 

methylation profiles generated from the peripheral blood of patients with 

neurodegenerative disorders (n = 190; 121 FTD, 7 FTD-MND, 43 PSP, and 15 AD, 1 CBD, 

and 4 with unknown diagnosis), and healthy controls (n = 193) enrolled as part of a large 

genetic study in neurodegenerative dementia (Genetic Investigation in Frontotemporal 

Dementia, GIFT) at the UCSF Memory and Aging Center (UCSF-MAC) [19]. The FTD-

MND cases were merged with FTD group, and the CBD case was merged with the PSP 

group. AD samples were not included in our study as the analysis focused on diseases 

under the FTLD umbrella; 4 samples with unknown diagnosis were also excluded. 

2.1.2. Post-Mortem Brain Tissue Samples 

Cohort 2 consisted of epigenome-wide DNA methylation profiles generated from the 

frontal cortex grey matter of post-mortem brain tissues from 16 individuals with FTD with 

TDP-43 pathology (i.e., FTLD-TDP type A (TDPA, C9orf72 mutation carriers), (n = 8); and 

FTLD-TDP type C (TDPC, sporadic), (n = 8)), and 8 neurologically normal controls. All 

post-mortem brain tissues in cohort 2 were donated to the Queen Square Brain Bank 

archives and are stored under a license from the Human Tissue authority (No. 12198) as 

described by Fodder et al. [8]. Cohort 3 consisted of epigenome-wide DNA methylation 

profiles generated from the frontal lobe of post-mortem brain tissues from 33 individuals with 

FTLD (FTLD-TDP types A and B (GRN (n = 7) and C9orf72 (C9, n = 13) mutation carriers, 

respectively), and FTLD-tau (FTDP-17—MAPT mutation carriers, n = 13)) and 14 

neurologically normal controls. All post-mortem tissues in cohort 3 were obtained under a 

Material Transfer Agreement from the Netherlands Brain Bank, and MRC King College 

London, as described by Menden et al. [20]. Cohort 4 consisted of epigenome-wide DNA 

methylation profiles generated from post-mortem prefrontal lobe of 94 individuals with PSP 

and 72 controls for which data were made publicly available (GEO accession number 

GSE75704) [7]. 

2.2. DNA Methylation Data Pre-Processing 

For cohorts 1 and 4, DNA methylation profiling was performed using the Infinium 

Human Methylation450 BeadChip (Illumina, San Diego, CA), as described by Li et al. and 

Weber et al., respectively [6,7]. DNA methylation profiling for cohorts 2 and 3 were 

performed using the Infinium HumanMethylationEPIC BeadChip (Illumina, San Diego, 

CA, USA). Sample processing steps and detailed methodology have been described 

previously [8,20]. Raw files (methylated and unmethylated intensity files in case of cohort 

1 and .idat flies for cohorts 2–4) for the DNA methylation profiles for all cohorts were 

subjected to harmonized quality control and pre-processing steps using ChAMP (v. 

2.21.1), minfi (v.1.46.0), and WateRmelon (v.2.6.0) R (v.4.2.1) packages as previously 

described [21–24]. Briefly, raw intensity files were subjected to rigorous quality control 

checks, which included filtering out failed and atypical samples as well as outlier 

detection. This was followed by the removal of samples with <80% bisulfite conversion 

using bisulfite conversion assessment, which converts probe intensities into percentage. 

Poorly performing probes were filtered out if they had a bead count of <3 in more than 5% of 

the samples, or if over 1% of samples showed a detection p-value > 0.05. In addition, samples 

were excluded if they showed >1% probes above the 0.05 detection p-value threshold, and if 

sex predictions did not match with phenotypic sex.  

More detailed characterization of the samples that passed the aforementioned quality 

control checks in each cohort is given in Table 1. Dasen normalization was carried out for 
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all cohorts except Cohort 1, for which quantile normalization performed (as .idat files were 

unavailable). Cell proportions in the blood were estimated from DNA methylation data 

using methods implemented into the advanced analysis option of the epigenetic age 

calculator software, which employs both Houseman’s method to estimate proportions of 

CD8 T cells, CD4T cells, natural killer cells, B cells, monocytes and granulocytes [22,25], 

and Horvath’s method to estimate abundance measures of plasma blasts, CD8 + CD28-

CD45RA- T cells, naive CD8 T cells, and naive CD4 T cells [12]. Cell proportion estimations 

in the bulk brain tissues were performed to classify cell types into neuron-enriched 

(NeuN+), oligodendrocyte-enriched (SOX10+), and other brain cell types (NeuN-/SOX10-

) populations using the CETYGO R package (https://github.com/ds420/CETYGO 

(accessed on 17 February 2023)) as previously described [26,27].  

Table 1. Cohort demographics. 

Peripheral Blood 

Sample Group 
No. of 

Individuals 

Females (%)  

[% Unknowns] 

Average Chronological Age 

(SD) 

Cohort 1  

Controls 178 53.4 [13.5] 68.9 (10.4) 

FTD 117 26.5 [43.6] 65.2 (9.0) 

PSP 44 15.9 [40.9] 69.9 (7.3) 

Total 339 39.2 [27.4] 67.7 (9.8) 

Post-mortem brain tissue 

Sample Group 
No. of 

individuals 

Females (%) 

[% unknowns] 

Average Chronological age 

(SD) 

Cohort 2 

Controls 8 62.5 75.8 (5.6) 

FTLD-TDPA (C9orf72) 7 57.1 66.9 (4.8) 

FTLD-TDPC (Sporadic) 8 50.0 72.9 (4.8) 

Total 23 56.5 72.0 (6.1) 

Cohort 3 

Controls 14 64.3 78.4 (11.8) 

