
Citation: Shimizu, Y.; Ntege, E.H.;

Azuma, C.; Uehara, F.; Toma, T.; Higa,

K.; Yabiku, H.; Matsuura, N.; Inoue,

Y.; Sunami, H. Management of

Rheumatoid Arthritis: Possibilities

and Challenges of Mesenchymal

Stromal/Stem Cell-Based Therapies.

Cells 2023, 12, 1905. https://

doi.org/10.3390/cells12141905

Academic Editors: Nuno Jorge

Lamas, Laurent Roybon and Richard

O. Williams

Received: 6 May 2023

Revised: 28 June 2023

Accepted: 14 July 2023

Published: 21 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

Management of Rheumatoid Arthritis: Possibilities and
Challenges of Mesenchymal Stromal/Stem Cell-Based Therapies
Yusuke Shimizu 1,* , Edward Hosea Ntege 1 , Chinatsu Azuma 2, Fuminari Uehara 2, Takashi Toma 2,
Kotaro Higa 2, Hiroki Yabiku 2, Naoki Matsuura 1, Yoshikazu Inoue 3 and Hiroshi Sunami 4

1 Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus,
Nishihara 903-0215, Japan

2 Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus,
Nishihara 903-0215, Japan

3 Department of Plastic and Reconstructive Surgery, School of Medicine, Fujita Health University,
Toyoake 470-1192, Japan

4 Center for Advanced Medical Research, School of Medicine, University of the Ryukyus,
Nishihara 903-0215, Japan

* Correspondence: yyssprs@gmail.com; Tel.: +81-(0)-98-895-1768

Abstract: Rheumatoid arthritis (RA) is a highly prevalent, chronic, and progressive autoimmune
disorder primarily affecting joints and muscles. The associated inflammation, pain, and motor
restriction negatively impact patient quality of life (QOL) and can even contribute to premature
mortality. Further, conventional treatments such as antiinflammatory drugs are only symptomatic.
Substantial progress has been made on elucidating the etiopathology of overt RA, in particular the
contributions of innate and adaptive immune system dysfunction to chronic inflammation. Although
the precise mechanisms underlying onset and progression remain elusive, the discovery of new drug
targets, early diagnosis, and new targeted treatments have greatly improved the prognosis and QOL
of patients with RA. However, a sizable proportion of patients develop severe adverse effects, exhibit
poor responses, or cannot tolerate long-term use of these drugs, necessitating more effective and safer
therapeutic alternatives. Mounting preclinical and clinical evidence suggests that the transplantation
of multipotent adult stem cells such as mesenchymal stromal/stem cells is a safe and effective
treatment strategy for controlling chronic inflammation and promoting tissue regeneration in patients
with intractable diseases, including RA. This review describes the current status of MSC-based
therapies for RA as well as the opportunities and challenges to broader clinical application.

Keywords: mesenchymal stem cell; rheumatoid arthritis; autoimmune rheumatic disease;
immunomodulation; cell therapy

1. Introduction

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease typically char-
acterized by synovial inflammation, cartilage and bone destruction, and progressive joint
deformities. It differs from osteoarthritis in cause, course, symptom profile, typical body
location, and clinical management [1–3]. Patients with progressive RA are more likely
to die prematurely (before the age of 75), primarily from cardiovascular and pulmonary
diseases. In the early stages, the disease mainly affects the synovial joints, but eventually
spreads to the lungs, blood vessels, and other parts of the body. Moreover, RA is among
the most common autoimmune disorders, with an estimated global prevalence of 0.5–1.0%
in 2002. Women are affected more often than men (4:1), and the incidence peaks between
40 and 60 years of age [1,4]. Therefore, RA severely reduces long-term quality of life (QOL),
especially among women, and requires prolonged clinical management.

There is growing evidence that the etiopathology of conspicuous RA involves chronic
inflammation resulting from innate and adaptive immune system dysfunction, including
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immune responses to autoantigens, abnormalities in the cytokine signaling network, and
complement activation by immune complexes [5,6]. In contrast, recent reports suggest that
the pathological processes underlying other phases of the disease, such as the early and
refractory phases, may not be solely due to immune dysfunction. Rather, early RA is likely
triggered by anti-citrullinated protein antibodies (ACPAs) via the interleukin (IL)/T helper
cell (Th) cytokine pathway, while refractory RA is more likely due to cell-autonomous
genetic and epigenetic perturbations involving transformed cell death pathways in syn-
oviocytes following chronic inflammation [7] (See Figure 1).
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Figure 1. Scheme of the immunopathogenesis of RA, highlighting the intricate interplay of various
cellular and molecular factors that play a pivotal role in RA development. The genetic background,
including variants of human leukocyte antigen-DRB* (HLA-DRB*), peptidyl arginine deiminase (PADI)
and protein tyrosine phosphatase non-receptor type 22 (PTPN22) genes, along with factors such as
smoking, infections, and autophagy, contribute to the conversion of arginine to citrulline mediated
by the peptidyl arginine deiminase (PAD) enzyme in the presence of calcium ions. The citrullination
process affects target proteins such as fibrinogen, alpha-enolase, vimentin, and collagen type II. Anti-
gen presentation by antigen-presenting cells (APCs), including dendritic cells, activate B cells and T
cells through the CD40/CD40L interaction and the T-cell receptor/MHCII (TCR/MHCII) complex,
respectively. B cells and T cells engage in a reciprocal activation loop, where B cells act as APCs for
T cells, providing co-stimulatory signals via CD40/CD40L interaction, and T cells stimulate B cells
through the TCR/MHCII complex. Th1 cells promote macrophage activation and secrete the pro-
inflammatory cytokine tumor necrosis factor-alpha (TNF-α), while Th17 cells produce interleukin-17
(IL-17), interleukin-1 (IL-1), and TNF-α, influencing the function of chondrocytes, osteoclasts, and
fibroblasts. The interaction between receptor activator of nuclear factor kappa-B ligand (RANKL) and
receptor activator of nuclear factor kappa-B (RANK) also contributes to bone erosion by activating
preosteoblasts. Autoantibodies, including rheumatoid factor (RF), anti-citrullinated protein antibodies
(ACPA), anti-peptidyl arginine deiminase-4 (anti-PAD-4), anti-glucose-6-phosphate isomerase (anti-
GPI), anti-mutated citrullinated vimentin (anti-MCV), anti-heterogeneous nuclear ribonucleoprotein
A2/B1 (anti-RA33), and anti-B-Raf, form immune complexes and contribute to the formation of pannus.
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These molecules act in a coordinated manner to activate macrophages, fibroblasts, chondrocytes,
and osteoblasts. During activation, fibroblasts transform into fibroblast-like synoviocytes (FLS),
further contributing to the complex network of cellular and molecular interactions. Created with
Biorender.com.

Overt or clinically conspicuous RA is classified into two main subtypes depending on
seropositivity to ACPAs [2]. About 67% of RA patients are seropositive for ACPAs, and
ACPA-positive RA is a comparatively more aggressive disease. Hence, ACPAs are valuable
diagnostic and prognostic markers for early or undifferentiated arthritis, exhibiting a
high specificity of over 97% in clinical applications. In contrast, ACPA-negative RA has
distinct genetic features and immune cell responses. Nonetheless, multiple genetic and
environment factors influence the risk of both RA subtypes [1]. However, the precise
pathological mechanisms underlying RA, especially the reasons for joint targeting in the
early stages, remain elusive. Immune system dysfunction in RA is evidenced by high levels
of glycosylated ACPAs in the blood circulation [7], the abnormal proliferation of FLSs [8],
an overabundance of CD4+ cells (particularly Th17 cells) overexpressing the second isoform
of the transcription factor RAR-related orphan receptor gamma (RORγt), reduced levels of
suppressor T cells (Treg) expressing the transcription factor forkhead box protein P3 (FOXP3)
(leading to an abnormal circulating Th17/Treg ratio) [9], the presence of pathogenic B
lymphocytes [10], an M1 (“proinflammatory”) to M2 (“immunomodulatory”) macrophage
ratio > 1 [11], elevated levels of various proinflammatory cytokines, chemokines, and
autoantibodies [12], and elevated oxidative stress markers [13]. Moreover, patients with RA
may harbor distinct populations of extracellular vesicles (EVs) originating from the general
circulation and joint synovial tissues, including EV exosomes containing microRNAs
(miRNAs) implicated in RA pathogenesis or recovery such as miR-17 and miR-424 [14]. In
addition, patients with RA may demonstrate the poor regulation of osteoblastogenesis and
osteoclastogenesis in bone homeostasis [15–17].