FTLD-TDPA (GRN) 7 71.4 64.6 (7.6) 

FTLD-TDPB (C9orf72) 13 61.5 63.8 (8.2) 

FTLD-Tau (MAPT) 13 46.2 60.9 (7.6) 

Total 47 59.6 67.5 (11.5) 

Cohort 4 

Controls 71 35.2 76.0 (8.0) 

PSP 93 41.9 71.6 (5.3) 

Total 164 39.0 73.5 (6.9) 

Cohort 1—purple; cohort 2—blue; cohort 3—green; cohort 4—yellow; FTD—frontotemporal dementia; 

PSP—progressive supranuclear palsy; FTLD—Frontotemporal lobar degeneration; FTLD-TDPA/B/C—

FTLD with 43 kDa transactive response DNA-binding protein (TDP-43) positive inclusions, types A, B 

and C; C9orf72—C9orf72 mutation carriers; GRN—GRN mutation carriers, FTLD-Tau—FTLD with tau-

positive inclusions; MAPT—MAPT mutation carriers. 

2.3. Epigenetic Clocks and Estimations of DNAm Age Acceleration  

For the peripheral blood dataset (Cohort 1), DNAm age estimation was performed 

using 4 clocks designed either for pan-tissues or specifically designed for blood, namely 

DNAmClockMulti [12], DNAmClockHannum [11], PhenoAge [14], and GrimAge [15]. For the 

post-mortem brain datasets (Cohorts 2–4), DNAm age estimation was performed using 2 

clocks, the pan-tissue DNAmClockMulti and the cortical tissue specific DNAmClockCortical 

[13]. DNAm ages for DNAmClockMulti, DNAmClockHannum, PhenoAge, and GrimAge were 

calculated using the advanced analysis with normalization, on the online calculator 

(http://dnamage.genetics.ucla.edu/ (accessed on 03 December 2022)). In addition to the 
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DNAm age estimates and age acceleration residuals, the online calculator also provided 

Intrinsic Epigenetic Age Acceleration (IEAA) measures for the DNAmClockMulti and 

DNAmClockHannum, as well as Extrinsic Epigenetic Age Acceleration (EEAA) measures. 

IEAA is the residual obtained from a multivariable regression of DNAm age on 

chronological age and blood cell count estimates; and is therefore unaffected by both 

variation in chronologic age and blood cell composition, making it a measure of cell-

intrinsic aging [28]. EEAA, on the other hand, are residuals that are obtained by combining 

Hannum DNAm age with three blood cell components (naïve cytotoxic T cells, exhausted 

cytotoxic T cells, and plasmablasts) to form an aggregate measure (enhanced Hannum 

DNAm age followed by regression onto chronological age) [29]. EEAA is a measure that 

is dependent on age-related changes in the blood cell composition and integrates known 

age-related changes in blood cell counts with a blood-based measure of epigenetic age 

before adjusting for chronologic age and therefore is a measure of immune system aging 

[30]. The DNAm ages for DNAmClockCortical were calculated as described by Shireby et al. 

[13]. For all clocks, standard linear regression models were applied and DNAm age 

acceleration was calculated as the residual obtained by linear regression of DNAm age on 

chronological age and adjusting for possible confounders such as tissue-specific cell type 

proportions. A brief overview of the study design is described in Figure 1; the number of 

individuals included in each cohort represent the samples remaining after quality control 

(Figure 1). 

 

Figure 1. An overview of the study design. 

2.4. Statistical Analysis 

Comparisons for statistical significance in the DNAm age acceleration between cases 

and controls across groups/brain regions were performed using Kruskal–Wallis test, and 
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pairwise comparisons between groups (i.e., FTLD subtypes vs. controls) within each 

cohort were performed using pairwise Wilcoxon test with the Benjamini–Hochberg 

multiple testing correction. Correlations between epigenetic age acceleration (i.e., 

residuals obtained by linear regression of DNAm age on chronological age) and cell-type 

proportions (e.g., estimates of neuronal proportions) and/or disease traits (e.g., disease 

onset) were calculated using Pearson’s coefficient. 

3. Results 

3.1. Correlation between DNAm Age and Chronological Age in the Peripheral Blood and Post-

Mortem Brain Tissue Cohorts 

For the peripheral blood dataset (Cohort 1), significant strong correlations were 

observed between chronological age and DNAm age in all 4 clocks, DNAmClockMulti (r = 

0.79, p = 1 × 10−75), DNAmClockHannum (r = 0.81, p = 2 × 10−82), PhenoAge (r = 0.71, p = 8.5 × 

10−55), and GrimAge (r = 0.88, p = 3.1 × 10−114), with GrimAge showing the strongest 

correlation, highest significance, and lowest error (defined as median absolute deviation 

between DNAm age and chronological age) (Supplementary Figure S1). Similar to that 

observed in the peripheral blood, significant strong correlations were also observed 

between chronological age and DNAm age for both DNAmClockMulti (r = 0.7–0.94, p = 5.4 

× 10−5–1.8 × 10−25) and DNAmClockCortical (r = 0.81–0.97, p = 6.9 × 10−8–2.2 × 10−39) in the post-

mortem brain samples, with Cohort 3 (FTLD-TDPB C9orf72, FTLD-TDPA GRN, and 

FTLD-Tau MAPT mutation carriers) showing the strongest correlation and highest 

significance with both clocks (Supplementary Figure S2). Overall, DNAmClockCortical 

predominantly displayed stronger correlations with higher significance in all post-

mortem brain tissue cohorts. The median absolute deviation (error) varied between the 

cohorts and the clocks, ranging between 4.1 and 15, with the lowest for DNAmClockMulti 

and highest for DNAmClockCortical in Cohort 2. An underestimation of DNAm age 

compared to actual chronological age was observed with DNAmClockMulti in all brain 

tissue cohorts except Cohort 2, whereas DNAmClockCortical generally tended towards 

DNAm age overestimations (Supplementary Figure S2). 