In patients with progressive RA, ACPAs are less sialylated and galactosylated com-
pared to patients at disease onset [7]. The hyperplastic synovium observed in RA may result
from the hyperproliferation of FLSs, which in turn stimulate the expression and release
of inflammatory cytokines such as TNF-α, IL-1β, IL-6, CXCL8, IL-12, IL-17A, IL-21, IL-22,
IL-23, interferon (IFN)-α, and IFN-γ, as well as apoptosis resistance due to defects in tumor
protein p53. Collectively, these responses result in further inflammatory joint damage and
chondrocyte deficiency, leading to cartilage degeneration and the narrowing of the joint
space [1]. Moreover, the abnormal Th17/Treg and M1/M2 ratios lead to sustained overpro-
duction of inflammatory cytokines that further damage joint tissues. In particular, TNF-α
and IL-17 are considered vital to RA pathogenesis, as these proinflammatory factors trigger
the release of degradative enzymes that proactively destroy cartilage matrix such as cathep-
sin K, MMP-1 and MMP-9, as well as additional downstream proinflammatory factors such
as PGE2. Moreover, excessive TNF-α and IL-17 impair bone remodeling by enhancing the
expression of osteoclastogenesis-mediating factors such as RANKL, macrophage colony-
stimulating factor (M-CSF), and Semaphorin 4D (SE-MA4D). While a detailed description
of bone remodeling is beyond the scope of this review, it is important to emphasize that
immune dysfunction disrupts the normal balance between the formation and resorption of
bone by osteoblasts and osteoclasts, respectively, ultimately promoting excessive bone ab-
sorption. The normal regulation of osteoblastogenesis and osteoclastogenesis requires the
bidirectional transduction of activation signals through ephrin-B2-Ephrin type-B receptor
4, Fas ligand (FasL or Cluster differentiation (CD) 95L), and Semaphorin 3A-neuropilin-1
pathways. However, the cytokine stimulation of osteoblasts alters the expression and (or)
secretion of multiple factors influencing osteoclast development, such as M-CSF, RANKL
and its decoy receptor osteoprotegerin (thereby inhibiting RANK/RANKL signaling), fi-
bronectin leucine-rich repeat transmembrane protein (FLRT2), netrin 1 and its receptor
UNC-5 (participants in the FLRT2/netrin 1/UNC-5/RANKL axis), and the non-canonical
WNT ligands WNT5A and WNT16. Moreover, osteoclasts influence osteoblast formation
and differentiation by secreting soluble factors such as sphingosine-1-phosphate, SEMA4D,
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collagen triple helix repeat containing 1, component 3 (C3), and others [16,18]. All of these
pathway present possible therapeutic targets for RA.

Circulating and synovial EVs originating from multiple cells, such as platelets, red
blood cells, monocytes, lymphocytes, and other stromal cells, may contribute to RA patho-
genesis by promoting Th cell production, resulting in a shift in the Th17/Treg ratio and
ensuing overabundance of proinflammatory factors. For example, miR-17 in synovium-
derived exosomes was reported to suppress transforming growth factor beta (TGF-β)
receptor expression, and subsequently inhibit Treg differentiation [14]. In addition, FLS-
derived exosomes contain high levels of miR-424 under conditions such as low oxygen
tension, and miR-424 is known to negatively regulate FOXP3 secretion and increase produc-
tion of the inflammatory cytokines IL-17, IL-22, IL-1β, and TNF-α in RA model mice [19].
These molecules, particularly TNF-α, have also been reported to influence T cell-mediated
cell death and sensitivity to apoptosis [20], and to promote immune complex formation in
RA [21].

Numerous therapies have been developed based on an improved understanding of
RA pathogenesis [22], including nonsteroidal antiinflammatory drugs (NSAIDs), corti-
costeroids, and disease-modifying antirheumatic drugs (DMARDs) such as conventional
synthetic (c)DMARDs, targeted synthetic (t)DMARDs, and biological (b)DMARDs, also
known as “targeted biologics”, “biologic agents”, or “biologics.” Among these agents,
NSAIDs are the most frequently prescribed, particularly for the control of RA-related
pain, while corticosteroids are also used for their strong anti-inflammatory properties. The
cDMARDs, including methotrexate (MTX), leflunomide, and sulfasalazine (salazopyrin
and salicylazosulfapyridine), reverse RA-related immune abnormalities and inflammation
and are currently the first-line agents in rheumatologic therapy. The bDMARDs include
antibodies that reduce inflammation by binding to and inhibiting cytokines and membrane-
bound CD80/86 molecules on T cell-activated antigen-presenting cells (APCs). Further,
bDMARDs treat not only inflammatory symptoms but also prevent joint deformation by
suppressing bone and cartilage destruction and remodeling [22].

The prognosis for patients with autoimmune rheumatic disorders, including RA, has
significantly improved in recent years. This improvement can be attributed to various
factors, such as the increased use of bDMARDs and tDMARDs, both individually and
in combination with cDMARDs. The identification of novel drug targets, including cell
surface molecules, cytokines, epigenetic regulators, and signaling pathway components,
has also contributed to this progress. Furthermore, the current clinical practice of targeted
treatment, commonly known as “treat to target” (T2T), along with the close monitoring of
disease activity, has played a crucial role [23].

Among the most promising recently identified drug targets are FLSs, pathogenic B
lymphocytes, TNF-α, IL-1, IL-6, other cytokines, members of the Janus kinase (JAK) family,
interleukin-1 receptor-associated kinase (IRAK) family members (particularly IRAK4), and
various molecules involved in epigenetic regulation, such as DNA methylases, histone
modifiers, and noncoding RNAs. New methods for disease monitoring, endorsed by orga-
nizations like the American College of Rheumatology (ACR), the European League Against
Rheumatism (EULAR), and the Asia Pacific League of Associations for Rheumatology, have
proven valuable for T2T clinical trials. These methods include composite scales like the
joint Disease Activity Score based on C-reactive protein or Erythrocyte sedimentation rate
(DAS-CRP/ESR), the Simplified Disease Activity Assessment Index, Health Assessment
Questionnaire (HAQ), Western Ontario and McMaster Universities Osteoarthritis Index
(WOMAC) and the Clinical Disease Assessment Index (CDAI) [24,25]. T2T has been found
to be crucial in achieving remission or low disease activity (LDA) in patients with early or
established RA [25].

A study by Hetland et al. [26] found that active conventional treatment with methotrex-
ate combined with corticosteroids, particularly abatacept, was effective and safe for
treatment-naive early RA. This study, along with a systematic review informing the
2019 update of EULAR recommendations by Kerschbaumer et al. [27], confirmed the
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efficacy of combining certain drugs with glucocorticoids for RA. TNF inhibitors, IL-6 recep-
tor inhibitors, rituximab, and biosimilar DMARDs also showed effectiveness. Switching
between bDMARDs demonstrated long-term safety and efficacy, and JAK inhibitors were
also effective. Trials comparing different DMARD classes revealed similar response rates.
Treatment targeting clinical remission was sufficient, while imaging remission led to more
adverse events and higher costs. Tapering doses of certain drugs were feasible, and patients
who experienced flares could regain their previous response.

However, patients aged between 40 and 60 require prolonged treatment to maintain
remission in RA, which increases the risk of adverse effects and drug resistance [28,29].
Approximately 30% of RA patients may not respond to treatment or experience severe
side effects, including bone marrow suppression, blood, liver, and/or kidney dysfunction,
and infection [28,29]. Moreover, bDMARDs are contraindicated for RA patients with com-
promised immunity due to the heightened risk of opportunistic infections [28,29]. JAK
inhibitors like Tofacitinib and Baricitinib are commonly used for treating RA [30]. Tofaci-
tinib usage is associated with increased susceptibility to infections, and side effects such as
headaches, hypertension, nausea, and elevated cholesterol levels [30–32]. Baricitinib can
also increase cholesterol levels, and may cause respiratory tract infections and neutrope-
nia [30,33,34]. Before starting JAK inhibitor treatment for RA, it is recommended to screen
for infections and evaluate blood cell counts, as well as liver and kidney function [30,33,34].
JAK inhibitors should be avoided in certain conditions and during pregnancy, and caution
should be exercised when combining them with other medications [30,33,34]. Periopera-
tive management involves pausing JAK inhibitor therapy until proper wound healing is
achieved [28]. Only a few ongoing developments, including selective JAK-1 inhibitors like
Upadacitinib and Filgotinib, are being pursued [30,35,36].

Considering the challenges and potential limitations associated with current treat-
ments, some RA patients may choose not to undergo long-term treatment or exhibit poor
compliance. Therefore, it is crucial to develop alternative treatment methods that offer
improved efficacy and tolerability [37,38]. In light of these considerations, further research
into novel therapeutic approaches, including the utilization of mesenchymal stromal/stem
cells (MSCs)-based treatments, is warranted. These innovative strategies aim to address
the limitations of current therapies and leverage the regenerative and immunomodulatory
properties of MSCs, ultimately enhancing the quality of life and long-term outcomes for
RA patients.

2. The Ability of MSCs to Restore Health

Pluripotent stem cell-based therapies using embryonic stem cells (ESCs) and induced
pluripotent stem cells (iPSCs) have demonstrated great promise for the treatment of re-
fractory diseases in preclinical models and some clinical trials [39]. In addition, immune
cell therapies, such as the adoptive transfer of regulatory T cells and chimeric antigen
receptor T cell therapy, have been developed for the treatment of chronic inflammatory
diseases [40,41]. In the following sections, we describe some of these therapies and the
remaining challenges to routine clinical application.

Mesenchymal stem cells are a multipotent adult or somatic stem cell population that
has long been used in preclinical studies, and more recently various MSCs have shown
promise in clinical trials [39,42]. MSCs are adherent cells that are typically CD105+, CD73+,
or CD90+, but rarely if ever CD45+, CD34+, or HLA-DR+ [39]. While MSCs may not
be generally superior to iPSCs for accessibility, expandability, or pluripotency, they do,
similarly to iPSCs, obviate ethical concerns associated with harvesting human ESCs, and
can be obtained from the patient for personalized treatment [39]. Further, these cells can dif-
ferentiate into multiple cell types of mesodermal origin, including osteocytes, chondrocytes,
cardiomyocytes, and adipocytes, and so may be an equally feasible alternative to iPSCs
for certain bone and joint diseases such as RA. In addition, MSCs have other desirable
properties for clinical application, including low immunogenicity and strong immunomod-
ulation capacity, as well as anti-inflammatory, proangiogenic, and anti-apoptotic activities.
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MSCs also produce EVs containing various trophic molecules promoting tissue repair
or regeneration [39,42–45]. Through cell-to-cell contact and/or paracrine activity, MSCs
release bioactive molecules that suppress the critical cytotoxic activities of large granular
lymphocytes (natural killer or NK cells) and the development of APCs (dendritic cells or
DCs), thereby inhibiting innate immunity. Also, MSCs have been reported to suppress the
proliferation and activities of peripheral Th cells, and induce Treg formation and the release
of factors such as indoleamine 2,3-dioxygenase (IDO), PGE2, TGF-β, histocompatibility
antigen (HLA)-G5, and IL-10 to alleviate inflammation [39,46]. Theoretically, this low
immunogenicity reduces the risks of MSC treatment, although the production of sufficient
numbers for clinical application requires various isolation, culturing, and maintenance
procedures that may carry certain risks, including the induction of inflammatory responses.
In addition, MSC therapy is cost-effective [39,46], as these cells can be derived from nu-
merous tissues depending on the end application. As MSCs from different sources have
distinct differentiation potential spectra, specific tissues are preferred for RA treatment
(Table 1) [45–80].

Table 1. Properties of MSCs derived from four common source tissues for the treatment of arthritic
diseases.

Tissue of Origin Potential Advantages Limitations References

Bone marrow
(BM-MSCs) − Multiple clinical trials confirm safety and

efficacy.
− Possess remarkable differentiation potential.
− Immunomodulatory effects and low

immunogenicity.
− BM-MSC-EVs enhance bone and cartilage

repair with efficacy similar to the parent cell.

− Therapeutic efficacy is heavily
dependent on the health and age of the
donor.

− Harvesting challenges include limited
yield and risk of infection.

− Mechanisms underlying therapeutic
efficacy for RA remain underexplored.

[47–54]

Umbilical cord
(UC-MSCs) − Possess superior self-renewal and

multi-differentiation capacities compared to
other MSCs.

− Easily and painlessly harvested.
− Three- to four-fold greater proliferation rate

than other MSCs.
− Secrete multiple growth factors.
− Numerous preclinical and clinical studies

demonstrate treatment potential for RA.
− UC-MSC-EVs demonstrate clinical

restoration of the Th17/Treg balance.

− Early morphological changes.
− Faster loss of amplification ability.
− Lower attachment efficiency.

[55–62]

Umbilical cord blood
(UCB-MSCs) − Abundant and easily accessible source that

is ethically non-controversial.
− Distinct differentiation capacities compared

to other sources.
− Low risk of transmission: have a low risk of

transmitting infections and mutations after
transplantation.

− Have low immunogenic and tumorigenic
properties.

− Higher immune modulatory effects by both
direct immune cell contact and secretion
factors.

− Demonstrate higher proliferation rates.
− Easier “Off-the-shelf” availability.

− Distribution and safety.
− Heterogeneity challenge.
− Low isolation yield limitation.
− Good Manufacturing Practice (GMP)

compliance concerns.

[63–66]
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Table 1. Cont.

Tissue of Origin Potential Advantages Limitations References

Adipose tissue
(AD-MSCs) − Easy to access with simple procedures and

abundant yields from multiple sites.
− Strong immunosuppressive effects.
− Derived EVs suppress Th cell development.
− Amenable to large-scale production for

autologous cell-based and cell-free therapy.
− AD-MSC-EVs demonstrate effective

preclinical cartilage and bone regeneration.

− AD-MSCs extracted from different sites
demonstrate distinct traits.

− Increased expression of HLA-ABC and
HLA-DR in an environment of high
IFN-γ.

− May be unsuitable for allogenic
application.Requires donor-matching
for increased clinical efficiency.

[50,58,67–73]

Synovial membrane
(SM-MSCs) − Can be obtained from various sites for

specific traits, including cotyloid fossa and
paralabral synovium.

− Higher proliferative capacity, greater
multilineage differentiation capacity, and
low immunogenicity than many other
MSCs.

− Hyperexpression of collagen II, aggrecan,
and sex-determining region Y-box
transcription factor 9 confer higher
chondrogenic potential than MSCs from
other sources.