3.2. Epigenetic Age Acceleration in the Peripheral Blood of Individuals with a Clinical Diagnosis 

of FTD and PSP 

Significant epigenetic age acceleration was observed for the FTD (AgeAccel = ~2 

years, p = 0.002) and PSP cases (AgeAccel = ~4 years, p = 0.0006) compared to controls with 

DNAmClockHannum (Figure 2b and Supplementary Table S1), with similar trends (although 

not statistically significant) observed with DNAmClockMulti (Figure 2a). Age acceleration 

remained significant upon adjustment for differences in blood cell counts, as observed by 

IEAAHannum for both FTD (AgeAccel = ~2 years, p = 0.03) and PSP (AgeAccel = ~3 years, p = 

0.01) when compared to controls, and a similar result was observed with IEAAMulti 

(Figures 2e,f). Further, significant age acceleration was observed with EEAA, which 

accounts for known age-related changes in blood cell counts during epigenetic age 

estimation and is a measure of immune system aging, for both FTD (AgeAccel = ~3 years, 

p = 0.0003) and PSP (AgeAccel = ~5 years, p = 0.0003), when compared to controls (Figure 

2g). A trend in age acceleration (~2 years) for FTD only was observed with the PhenoAge 

epigenetic estimates, whereas with the GrimAge clock, age acceleration was observed in 

both FTD (~1.5 years) and PSP (~1.5 years), compared to controls, although no statistical 

significance was observed upon pairwise comparison (Figure 2c,d). 
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Figure 2. Epigenetic age acceleration in the peripheral blood samples of Cohort 1 (purple) 

constituting FTD (n = 117) and PSP cases (n = 44) as well as controls (n = 178) with the 

DNAmClockMulti, DNAmClockHannum, PhenoAge, and GrimAge clocks. (a–d) Epigenetic age 

acceleration (y-axis) in relation to disease status (x-axis) with the 4 clocks; (e,f) intrinsic epigenetic 

age acceleration (IEAA, y-axis) of DNAmClockMulti and DNAmClockHannum with respect to disease 

status (x-axis); and (g) extrinsic epigenetic age acceleration (EEAA, y-axis) with respect to disease 

status (x-axis). CTRL—control, FTD—frontotemporal dementia, PSP—progressive supranuclear 

palsy. Age acceleration residuals were obtained by regressing DNA methylation age against 

chronological age and adjusting for confounding factors such as cell type proportions. The bar plots 

depict the mean value and standard error (y-axis). p-values for across group comparisons were 

calculated using the Kruskal–Wallis test (p-values shown at the top of the plots a-g), and p-values 

for pairwise analysis between each disease group and controls were calculated using the Wilcoxon’s 

test with Benjamini–Hochberg correction for multiple testing (p-values shown at the bottom of the 

plots (a–g)). 

3.3. Epigenetic Age Acceleration in Post-Mortem Brain Tissue of Pathologically Confirmed 

FTLD Subtypes 

Similar to what was observed in blood, in the brain tissue of sporadic PSP cases 

(Cohort 4) a trend towards epigenetic age acceleration (~1 year) was observed with both 

DNAmClockMulti and DNAmClockCortical compared to controls (Figure 3c,f). Epigenetic age 

acceleration, albeit not statistically significant, was also observed for the FTD-TDPA GRN 

mutation carriers (Cohort 3) with DNAmClockMulti, with concordant results from the 

DNAmClockCortical (Figure 3b,f). The C9orf72 mutation carriers of both FTLD-TDP types A 

(Cohort 2) and B (Cohort 3), as well as the sporadic FTLD-TDP subtype C (Cohort 2) and the 

MAPT mutation carriers (Cohort 3), however, showed no consistent evidence in favor of age 

acceleration compared to controls with both DNAmClockMulti and DNAmClockCortical. 
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Figure 3. Epigenetic age acceleration in the post-mortem brain tissues using DNAmClockMulti and 

DNAmClockCortical. Cohort 2 (blue) constituted FTLD-TDP types A (C9orf72 mutation carriers, n = 7), 

and C (sporadic cases, n = 8), and controls (n = 8), Cohort 3 (green) constituted FTLD-TDP types B 

(C9orf72 mutation carriers n = 13), and A (GRN mutation carriers, n = 7), FTLD-Tau MAPT mutation 

carriers (n = 13) and controls (n = 14), and Cohort 4 (yellow) comprised PSP cases (n = 93) and controls 

(n = 71). (a-f) Epigenetic age acceleration (y-axis) in relation to disease status (x-axis) for the cohorts 

with DNAmClockMulti and DNAmClockCortical. CTRL—control, TDPA-C9—FTLD-TDPA (C9orf72 

mutation carriers), TDPC—FTLD-TDPC (sporadic); TDPA-GRN—FTLD-TDPA (GRN mutation 

carriers), TDPB-C9—FTLD-TDPB (C9orf72 mutation carriers), MAPT—FTLD-Tau MAPT mutation 

carriers, PSP—progressive supranuclear palsy. Age acceleration residuals were obtained by 

regressing DNA methylation age against chronological age and adjusting for neuronal proportions; 

the bar plots depict the mean value and standard error (y-axis); p-values for across group 

comparisons were calculated using the Kruskal–Wallis test (a–f). 

Previous studies, including ours have revealed that cell-type composition in a specific 

tissue influences DNAm age estimation and thus epigenetic age acceleration [13,26]. 