− Anticipated wide utilization for cartilage
repair and joint homeostasis treatments.

− SM-MSCs and BM-MSCs have greater
osteogenic and adipogenic potentials than
other MSCs.

− Relatively low-density expansion
in vitro compared to BM-MSCs.

[74–80]

The immunomodulatory and anti-inflammatory capacities of MSCs are of primary
importance for the effective management of autoimmune and chronic inflammatory dis-
eases. However, cell-free MSC products may retain these properties with even greater
safety. Thus, various procedures have also been developed to produce pure cell-free ther-
apeutic products for RA such as MSC-derived exosomes (MSC-Exos) [81]. For instance,
BM-MSC-derived TEMCELL® HS Inj. (JCR Pharmaceuticals, Kasuga-cho, Japan) has been
approved as the first allogeneic regenerative medicine in Japan for the treatment of acute
graft-versus-host disease [82]. The mechanisms underlying the immunomodulatory and
anti-inflammatory effects of MSCs and vesicular derivatives involved in controlling RA
have been gradually unraveled [83–86]. This review summarizes current perspectives and
evaluates the potential of MSC-based therapies for RA.

2.1. MSC-Based Therapies for RA

This review is based primarily on a wide literature survey of original English-language
articles on regenerative medicine and RA treatment approaches. However, non-English
articles were also evaluated for pertinence. The databases Medline, Embase, and Web of
Science were searched using various combinations of the terms “stem cell,” “rheumatoid
arthritis”, “autoimmune rheumatic disorder”, “autoimmune rheumatic disease”, “cell ther-
apy”, “MSC immunomodulation”, “MSC immunosuppression”, “MSC antiinflammation”,
“mesenchymal stem cells” and “immunomodulatory agents”. A web search was also con-
ducted between July 2022 and October 2022 to identify clinical trials on cell therapies for
RA and related diseases. In addition, the internet was searched for information on related
clinical trials registered at ClinicalTrials.gov and domestic registries of Japan, including the
Pharmaceuticals and Medical Devices Agency, Japan Pharmaceutical Information Center,
Japan Registry of Clinical Trials, and Regenerative Medicine Provision Plans of the Ministry
of Health, Labour and Welfare (MHLW) using search words like “rheumatoid arthritis”,
“cell therapy”, “regenerative medicine products” and “rheumatism”.
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2.1.1. Mechanisms Underlying the Effectiveness of MSC-Based Treatments against RA

The healing properties of MSCs are directly affected by the level of inflammation
in the tissue microenvironment (Table 2), suggesting that immune cell function is the
primary therapeutic target of MSCs. Potential therapeutic mechanisms include paracrine
activities of EVs and other soluble factors, as well as direct modulation through cell–cell
contact [87–91].

Table 2. Effects of the inflammatory microenvironment on the immunomodulatory potential of MSCs.

Tissue
Microenvironment MSC Phenotype Characteristics Expressed Molecules

Low inflammatory condition
(Low levels of TNF-α and
IFN-γ)

Proinflammatory
mesenchymal stem cells
(MSC1)

− Generally quiescent.
− Expresses low levels of

the immunosuppressive
factors IDO and nitric
oxide (NO).

− Mainly associated with
the early phase of
inflammation.

− Migrate to sites with
high levels of
proinflammatory
cytokines via signaling
between CC chemokine
receptors (CCR1, 3, 7, 9,
and 10) and CXC
chemokines (CXCR3, 4,
5, and 6).

− Activated by toll-like
receptors (TLRs) such as
TLR2 and TLR4.

− Naïve cells induced to
the MSC1 phenotype by
TLR4.

− Promote macrophage
polarization to the M1
phenotype.

− Increase osteogenic
differentiation.

− Decrease chondrogenic
and adipogenic
differentiation.

− Enhance physiological
healing.

− TLRs (TLR2 and TLR4)
for activation and
induction of
proinflammatory
cytokines (such as IL-6
and IL-8).

− Activated T cell-secreted
chemokines and
macrophage
inflammatory proteins
(MIPs, MIP-1α and
MIP-1β).

− Factors secreted by
inactivated T cells such
asRANTES or CCL5, as
well as CXCL9, CXCL10,
and CXCL12.

High inflammatory
microenvironment
(High levels of TNF-α and
IFN-γ)

Anti-inflammatory
mesenchymal stem cells
(MSC2)

− Derived from MSC1 by
TLR3 stimulation.

− Express high levels of
immunosuppressive
factors.

− Impact homeostasis due
to chronic inflammation.

− Inhibit T cell
proliferation and
promote Treg
production.

− IDO, HLA-G5, TGF-β,
galectins, IL-10, HGF,
PGE2, heme oxygenase,
and IFN-γ.
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A recent review by Bačenková et al. [92] highlighted several mechanisms influencing
the efficacy of MSCs for modulating immune system function in RA. The conversion of
the amino acid tryptophan to kynurenine in IDO influences the ability of this enzyme
to impair the synthesis of several cellular proteins that suppress Th cell proliferation, in-
fluence the formation of Treg cells, and (or) induce tolerogenic dendritic cells (tDCs) [93].
The secretion of TGF-β by MSCs enhances Treg development and M1/M2 stability, and
influences monocyte differentiation toward tDCs [94]. In addition, MSCs reduce the ability
of pathogenic B cells to migrate by secreting IL-10, TGF-β, PGE2, NO, and IDO. These
factors also impact cell expansion and development, immunoglobulin (Ig) production, and
C-X-C chemokine receptor 4 (CXCR4), CXCR5, and C-C chemokine receptor type 7 (CCR7)
expression. In vitro studies have found that MSCs increase IL-10 production and secretion
in the presence of CD3+ T cell populations. The CD3 protein complex acts as a T cell co-
receptor involved in activating both cytotoxic T cells (from CD8+ naive T cells) and Th cells
(from CD4+ naive cells). Increased IL-10 levels enhance the capacity of MSCs to promote
the expansion of Treg cells and enhance programmed cell death protein 1 (PD-1) expression
by immunomodulation-associated CD4+ and CD25+ cells (naturally occurring Treg) [87].
MSCs also express several molecules with immunomodulatory functions, such as HLA-G1,
which binds the Ig-like transcript 2 receptor to inhibit IFN-γ secretion, B cell proliferation
and differentiation, antibody secretion, and T cell chemokine expression. Programmed cell
death protein 1 (PD-1) ligand expression by MSCs suppresses Th cell production in several
diseases, including autoimmune diseases, while the APC type I transmembrane protein
CD40 is essential for Th cell activation. Also, MSC-expressed Jagged-1 interacts with the
Notch signaling pathway to initiate a cascade of proteolytic cleavages and activate the
transcription of downstream target genes encoding Th cell-inhibitory proteins. Activated
MSCs express adhesion molecules, such as vascular cell adhesion molecule 1 (VCAM-1
or CD106), intracellular adhesion molecule 1 (ICAM-1/CD54), and CXCR4, which pro-
mote cell homing by binding to various extracellular matrix (ECM) molecules, resulting
in enhanced MSC migration and interaction with immune cells. Indeed, ICAM-1 and
VCAM-1, which are induced by IFN-γ and IL-1, have substantial effects on MSC-mediated
immunomodulation [95]. MSC-derived chemokines affect lymphocytes that migrate to the
sites of inflammation and also bind to CCR5 and CXCR3 expressed on T cells. Activated
MSCs have a greater capacity to suppress NK cell activities at the site of inflammation.
Furthermore, MSCs express CD90, the activated leukocyte adhesion molecule CD166, and
other integrins that mediate interactions with T cells. MSC regulated inflammation by
suppressing Th1 and Th17 proliferation as well as by expansion of Treg cells. Lefevre
et al. [8] recently demonstrated the ability of MSCs to modulate the immune system by re-
ducing the harmful Th1/Th17 response and enhancing protective Treg cell responses. Najar
et al. [96] also observed the inhibition of lymphocyte proliferation during the co-cultivation
of MSCs and mitomycin agglutinin-activated T cells. In summary, Th17/Treg and M1/M2
imbalances are seminal to RA immunopathogenesis, and MSCs demonstrate the capacity
to modulate the immune system by influencing the activities of memory T lymphocytes,
including Th17 cells, and by promoting Treg cell expansion [97,98].

2.1.2. Merits of MSCs for RA Therapy

The use of MSCs for cell-based RA treatment is garnering intense interest owing to the
documented capacity of these cells to regulate a wide range of basic cellular functions, and
the low inherent immunogenicity resulting from minimal expression of MHC class I and
the absence of MHC class II and costimulatory molecules CD40, CD80, and CD86. Hence,
the number of clinical studies has increased approximately four-fold over the last decade,
although fewer than 10% are phase III or IV trials [92].

The administration of MSC-EVs can regulate immune function both locally and at
distant sites. Further, EVs derived from MSCs of different tissue origins may be safer
cell-free therapeutic alternatives for various diseases, including RA [59,99,100]. Indeed,
MSC-derived EVs have demonstrated bioactivities similar to the source MSCs and are also
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capable of modulating MSC-mediated tissue regeneration [44,59,100,101]. Like EVs from
other sources, MSC-derived EVs are categorized into exosomes (MSC-Exos) and ectosomes
(MSC-Ectos). MSC-Exos range in size from 40 to 160 nm, and exhibit surface marker profiles
similar to the parent MSCs in addition to distinctive CD63, CD81, and CD9 expression
profiles [102], while ectosomes are more heterogeneous and include microvesicles (MVs)
and microparticles ranging in size from ~50 nm to 1 µm. The cargo of a typical MSC-EV
includes a large array of endosomal sorting complexes required for transport proteins I–III,
such as tumor susceptibility gene 101 and heat shock protein 70, in addition to apoptosis-
linked gene 2-interacting protein X, cytoskeletal proteins, various metabolites (such as
deoxyribonucleic acids), mRNAs, and noncoding RNAs [99,103–105]. Like the source
cells, MSC-Exos and MVs are proangiogenic antigen-presenting entities that suppress
inflammation and regulate the immune system [106–109].

2.1.3. MSC-Based Therapy: Preclinical RA Studies
MSC Administration

Numerous preclinical studies have demonstrated the therapeutic efficacy of MSCs
in models such as collagen-induced arthritis (CIA) [110,111]. For instance, human MSC
transplantation was reported to improve the LDA score in the CIA model [112,113]. The
transplantation of human umbilical mesenchymal stem cells (hUC-MSCs) also induced the
significant downregulation of proinflammatory cytokines and osteoclastogenesis, while
enhancing inflammatory mediators in the injured ankle joints of mice [114]. Transplantation
of MSCs improved paw edema, suppressed rheumatoid factor (RF) elevation, enhanced
antioxidant capacity, and reduced NF-κB, TLR-2, MMP3, and cartilage oligomeric matrix
protein-1 expression levels in a rat model of RA compared to hematopoietic stem cell trans-
plantation or administration of the clinical antirheumatism drug methotrexate (MTX) [115].
A combination of transplanted MSCs and cytokines also effectively reduced synovitis and
systemic inflammation in the CIA mouse model, as evidenced by substantial reductions in
RF (64%), CRP (80%), anti-nuclear antibodies (ANAs, 71%), TNF-α (63%), and monocyte
chemoattractant protein-1 (MCP-1, 68%) [116]. Nam et al. [112] reported that peritoneal
lavage cells from mice treated with MSCs expressed higher levels of stromal cell-derived
factor 1-alpha (SDF-1α or CXCL12) and RANTES than controls, again consistent with a
possible therapeutic utility for RA as MSC migration was enhanced in the presence of
SDF-1α and/or RANTES. MSCs also induced Th cells to differentiate into Tregs in vitro,
and the expression of FOXP3 mRNA was upregulated in the forepaws of MSC-treated CIA
model mice [23]. The transplantation of allogeneic MSCs suppressed T follicular helper
(Tfh) cell differentiation in RA patients in part by enhancing IDO production, suggesting
that arthritis progression may be prevented by MSC transplantation [117]. A review by
Roudsari et al. [118] also highlighted studies showing that MSCs regulate T cell apoptosis
through the FasL/Fas pathway, induce immune tolerance, and improve joint function in
the CIA mouse model. Further, BM-MSCs were reported to improve bone erosion in CIA
model rodents by inhibiting factors associated with osteoclastogenesis and by promoting
differentiation into chondrocytes [119].

MSC-Derived EVs

Miao et al. [14] recently summarized several preclinical studies on MSC-EVs as cell-
free therapy for RA in model animals. Cosenza et al. [44] were the first to demonstrate
that MSC-Exos were more immunosuppressive than microparticles in CIA model mice.
Zhange and colleagues recently reported that BM-MSC-Exos could delay the progression
of osteoarthritis by alleviating cartilage damage, reducing osteophyte formation and syn-
ovial macrophage infiltration, inhibiting M1 macrophage production, and promoting M2
macrophage generation in osteoarthritis model rats [45]. Additionally, the expression levels
of IL-1β, IL-6, and TNF-α in synovial fluid were reduced, and the release of IL-10 was
increased. In vitro, macrophages treated with MSC-Exos maintained the chondrogenic
characteristics of chondrocytes and inhibited hypertrophy [45,46].
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A recent review also concluded that MSC-Exo-derived miRNAs have immense po-
tential for future clinical applications [105]. A study of RA treatment by targeting FLAs
with BMSC-EVs containing miR-34a reported notable efficacy via the cyclin I/ataxia-
telangiectasia mutated symbol/ataxia-telangiectasia and Rad3-related protein/p53 sig-
naling pathways [99]. Also, BM-MSCs-Exos containing miR-192-5p suppressed CIA pro-
gression in rats via ras-related C3 botulinum toxin substrate 2 [120], and BM-MSC-Exos
containing miR-320a repressed RA-FLS proliferation by downregulating CXC chemokine
9 [121], while MSC-Exos containing miRNA-150-5p reduced angiogenesis and FLS pro-
liferation in RA patients and CIA model mice by downregulating MMP14 and vascular
endothelial growth factor [122]. Su et al. [123] recently demonstrated that MSC-Exos also
participated in the intercellular transfer of the long noncoding RNA heart- and neural crest
derivatives-expressed protein 2 antisense 1, and suppressed the activation of RA-FLSs via
miR-143-3p/tumor necrosis factor and alpha-induced protein 3/NF-κB pathways in RA
patient synovial tissue and cultured cells, suggesting the potential involvement of these
MSC-Exos-evoked signaling cascades in RA pathogenesis and as possible treatment targets.

Recent studies have also examined using AD-MSC-EVs for RA treatment. One par-
ticularly promising study reported that AD-MSC-EV administration improved RA in the
IL-1ra knockout mouse model [124]. The authors found that joint swelling was reduced to
near control levels by AD-MSCs and separately by AD-MSC-EVs, and that these effects
were associated with decreases in proinflammatory cytokine concentrations. These effects
may be mediated by the suppression of Th cells, as known Th cell factors suppressing
proinflammatory cytokine expression are also major constituents of AD-MSC-EVs [68–70].
However, the impact of AD-MSC-EVs is highly dependent on MSC type (autologous vs.
allogeneic), handling processes, and site of tissue extraction [42,72,73,100,125–129].