Therefore, we analyzed the association of epigenetic age acceleration in the post-mortem 

brain tissues using neuronal and oligodendrocyte proportion estimates obtained from the 

cell-type deconvolution algorithm CETYGO [27]. In agreement with the previous reports, 

a significant negative correlation was observed between age acceleration and neuronal 

proportions for both control and disease groups in all cohorts with DNAmClockCortical; a 

concordant result was also observed with DNAmClockMulti in cohort 4 (Figure 4). Positive 

correlations were observed between oligodendrocyte proportions and epigenetic age 

acceleration for all cohorts with both clocks except for Cohort 2 with DNAmClockCortical, 

which could be due to the fact that unlike the other brain tissue cohorts, this cohort 

comprises grey matter instead of a mix of grey and white matter, and thus lower 

proportions of oligodendrocytes (Figure 4). 
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Figure 4. Associations between epigenetic age acceleration and cellular (neuronal and 

oligodendrocyte) proportions for DNAmClockMulti and DNAmClockCortical in the different brain 

tissue cohorts. (a–l) Age acceleration residuals (y-axis) versus neuronal (NeuN positive) and 

oligodendrocyte (SOX10 positive) proportions (x-axis) for DNAmClockMulti and DNAmClockCortical 

for Cohort 2 (blue; FTLD-TDPA C9orf72/FTLD-TDPC) (a–d), Cohort 3 (green; FTLD-TDPB C9orf72, 

FTLD-TDPA GRN, and FTLD-Tau MAPT mutation carriers) (e–h), and Cohort 4 (yellow; PSP) (i–l). 

Age acceleration residuals were obtained by regressing DNA methylation age against chronological 

age; cellular proportions were obtained using a DNA methylation-based cell-type deconvolution 

algorithm as described by Shireby et al. [27]. The correlation coefficient and p-values shown were 

calculated using Pearson correlation. CTRL—control, TDPA-C9—FTLD-TDPA (C9orf72 mutation 

carriers), TDPC—FTLD-TDPC (sporadic); TDPA-GRN—FTLD-TDPA (GRN mutation carriers), 

TDPB-C9—FTLD-TDPB (C9orf72 mutation carriers), MAPT—FTLD-Tau MAPT mutation carriers, 

PSP—progressive supranuclear palsy. 

3.4. Association of Epigenetic Age Acceleration with Disease Onset and Duration  

A previous study reported significant inverse associations between age acceleration 

(defined in that case as the difference between DNAm age and chronological age) and 

clinical traits such as disease onset and duration in the blood of patients with C9orf72 

repeat expansions (ALS, ALS-FTD, and FTD), with a similar trend observed in the spinal 

cord, frontal and temporal cortices in ALS and ALS-FTD patients with disease onset, but 

not with disease duration [18]. In our brain datasets, for the FTLD-TDPA C9orf72 mutation 

carriers in Cohort 2, weak negative correlations were observed between age acceleration 

(residuals) and disease onset with DNAmClockMulti, but not with DNAmClockCortical 

(Supplementary Figure S3a,b); no negative correlation was observed with disease onset 

for FTLD-TDPB C9orf72 mutation carriers in Cohort 3 with both clocks (Supplementary 

Figure S3b,c). As Zhang et. al. [18] found a trend towards inverse associations between 

age acceleration difference, we also examined the associations between age acceleration 

difference and disease onset and results were very to those we observed for the residuals 

(Supplementary Figure S3e–h). Zhang et al. [18] also reported inverse associations 

between age acceleration and disease duration in blood and in the temporal cortex; in line 

with that, a significant inverse association between age acceleration (both difference and 

residuals) and disease duration was observed in individuals with C9orf72 mutations of 

FTLD-TDPB subtype in Cohort 3 with DNAmClockMulti (Figure 5c,g), and a similar trend 

was observed with DNAmClockCortical (Figure 5d,h). Individuals with C9orf72 mutations 

of FTLD-TDPA subtype in Cohort 2 also showed a trend towards inverse correlations with 
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disease duration with both clocks (Figure 5a,b,e,f). GRN mutation carriers of FTLD-TDPA 

subtype also showed significant strong inverse correlation between age acceleration 

(residuals) and disease onset with DNAmClockCortical, whereas MAPT mutation carriers 

showed significant strong inverse correlation between age acceleration (residuals) and 

disease onset with DNAmClockMulti (Supplementary Figure S4). 

 

Figure 5. Association between age acceleration and duration with DNAmClockMulti and 

DNAmClockCortical for the C9orf72 mutation carriers in cohorts 2 (blue) and 3 (green). Age 

acceleration residuals (y-axis) for DNAmClockMulti and DNAmClockCortical versus disease duration 

(x-axis) for Cohort 2 (a,b), and Cohort 3 (c,d), age acceleration difference (y-axis) versus disease 

onset (x-axis) for Cohort 2 (e,f) and Cohort 3 (g,h). Age acceleration residuals were obtained by 

regressing DNA methylation age against chronological age and adjusting for confounding factors 

such as neuronal proportions obtained using a DNA methylation-based cell-type deconvolution 

algorithm as described by Shireby et al. [27]. Age acceleration difference was the difference between 

DNA methylation age and chronological age. The correlation coefficient and p-values shown were 

calculated using Pearson correlation. TDPA-C9—FTLD-TDPA (C9orf72 mutation carriers), TDPB-

C9—FTLD-TDPB (C9orf72 mutation carriers). 