MSC-EVs from umbilical cord have demonstrated superior efficacy against CIA com-
pared to MSCs from other tissues, and even compared to antirheumatic drugs such as
MTX [105]. However, the efficacy of UC-MSC-EVs is also highly dependent on MSC han-
dling procedures and levels of the transcriptional factor FOXP3 [130–133]. In addition
to these conventional sources, MSC-EVs isolated from olfactory epithelium have demon-
strated immunosuppression through a reduction in Th cell proliferation and increased
Treg cell production in vitro [101]. In CIA model mice, the adoptive transfer of olfactory
epithelium-derived MSCs markedly delayed arthritis onset and decreased disease severity,
and these clinical outcomes were accompanied by Treg expansion and reduced Th1/Th17
cell responses in vivo [134]. Also, MSC-Exos obtained from gingival and other tissues have
demonstrated immunosuppression by reducing angiogenesis and the M1/M2 polarization
ratio, and by improving chondrogenesis and bone remodeling [135–139].

2.1.4. Studies on MSC-Based Therapy for RA in Japan

In Japan, research on MSC-based cell therapies for RA remains very limited. Currently,
there are no complete or ongoing MSC-based clinical investigations or trials for RA, and
only a single MHLW-registered study by Trinity Clinic, Fukuoka, titled “Treatment of RA
using Autologous Adipose-derived Mesenchymal Stem Cells”, was identified.

2.1.5. Studies on MSC-Based Therapy for RA in Other Counties

Several clinical trials on MSC-based therapies against RA (Table 3) were identified
by searching various trial registries and internet sites. Of these, UC-MSCs were the most
common cell type examined, followed by AD-MSCs and BM-MSCs. The largest number
of trials was conducted in the United States of America, followed by China, Korea, and
the European Union. The remaining studies were conducted in Iran, Jordan, and Panama.
Early phase trials (Phases I and II) accounted for more than 80% of the total.

In a recent review by Lopez-Santalla et al. [140], MSC-based therapy trials for RA were
well summarized. Groundbreaking and completed studies in this field have demonstrated
promising safety and efficacy, particularly in refractory patients, with long-term effects
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observed without significant adverse events [2,3]. These findings align with results from
other immune-mediated diseases [141,142].

Among the highlighted studies, a pilot trial in Korea (2010) enrolled 10 patients with
autoimmune diseases, including 4 with RA. Autologous AD-MSCs were expanded for
multiple infusions, with doses ranging from 2 × 108 to 3.5 × 108 cells per patient. The
trial observed clinical benefits, and up to 8 × 108 cells were safely administered within a
month [143].

In another trial in China (2012), four RA patients received allogeneic MSCs via in-
travenous (IV) infusion. Although remission was not achieved, three patients showed a
moderate response for several months [144].

A randomized trial in Spain (NCT01663116) involved 53 refractory RA patients who
received allogeneic expanded ADMSCs (eASCs) in different doses. Promising outcomes
were observed after 6 months of monitoring. The IV infusion of Cx611 in RA patients was
well-tolerated, without dose-related toxicity. Positive responses based on EULAR criteria,
DAS28-ESR, and CRP were observed for up to three months compared to the placebo
group. However, the refractory profile of the RA patients may have limited the beneficial
effects of MSC therapy. The trial did not observe significant changes in T cell populations
or adverse clinical consequences, but 19% of patients developed MSC-specific anti-HLA-I
antibodies [145].

At the Hospital of People’s Liberation Army Air Force in China, 172 RA patients
received a single IV dose of allogeneic UC-MSCs (NCT01547091). No serious adverse
effects were reported, and significant remission was observed based on ACR criteria, DAS-
28, ESR, HAQ, and decreased inflammatory markers. Beneficial effects were observed in
the short-term (up to 8 months) and long-term (up to 3 years) compared to the control
group [146,147].

At Daping Hospital in China, 53 refractory RA patients received a single IV dose
of allogeneic UC-MSCs (ChiCTR-ONC-16008770). No serious acute adverse events were
reported, and clinical safety and efficacy were confirmed. Approximately 54% of MSC-
treated patients showed a good or moderate response, while 46% had no clinical response
compared to the control group. Transient effects were observed, and additional MSC
infusions were suggested for sustained effects. Serum IFN-γ levels were associated with
clinical benefits, and could serve as a predictive biomarker [148].

A preclinical study emphasized the role of IFN-γ signaling in MSC immunomodula-
tory effects. Treatment with INF-γR−/− MSCs had no therapeutic effects on RA progression,
indicating the dependence of MSC efficacy on IFN-γ levels. The immunosuppressive prop-
erties of MSCs rely on an inflammatory microenvironment for optimal functioning [147].

In a 2017 clinical trial (ChiCTR-INR-17012462), Xu et al. [149] treated 63 refractory RA
patients with UC-derived MSCs and recombinant IFN-γ. The combination significantly
improved clinical efficacy from 53.3% to 93.3% without safety issues during the 1-year
follow-up.

In a phase I trial (NCT03333681), nine refractory RA patients received autologous BM-
MSCs alongside conventional therapy. No complications or adverse events occurred,
and significant improvements in disease activity measures were reported. Although
certain serum cytokine levels did not show statistical differences, there was an increase
in regulatory CD4+ T cells and a decrease in Th17 cells. B-cell response and proliferation
decreased, and plasma levels of CXCL8, CXCL12, and CXCL13 were reduced for up to
1 year [51,52,150,151].

Kang Stem Biotech funded two trials (CURE-IV and FURESTEM-RA) in Korea. These
trials involved treatment-naïve RA patients receiving allogeneic UCB-MSCs. The phase I
trial (NCT02221258) showed no serious adverse events, improvements in disease activity
measures, and reduced inflammatory cytokine levels. However, limitations included a
small sample size and short follow-up. A 5-year observational study is ongoing, and a
phase I/IIa randomized double-blind placebo-controlled trial (NCT03618784) is currently
underway [152].
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Table 3. Clinical studies of cell therapies against RA conducted worldwide.

Trial Registration/
Country

Phase Allo/Auto Tissue Source Regimen Enhancement
Method

Enrollment Start Year Completed/
Reference

EudraCT:
2010-021602-37;
NCT01663116/Spain

Ib/IIa Allo. Adipose tissue IV weekly infusions of ADMSCs:
1 million/kg (cohort A), 2
million/kg (cohort B), 4 million/kg

None 53 active refractory
RA
patients

2011 Yes
[145]

Unidentified/Korea Pilot Allo. Adipose tissue IV 2 doses of 3 × 108/patient and
4 doses of 2 × 108/patient and
1 dose of 2 × 108/patient; +1 IA
dose of 1 × 108/patient or IV single
dose of 3.5 × 108/patient + 1 IA
dose 1.5 × 108/patient;

None 4 refractory RA 2011 Yes
[143]

Unidentified/China Pilot Allo. Bone
Marrow/Umbical
Cord

IV single dose of 1 × 106 cells None 4 refractory RA 2012 Yes
[144]

NCT01547091/China I/II Allo. Umbilical Cord IV 4 × 107 cells/patient UC-
MSC+DMARDS

172 patients with
RA were
recruited/64
patients monitored
for three years

2013 Yes
[146,147]

NCT01851070/USA II Allo. Bone
Marrow

IV single dose of 1 or
2 × 106 mesenchymal precursor
cells (MPCs)

None primed
precursor cells

48 refractory RA 2013 Yes
[140,153]

NCT01985464/Panama I/II Allo. Umbilical Cord Unknown Unknown 20 refractory RA 2013 Unknown
[extracted from
‘www.ClinicalTrials.gov’;
accessed on 23 June 2023;]

NCT02221258/Korea I Allo. Umbilical Cord
Blood

IV single dose of 2.5 × 107, 5 × 107,
or 1 × 108 cells of
hUCB-MSCs/patient

None 9 RA patients with
moderate disease
activity

2014 Yes
[extracted from
‘www.ClinicalTrials.gov’;
accessed on 23 June 2023;]

NCT02643823/China I Allo. Umbilical Cord IV weekly single dose of 2 × 107

hUC-MSC for 1 month
hUC-MSC +
DMARDs

40 refractory RA 2016 Unknown

ChiCTR-ONC-
16008770/China

I Allo. Umbilical Cord IV single dose of 1 × 106

UC-MSCs/kg of body weight
None 53 refractory RA 2016 [148]

www.ClinicalTrials.gov
www.ClinicalTrials.gov
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Table 3. Cont.

Trial Registration/
Country

Phase Allo/Auto Tissue Source Regimen Enhancement
Method

Enrollment Start Year Completed/
Reference

NCT03067870/Jordan I Auto. Bone
Marrow

Unknown Unknown 100 2016 Unknown

NCT03333681/Iran I Auto. Bone
Marrow

IV single dose of 1 to
2 × 106 cells/kg of body weight

I/V hydrocortison
(100 mL) and oral
dimenhydrinate
(10 mL) before
MSCs
administration +
conventional
therapy

15 refractory RA 2016 Yes
[extracted from
‘www.ClinicalTrials.gov’;
accessed on 23 June 2023;]

ChiCTR-INR-
17012462/China

I/II Allo. Umbilical Cord IV single daose of 1 × 106 cells UC-MSCs
combined with
recombinant
IFN-γ.

63 refractory
patients

2017 Yes
[149]

NCT03186417/USA I Allo. Umbilical Cord IV single dose of 2, 4 or
6 × 106 MPCs

None 10 new onset RA
actual enrolment

2017 Unknown
[153]

NCT03798028/China II/III Allo. Umbilical Cord IV single dose of 1 × 106 cells/kg
of body weight of UC-MSCs

+conventional
treatment

250
DMARD-resistant
RA patients

2017 Unknown
[extracted from
‘www.ClinicalTrials.gov’;
accessed on 23 June 2023;]

NCT03618784/Korea I/II Allo. Umbilical Cord
Blood

IV, 5.0 or 10 × 107/patient; 3 doses FURESTEM-RA
Inj.+DMARDs

33 refractory RA 2018 Unknown
[extracted from
‘www.ClinicalTrials.gov’;
accessed on 23 June 2023;]

NCT03691909/USA I/IIa Auto. Adipose tissue IV single dose of 2 × 108 adMSCs HB-adMSCs 15 with active RA 2018 Yes
[extracted from
‘www.ClinicalTrials.gov’;
accessed on 23 June 2023;]

www.ClinicalTrials.gov
www.ClinicalTrials.gov
www.ClinicalTrials.gov
www.ClinicalTrials.gov
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Table 3. Cont.

Trial Registration/
Country

Phase Allo/Auto Tissue Source Regimen Enhancement
Method

Enrollment Start Year Completed/
Reference

NCT03828344/USA I Allo. Umbilical Cord IV single dose of BX-U001 at
0.75 × 106 cells/kg of body weight
(Cohort 1) or 1.5 × 106 cells/kg of
body weight (Cohort 2)

Unknown 16 2020 Not yet known
[extracted from
‘www.ClinicalTrials.gov’;
accessed on 23 June 2023;]

NCT02903212/France I/II Auto. Peripheral blood
leukocytes

Unknown Rendered
apoptotic by X-ray
irradiation

22 2021 Not yet known
[extracted from
www.ClinicalTrials.gov;
accessed on 23 June 2023;]

NCT04170426/USA I/IIa Auto. Adipose tissue IV three doses of
2.0–2.86 × 106 cells/kg on
day 1, 4 and 7

Celltex-AdMSCs
with unknown
enhancement
strategy

54 2021 Not yet known
[extracted from
www.ClinicalTrials.gov;
accessed on 23 June 2023;]

NCT04971980/China I/II Allo. Umbilical Cord IV single infusion of hUC-MSC at
0.5 × 106 cells/kg, or 1.0 × 106

cells/kg, or 1.5 × 106 cells/kg in
three cohorts

Unknown 9 2021 Not yet known
[extracted from
www.ClinicalTrials.gov;
accessed on 23 June 2023;]

NCT05003934/USA I Allo. Umbilical Cord IV single infusion of 100 million
cells AlloRx

Unknown 20 2022 Not yet known
[extracted from
www.ClinicalTrials.gov;
accessed on 23 June 2023;]

Allo, Allogeneic; Auto, autologous; ChiCTR-INR, Chinese registry, “www.Chictr.org”; accessed on 23 June 2023; EudraCT, European Union Drug Regulating Authorities Clinical Trials
Database; IA, intra-articular; IV, intravenous; MPCs, multipotent progenitor cells; NCT, The National Clinical Trial; UC, umbilical cord; USA, United States of America.

www.ClinicalTrials.gov
www.ClinicalTrials.gov
www.ClinicalTrials.gov
www.ClinicalTrials.gov
www.ClinicalTrials.gov
www.Chictr.org
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Mesoblast Ltd. conducted a phase II trial (NCT01851070) in the USA in 2013, using al-
logeneic MPCs derived from BM. The trial involved RA patients with incomplete responses
to TNF-α inhibitors. The highest MPC dose showed significant treatment benefits, improv-
ing clinical symptoms and disease activity. Further assessment and dose optimization are
needed. Another trial using MPC-based therapy for RA patients is underway in the USA
(NCT03186417) [153].

In the report by Kabat et al. [154], the optimal protocol for MSC therapy in RA
patients remains undefined. Allogeneic MSCs are commonly used (78%) due to challenges
in obtaining autologous MSCs. MSCs derived from bone marrow, adipose tissue, and
umbilical cord show comparable safety and efficacy. Most trials administer less than
10 × 106 MSCs per kilogram in a single infusion. The correlation between dose and efficacy
is inconclusive, although higher cell doses above 1 × 106 cells per kilogram may be more
effective. High MSC doses (8× 108 MSCs per patient) have been reported as safe. However,
most trials have small sample sizes and lack placebo groups. Furthermore, enrolled patients
often have longstanding refractory RA. It is worth noting that early treatment appears to
be more effective in other inflammatory conditions [147].

Currently, several ongoing clinical trials for MSC-based therapy in RA are being
conducted, each with different MHC backgrounds, tissue sources, and cell doses. The trials
include both allogeneic and autologous approaches, with umbilical cord tissue being the
most common source [146,147].

These ongoing trials include a study by Wang et al. (7) at the Stem Cell Institute in
Panama (NCT01985464), which is using allogeneic UC-MSCs to treat 20 DMARD-resistant
RA patients. The trial aims to evaluate adverse events, biological efficacy, and immunologi-
cal parameters after one year [146,147].

Another trial (NCT03067870), sponsored by Stem Cells Arabia in Jordan, started in
2016, seeking to assess the safety and efficacy of autologous BM-MSCs in RA patients.
The study plans to enroll 100 patients and monitor systemic efficacy using VAS scores for
one month and WOMAC scores and imaging for six months to assess joint regeneration
potential [146,147].

A multicenter trial (NCT03798028) at Xijing Hospital in China, initiated in January
2019, is recruiting adult RA patients with moderate or severe RA and anemia and/or
interstitial lung disease. The trial aims to evaluate the safety and therapeutic efficacy of
allogeneic UCB-MSCs over 24 weeks [146,147].

A proof-of-concept Phase I trial began in 2017 at MetroHealth Medical Center in
Cleveland, OH, USA (NCT03186417). The study aims to recruit 20 newly diagnosed RA
patients and assess the safety and efficacy of allogeneic BM-MSCs over 24 months using
Patient-Reported Outcomes Measurement Information System Computer Adaptive Test
(PROMIS CAT), Routine Assessment of Patient Index Data 3 (RAPID3) questionnaire, and
DAS28-CRP [146,147].