4. Discussion 

Accelerated aging has been shown to be an important predictor of several age-related 

diseases including cancer [31], diabetes [32], as well as neurodegenerative diseases such 

as AD [33]. Moreover, associations between accelerated epigenetic age and various clinical 

traits, phenotypes, and cellular proportions have also been reported [17,34]. Our study 

aimed to systematically evaluate the presence of accelerated epigenetic aging in multiple 

neurodegenerative conditions occurring as a result of FTLD in the peripheral blood using 

multi-tissue and blood specific epigenetic clocks such as DNAmClockMulti, 

DNAmClockHannum, PhenoAge, and GrimAge, as well as in the case of post-mortem brain 

tissue using DNAmClockMulti and the brain tissue specific DNAmClockCortical. Our analysis of 

epigenetic age acceleration in the peripheral blood revealed significant age acceleration in both 

FTD and PSP individuals compared to controls with DNAmClockHannum, with a concordant 

trend being observed with DNAmClockMulti. These results remained significant even after 

accounting for differences in blood cell counts (IEAA) and upon accounting for known age-

related changes in blood cell counts during epigenetic age estimation (EEAA) (Figure 2, 

Supplementary Table S1). A similar trend was observed in the post-mortem brains, with 

epigenetic age acceleration being observed in PSP patients compared to controls with both 

DNAmClockMulti and DNAmClockCortical (Figure 3c,f) and a trend towards epigenetic age 

acceleration in the GRN mutation carriers (FTLD-TDPA) (Figure 3b,e). 

For the peripheral blood cohort, comparing the blood and multi-tissue clocks, 

DNAmClockHannum showed stronger correlation, higher significance, and lower error 

values compared to DNAmClockMulti, as expected. For the brain tissue cohorts similarly, 
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as expected, DNAmClockCortical showed higher correlations with stronger significance 

between DNAm age and chronological age for all cohorts; however, the error values were 

not necessarily lower compared to DNAmClockMulti. Specifically, strong correlations between 

DNAm age and chronological age observed with Cohort 2 demonstrate the applicability of 

both clocks to grey matter tissues in addition to a mix of white and grey matter (Cohorts 3 and 

4) as well as to white matter tissues, as previously demonstrated by our group [26]. In addition, 

concordant to previous reports, age acceleration was generally positively correlated with 

oligodendrocyte proportions and negatively correlated with neuronal proportions in brain 

tissue indicating the role of cellular proportions, which are typically altered in disease, 

towards epigenetic age estimations and validating our previous findings [26]. 

Epigenetic age acceleration observed with DNAmClockHannum in the peripheral blood 

(Cohort 1) in both FTD and to a larger extent in PSP compared to controls remained 

significant even after accounting for differences in the blood cellular composition 

(IEAAHannum). Neuroinflammation has been shown to be a major component in the 

pathology and progression of several neurodegenerative diseases including FTD [35]. 

Dysregulation of the peripheral immune system has also been previously reported, with 

an increased expression observed in genes associated with adaptive immune cells (CD19+ 

B-cells, CD4+ T-cells, and CD8+ T-cells) and decreased expression in genes associated with 

innate immune cells (CD33+ myeloid cells, CD14+ monocytes, BDCA4+ dendritic cells, and 

CD56+ natural killer cells) in FTD participants compared to healthy aging [36]. These 

differences in the peripheral immune system in FTD compared to healthy aging makes it 

crucial that we account for known age-related changes in blood cell counts (EEAA); 

epigenetic age acceleration remained significant even after accounting for these changes 

in both FTD and PSP supporting the significant increase in epigenetic age of the immune 

system in FTLD compared to controls. Similar trends in epigenetic age acceleration were 

also observed with DNAmClockMulti and IEAAMulti. These findings strongly suggest that 

increased epigenetic age in the peripheral blood can be an indicator for PSP and, to a 

smaller extent, FTD [35,36]. 

A similar trend in accelerated epigenetic aging could be observed in post-mortem brains 

of PSP patients compared to controls with both DNAmClockMulti and DNAmClockCortical; 

however, for the FTD subtypes, only the GRN mutation carriers (FTLD-TDPA) showed a 

consistent trend towards epigenetic age acceleration. The concordance in age acceleration 

patterns in the blood (~4 years) and brain (~1 year) in case of PSP could be an indicator of 

shared methylation patterns and shared systemic aging related processes occurring in both 

tissues. Epigenetic age acceleration has also been reported in other neurodegenerative 

diseases, such as in the blood of Parkinson’s disease (PD) patients compared to controls, where 

increased age acceleration with IEAAMulti and EEAA were observed [37], and in a longitudinal 

study of control individuals that revealed increased DNAm age in the blood to be a significant 

predictor of dementia at follow-up after 15 years [38].  

Findings from a previous report also correlated epigenetic age acceleration difference 

measures in ALS/FTD patients with C9orf72 mutations with a more severe disease 

phenotype as represented by shorter disease duration and earlier age of onset primarily 

in the blood, and to an extent, with an earlier age of onset in brain tissues [18]. However, 

this cohort consisted of only cases, and the lack of controls limited the study primarily to 

clinical phenotypes. In our datasets, we observed weak negative correlations between the 

age acceleration (both residuals as well as difference) and disease onset in the brains of 

FTLD-TDPA patients with C9orf72 mutations with DNAmClockMulti; however, no negative 

correlation was observed for of FTLD-TDPB C9orf72 mutation carriers in Cohort 3 with 

both clocks. Nevertheless, we did observe significant inverse association between age 

acceleration (both difference and residuals) and disease duration in individuals with 

C9orf72 mutations of FTLD-TDPB subtype in Cohort 3 with DNAmClockMulti (Figure 5), 

and a similar trend with DNAmClockCortical. These results partially agree with the results 

of the previous study [18]; however, the sample sizes in both studies were relatively small 

and therefore these findings should be interpreted with caution.  
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Our study has several limitations, including the fact that our blood and brain cohorts 

were not derived from the same individuals, and the brain cohorts 2 and 3 are relatively 

small. Further, we did not possess details regarding the clinical and neuropathological 

traits for Cohort 1, limiting the assessment of epigenetic age acceleration for different 

genetic and sporadic FTD subtypes or the association analysis with disease onset and 

duration in the peripheral blood dataset. Nevertheless, our study provides important 

groundwork by comparing epigenetic age acceleration measures for several FTLD 

phenotypes in both blood and brain tissues as well as their associations with clinical traits 

using multiple estimators of DNAm age. Future studies with larger sample sizes for each 

of the subtype, ideally investigating blood and brain tissue derived from the same 

individuals, are required to corroborate our findings.  