In 2018, Kang Stem Biotech Co. Ltd. initiated a Phase I/IIa RA trial in Korea
(NCT03618784) to evaluate the efficacy of intravenous allogeneic UC-MSCs in 33 refractory
or intolerant RA patients. The study monitors patients for 16 weeks using various scoring
systems and cytokine level analyses [146,147].

Hope Biosciences in TX, USA, has been conducting a phase I/II trial (NCT03691909)
since 2018 to evaluate the safety and efficacy of autologous ADMSCs in RA patients. The
trial is assessing multiple factors for up to 12 months [146,147].

Baylx in CA, USA, recently initiated a Phase I trial (NCT03828344) to evaluate the
safety and effects of allogeneic UC-MSCs in refractory RA patients. The trial assesses
multiple criteria and is expected to be completed in September 2022 [146,147].

Finally, Celltex Therapeutics Corporation in Houston, TX, USA, is currently enrolling
patients in a Phase I/IIa trial (NCT04170426) to treat DMARD-refractory RA patients with
autologous ADMSCs. The trial’s expected completion date is December 2023 [146,147].
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2.1.6. Challenges and Strategies for Enhancing MSC-Based Treatments for RA

MSCs represent a promising therapeutic option for various diseases, including RA.
However, several challenges need to be addressed to optimize MSC-based therapies. These
challenges arise from multiple factors, such as the tissue of origin, donor gender, age,
health status, and/or medical history of the MSCs, as well as the processing of the tissue,
culture conditions, freezing and thawing of the cells, and administration routes. These
factors significantly influence the outcomes of MSC-based therapies and necessitate urgent
optimization [23,66,155–157].

Firstly, the donor’s health condition can have an impact on various aspects of MSCs
obtained, including their quantity, quality, regenerative potential, immunomodulatory
capabilities, and secretome, as factors such as age, inflammatory/metabolic status, medica-
tions/treatments, and infectious diseases play a role in modifying MSC properties, thereby
leading to significant heterogeneity in terms of surface markers, differentiation capacities,
and physiological functions of MSCs [158]. The current minimal criteria for defining MSCs
are insufficient to capture this heterogeneity, requiring further exploration to identify spe-
cific subsets and characterize their functional properties [158,159]. The migratory capacity
of MSCs is crucial for their therapeutic efficacy [160]. However, the expression profiles of
chemokines in damaged tissues often do not match the receptor profiles on MSCs, resulting
in suboptimal migration rates. To enhance migration, genetic modifications of MSCs to
express specific chemokine receptors have been explored, and the choice of delivery route
also affects homing and paracrine functions [161,162].

Another challenge is the limited expansion capacity of MSCs, which makes it difficult
to obtain a sufficient number of cells for clinical trials [161,163]. Prolonged culture duration
and increased passage numbers lead to decreased proliferation, altered morphology, and
compromised viability [157,164]. Therefore, optimizing culture conditions and developing
scalable manufacturing processes are essential to overcome this limitation [165].

Safety concerns associated with specific tissue sources of MSCs, such as UCB-MSCs,
also need to be addressed [61]. Chromosomal abnormalities and potential tumorigenicity
have been reported, necessitating efforts to ensure the safety of MSC-based therapies. The
cloning of single cells derived from UCB-MSCs and the use of specific antigens for cell
isolation have been explored, but a universally accepted culture protocol is yet to be defined.
Adherence to GMP is crucial, and the use of bioreactors and automated systems offer
controlled environments and improved scalability for large-scale production [54,166,167].
Additionally, frozen preservation techniques are being developed to enhance long-term
cell viability and facilitate storage and transportation [168].

To optimize MSC therapies, various strategies have been investigated. Biomaterial
strategies aim to improve MSC function, but immune responses may be triggered [169].
Loading MSCs with small-molecule encapsulating microparticles or utilizing decellularized
ECM scaffolds and synthetic polymers are alternative approaches [161]. Genetic modifica-
tions using viral or non-viral vectors have been explored to enhance therapeutic potential,
but associated risks need to be carefully considered [161]. Human-induced pluripotent
stem cell-derived MSCs and CRISPR/Cas9 technology show promise as well [161]. “Prim-
ing” MSCs and utilizing an MSC-derived secretome, including extracellular vesicles (EVs),
have been effective in enhancing therapeutic function [170]. MSC-derived EVs have shown
promise in clinical trials, and the fields of artificial intelligence (AI) and engineered EVs
offer exciting prospects for advancing MSC therapy [161]. AI can accelerate drug develop-
ment and improve understanding of MSC therapies, while engineered MSC-EVs can be
modified to enhance therapeutic potential [161].

In the context of RA, several strategies have been explored to enhance the therapeutic
effects of MSCs [156–162]. These strategies include coculture methods, growth factors,
cytokines, receptor agonists, hypoxia, autophagy, and genetic modification [23,156]. Sum-
marized in the report by Sarsenova et al. [156], combining MSCs with IL-10-producing Treg
cells has shown enhanced effectiveness in suppressing inflammatory responses and prevent-
ing destructive arthritis in mice. Culturing MSCs as 3D spheroids has also been proposed
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to enhance their immunomodulatory and anti-inflammatory properties through increased
TSG-6 and COX-2 expression. Targeting immune receptor agonists, such as TLR3 and
TLR4, has shown improved cellular properties and immunomodulation. Preconditioning
MSCs with caffeine has demonstrated reduced production of pro-inflammatory cytokines
and improved disease status. Hypoxia and autophagy conditions have shown prospective
application in increasing the immunomodulatory effects of MSCs. Preconditioning MSCs
with pro-inflammatory cytokines, such as IFN-γ and IL-1β, has been found to enhance
their immunosuppressive properties and increase the secretion of anti-inflammatory me-
diators. Combining IFN-γ with other pro-inflammatory cytokines further enhances the
immunosuppressive effects of MSCs [156].

3. Concluding Remarks

Numerous studies, conducted mainly over the past decade, have provided encourag-
ing evidence for the efficacy and safety of MSC-based therapies against RA. The therapeutic
MSCs administered were derived from a variety of tissues and exhibited a wide spec-
trum of gene expression profiles, differentiation capacities, neurotrophin and cytokine
release profiles, and extracellular vesicle contents. Both preclinical and clinical studies have
found comparatively LDA, reduced levels of proinflammatory markers, and normalized
Treg/Th17 and M1/M2 ratios following injection of MSCs or MSC-derived EVs, supporting
the critical contribution of immune system suppression in these antirheumatic effects. More-
over, these anti-inflammatory effects have been shown to modulate osteoblastogenesis and
osteoclastogenesis, thereby potentially improving joint tissue regeneration. Some human
trials have also suggested improved QOL based on a variety of disease monitoring tools.

However, the therapeutic efficacies of MSCs and MSC-EVs vary according to tissue
origin, harvesting methods, and EV extraction methods, among other factors, resulting in
inconsistencies across studies [171–173]. Further, experts in the field [166] strongly recom-
mend that future MSC-based preclinical and clinical investigations consider these issues
moving forward. Several limitations hamper the development of MSC-based therapies,
including the advanced age and poor health status of some patient donors, which reduce
the quantity and quality of adult stem cells. Moreover, deciphering the precise mechanisms
of action is complicated by the interactions between the host tissue and both MSCs and
EVs. There are also no comprehensive pharmacodynamic and pharmacokinetic models
for clinical simulations. Finally, the standardization of reagents and procedures for main-
taining cell consistency remains challenging, and cost-effective, large-scale, and feasible
manufacturing practices need to be developed for routine clinical application.
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