5. Conclusions 

Our comprehensive analysis using several epigenetic clocks in both peripheral blood 

and post-mortem brain tissue cohorts reveals significant epigenetic age acceleration in the 

peripheral blood of individuals with FTD and PSP compared to controls as well as similar 

age acceleration trends in the brain tissue of individuals with PSP and GRN mutation 

carriers of FTLD-TDP type A. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/cells12141922/s1, Table S1: Average DNAm ages and 

average age acceleration for the different cohorts; Figure S1: Epigenetic age analysis of the 

peripheral blood samples in Cohort 1 with the DNAmClockMulti, DNAmClockHannum, PhenoAge, and 

GrimAge clocks; Figure S2: Epigenetic age analysis of post-mortem brain tissues using 

DNAmClockMulti and DNAmClockCortical; Figure S3: Association between age acceleration and 

disease onset with DNAmClockMulti and DNAmClockCortical for the C9orf72 mutation carriers in 

cohorts 2 and 3; Figure S4: Association between age acceleration and disease onset and duration 

with DNAmClockMulti and DNAmClockCortical for the FTLD-TDPC subtype in cohort 2 and FTLD-

TDPA-GRN and FTLD-Tau-MAPT mutation carriers in cohort 3. 

Author Contributions: Conceptualization, C.B.; methodology, C.B. and M.M.; formal analysis, 

M.M.; investigation, M.M.; writing—original draft preparation, M.M. and C.B.; writing—review 

and editing, C.B., P.R., P.H., J.M., and T.L.; visualization, M.M.; supervision, C.B.; project 

administration, C.B.; funding acquisition, C.B. All authors have read and agreed to the published 

version of the manuscript. 

Funding: The Queen Square Brain Bank is supported by the Reta Lila Weston Institute of 

Neurological Studies, UCL Queen Square Institute of Neurology. M.M. is supported by a grant from 

the Multiple System Atrophy Trust awarded to C.B. C.B. is supported by Alzheimer’s Research UK 

(ARUK-RF2019B-005) and the Multiple System Atrophy Trust. 

Institutional Review Board Statement: All data used in this study were previously published 

and/or publicly available. The studies generating the data were conducted in accordance with the 

Declaration of Helsinki and have received appropriate ethical approvals for research, as described 

in the original studies (Li et al. [6], Fodder et al. [8], Menden et al. [20] and Weber et al. [7]). 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study. 

Data Availability Statement: The raw DNA methylation data from cohorts 1, 3, and 4 used in this 

study are openly available in Gene Expression Omnibus or EMBL-EBI ArrayExpress platform. 

Cohort 1: GEO accession number GSE53740 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53740 (accessed on 01 December 2022)); 

Cohort 3: E-MTAB-12674 (https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-

12674?query=E-MTAB-12674 (accessed on 1 December 2022)). Cohort 4: GSE75704 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE75704 (accessed on 01 December 2022)). 

Additional data, including the raw data from cohort 2, is available on request from the 

corresponding author. 

Acknowledgments: The authors would also like to thank UCL Genomics centre for advice and 

processing of the EPIC arrays for cohort 2. The authors would like to acknowledge the Queen Square 

Brain Bank (London, UK), and the Dutch Brain Bank, Netherlands Institute for Neuroscience 



Cells 2023, 12, 1922 13 of 14 
 

 

(Amsterdam, The Netherlands) for providing brain tissues from FTLD cases and controls. The 

Queen Square Brain Bank is supported by the Reta Lila Weston Institute of Neurological Studies, 

UCL Queen Square Institute of Neurology. 

Conflicts of Interest: The authors declare no conflict of interest. The funders and employers had no 

role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of 

the manuscript; or in the decision to publish the results. 

References 

1. Lashley, T.; Rohrer, J.D.; Mead, S.; Revesz, T. Review: An update on clinical, genetic and pathological aspects of frontotemporal 

lobar degenerations. Neuropathol. Appl. Neurobiol. 2015, 41, 858–881. https://doi.org/10.1111/nan.12250. 

2. Rabinovici, G.D.; Miller, B.L. Frontotemporal lobar degeneration: Epidemiology, pathophysiology, diagnosis and management. 

CNS Drugs 2010, 24, 375–398. https://doi.org/10.2165/11533100-000000000-00000. 

3. Cairns, N.J.; Bigio, E.H.; Mackenzie, I.R.; Neumann, M.; Lee, V.M.; Hatanpaa, K.J.; White, C.L., 3rd; Schneider, J.A.; Grinberg, 

L.T.; Halliday, G.; et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: Consensus of 

the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol. 2007, 114, 5–22. https://doi.org/10.1007/s00401-007-

0237-2. 

4. Ferrari, R.; Manzoni, C.; Hardy, J. Genetics and molecular mechanisms of frontotemporal lobar degeneration: An update and 

future avenues. Neurobiol. Aging 2019, 78, 98–110. https://doi.org/10.1016/j.neurobiolaging.2019.02.006. 

5. Aswathy, P.M.; Jairani, P.S.; Mathuranath, P.S. Genetics of frontotemporal lobar degeneration. Ann. Indian Acad. Neurol. 2010, 

13, S55–S62. https://doi.org/10.4103/0972-2327.74246. 

6. Li, Y.; Chen, J.A.; Sears, R.L.; Gao, F.; Klein, E.D.; Karydas, A.; Geschwind, M.D.; Rosen, H.J.; Boxer, A.L.; Guo, W.; et al. An 

epigenetic signature in peripheral blood associated with the haplotype on 17q21.31, a risk factor for neurodegenerative 

tauopathy. PLoS Genet. 2014, 10, e1004211. https://doi.org/10.1371/journal.pgen.1004211. 

7. Weber, A.; Schwarz, S.C.; Tost, J.; Trumbach, D.; Winter, P.; Busato, F.; Tacik, P.; Windhorst, A.C.; Fagny, M.; Arzberger, T.; et 

al. Epigenome-wide DNA methylation profiling in Progressive Supranuclear Palsy reveals major changes at DLX1. Nat. Commun. 

2018, 9, 2929. https://doi.org/10.1038/s41467-018-05325-y. 

8. Fodder, K.; Murthy, M.; Rizzu, P.; Toomey, C.E.; Hasan, R.; Humphrey, J.; Raj, T.; Lunnon, K.; Mill, J.; Heutink, P.; et al. Brain 

DNA methylomic analysis of frontotemporal lobar degeneration reveals OTUD4 in shared dysregulated signatures across 

pathological subtypes. Acta Neuropathol. 2023, 146, 77–95. https://doi.org/10.1007/s00401-023-02583-z. 

9. Ratnavalli, E.; Brayne, C.; Dawson, K.; Hodges, J.R. The prevalence of frontotemporal dementia. Neurology 2002, 58, 1615–1621. 

https://doi.org/10.1212/wnl.58.11.1615. 

10. Lu, A.T.; Hannon, E.; Levine, M.E.; Crimmins, E.M.; Lunnon, K.; Mill, J.; Geschwind, D.H.; Horvath, S. Genetic architecture of 

epigenetic and neuronal ageing rates in human brain regions. Nat. Commun. 2017, 8, 15353. 

https://doi.org/10.1038/ncomms15353. 

11. Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.B.; Gao, Y.; et al. Genome-

wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 2013, 49, 359–367. 

https://doi.org/10.1016/j.molcel.2012.10.016. 

12. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, R115. https://doi.org/10.1186/gb-2013-

14-10-r115. 

13. Shireby, G.L.; Davies, J.P.; Francis, P.T.; Burrage, J.; Walker, E.M.; Neilson, G.W.A.; Dahir, A.; Thomas, A.J.; Love, S.; Smith, R.G.; 

et al. Recalibrating the epigenetic clock: Implications for assessing biological age in the human cortex. Brain 2020, 143, 3763–

3775. https://doi.org/10.1093/brain/awaa334. 

14. Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. 

An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. https://doi.org/10.18632/aging.101414. 

15. Lu, A.T.; Quach, A.; Wilson, J.G.; Reiner, A.P.; Aviv, A.; Raj, K.; Hou, L.; Baccarelli, A.A.; Li, Y.; Stewart, J.D.; et al. DNA 

methylation GrimAge strongly predicts lifespan and healthspan. Aging 2019, 11, 303–327. https://doi.org/10.18632/aging.101684. 

16. Horvath, S.; Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018, 19, 

371–384. https://doi.org/10.1038/s41576-018-0004-3. 

17. Zhou, A.; Wu, Z.; Zaw Phyo, A.Z.; Torres, D.; Vishwanath, S.; Ryan, J. Epigenetic aging as a biomarker of dementia and related 

outcomes: A systematic review. Epigenomics 2022, 14, 1125–1138. https://doi.org/10.2217/epi-2022-0209. 

18. Zhang, M.; Tartaglia, M.C.; Moreno, D.; Sato, C.; McKeever, P.; Weichert, A.; Keith, J.; Robertson, J.; Zinman, L.; Rogaeva, E. 

DNA methylation age-acceleration is associated with disease duration and age at onset in C9orf72 patients. Acta Neuropathol. 

2017, 134, 271–279. https://doi.org/10.1007/s00401-017-1713-y. 

19. Coppola, G.; Miller, B.L.; Chui, H.; Varpetian, A.; Levey, A.; Cotman, C.W.; DeCarli, C.; Mendez, M.F.; Bartzokis, G.; Kukull, 

W.A.; et al. Genetic investigation in frontotemporal dementia and Alzheimer’s disease: The GIFT study. Ann. Neurol. 2007, 62, 

S52–S52. 

20. Menden, K.; Francescatto, M.; Nyima, T.; Blauwendraat, C.; Dhingra, A.; Lizardo, M.C.; Fernandes, N.; Kaurani, L.; Kronenberg-

Versteeg, D.; Atarsu, B.; et al. Integrated multi-omics analysis reveals common and distinct dysregulated pathways for genetic 

subtypes of Frontotemporal Dementia. bioRxiv 2021. https://doi.org/10.1101/2020.12.01.405894. 



Cells 2023, 12, 1922 14 of 14 
 

 

21. Pidsley, R.; CC, Y.W.; Volta, M.; Lunnon, K.; Mill, J.; Schalkwyk, L.C. A data-driven approach to preprocessing Illumina 450K 

methylation array data. BMC Genom. 2013, 14, 293. https://doi.org/10.1186/1471-2164-14-293. 

22. Aryee, M.J.; Jaffe, A.E.; Corrada-Bravo, H.; Ladd-Acosta, C.; Feinberg, A.P.; Hansen, K.D.; Irizarry, R.A. Minfi: A flexible and 

comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 2014, 30, 1363–

1369. https://doi.org/10.1093/bioinformatics/btu049. 

23. Tian, Y.; Morris, T.J.; Webster, A.P.; Yang, Z.; Beck, S.; Feber, A.; Teschendorff, A.E. ChAMP: Updated methylation analysis 

pipeline for Illumina BeadChips. Bioinformatics 2017, 33, 3982–3984. https://doi.org/10.1093/bioinformatics/btx513. 

24. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria. https://www.R-project.org/. 

25. Houseman, E.A.; Accomando, W.P.; Koestler, D.C.; Christensen, B.C.; Marsit, C.J.; Nelson, H.H.; Wiencke, J.K.; Kelsey, K.T. 

DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012, 13, 86. 

https://doi.org/10.1186/1471-2105-13-86. 

26. Murthy, M.; Shireby, G.; Miki, Y.; Vire, E.; Lashley, T.; Warner, T.T.; Mill, J.; Bettencourt, C. Epigenetic age acceleration is 

associated with oligodendrocyte proportions in MSA and control brain tissue. Neuropathol. Appl. Neurobiol. 2023, 49, e12872. 

https://doi.org/10.1111/nan.12872. 

27. Vellame, D.S., Shireby, G., MacCalman, A., Dempster, E.L., Burrage, J., Gorrie-Stone, T., Schalkwyk, L.S., Mill, J., Hannon, E. 

Uncertainty quantification of reference-based cellular deconvolution algorithms. Epigenetics. 2023, 18(1), 2137659. 

https://doi.org/10.1080/15592294.2022.2137659.  

28. Chen, B.H.; Marioni, R.E.; Colicino, E.; Peters, M.J.; Ward-Caviness, C.K.; Tsai, P.C.; Roetker, N.S.; Just, A.C.; Demerath, E.W.; 

Guan, W.; et al. DNA methylation-based measures of biological age: Meta-analysis predicting time to death. Aging 2016, 8, 1844–

1865. https://doi.org/10.18632/aging.101020. 

29. Smith, J.A.; Raisky, J.; Ratliff, S.M.; Liu, J.; Kardia, S.L.R.; Turner, S.T.; Mosley, T.H.; Zhao, W. Intrinsic and extrinsic epigenetic 

age acceleration are associated with hypertensive target organ damage in older African Americans. BMC Med. Genom. 2019, 12, 

141. https://doi.org/10.1186/s12920-019-0585-5. 

30. Quach, A.; Levine, M.E.; Tanaka, T.; Lu, A.T.; Chen, B.H.; Ferrucci, L.; Ritz, B.; Bandinelli, S.; Neuhouser, M.L.; Beasley, J.M.; et 

al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging 2017, 9, 419–446. 

https://doi.org/10.18632/aging.101168. 

31. Dugue, P.A.; Bassett, J.K.; Joo, J.E.; Jung, C.H.; Ming Wong, E.; Moreno-Betancur, M.; Schmidt, D.; Makalic, E.; Li, S.; Severi, G.; 

et al. DNA methylation-based biological aging and cancer risk and survival: Pooled analysis of seven prospective studies. Int. 

J. Cancer 2018, 142, 1611–1619. https://doi.org/10.1002/ijc.31189. 

32. Grant, C.D.; Jafari, N.; Hou, L.F.; Li, Y.; Stewart, J.D.; Zhang, G.S.; Lamichhane, A.; Manson, J.E.; Baccarelli, A.A.; Whitsel, E.A.; 

et al. A longitudinal study of DNA methylation as a potential mediator of age-related diabetes risk. Geroscience 2017, 39, 475–

489. https://doi.org/10.1007/s11357-017-0001-z. 

33. Thrush, K.L.; Bennett, D.A.; Gaiteri, C.; Horvath, S.; Dyck, C.H.V.; Higgins-Chen, A.T.; Levine, M.E. Aging the brain: Multi-

region methylation principal component based clock in the context of Alzheimer’s disease. Aging 2022, 14, 5641–5668. 

https://doi.org/10.18632/aging.204196. 

34. Shireby, G.; Dempster, E.L.; Policicchio, S.; Smith, R.G.; Pishva, E.; Chioza, B.; Davies, J.P.; Burrage, J.; Lunnon, K.; Seiler Vellame, 

D.; et al. DNA methylation signatures of Alzheimer's disease neuropathology in the cortex are primarily driven by variation in 

non-neuronal cell-types. Nat Commun 2022, 13, 5620, doi:10.1038/s41467-022-33394-7. 

35. Bright, F.; Werry, E.L.; Dobson-Stone, C.; Piguet, O.; Ittner, L.M.; Halliday, G.M.; Hodges, J.R.; Kiernan, M.C.; Loy, C.T.; Kassiou, 

M.; et al. Neuroinflammation in frontotemporal dementia. Nat. Rev. Neurol. 2019, 15, 540–555. https://doi.org/10.1038/s41582-

019-0231-z. 

36. Sawyer, R.P.; Hill, E.J.; Yokoyama, J.; Medvedovic, M.; Ren, Y.; Zhang, X.; Choubey, D.; Shatz, R.S.; Miller, B.; Woo, D. 

Differences in peripheral immune system gene expression in frontotemporal degeneration. Medicine 2022, 101, e28645. 

https://doi.org/10.1097/MD.0000000000028645. 

37. Horvath, S.; Ritz, B.R. Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease patients. Aging 2015, 

7, 1130–1142. https://doi.org/10.18632/aging.100859. 

38. Degerman, S.; Josefsson, M.; Adolfsson, A.N.; Wennstedt, S.; Landfors, M.; Haider, Z.; Pudas, S.; Hultdin, M.; Nyberg, L.; 

Adolfsson, R. Maintained memory in aging is associated with young epigenetic age. Neurobiol. Aging 2017, 55, 167–171. 

https://doi.org/10.1016/j.neurobiolaging.2017.02.009. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury 

to people or property resulting from any ideas, methods, instructions or products referred to in the content. 


