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Abstract: Unmasking the subtleties of the immune system requires both a comprehensive knowledge
base and the ability to interrogate that system with intimate sensitivity. That task, to a considerable
extent, has been handled by an iterative expansion in flow cytometry methods, both in technological
capability and also in accompanying advances in informatics. As the field of fluorescence-based
cytomics matured, it reached a technological barrier at around 30 parameter analyses, which stalled
the field until spectral flow cytometry created a fundamental transformation that will likely lead to the
potential of 100 simultaneous parameter analyses within a few years. The simultaneous advance in
informatics has now become a watershed moment for the field as it competes with mature systematic
approaches such as genomics and proteomics, allowing cytomics to take a seat at the multi-omics
table. In addition, recent technological advances try to combine the speed of flow systems with
other detection methods, in addition to fluorescence alone, which will make flow-based instruments
even more indispensable in any biological laboratory. This paper outlines current approaches in cell
analysis and detection methods, discusses traditional and microfluidic sorting approaches as well
as next-generation instruments, and provides an early look at future opportunities that are likely
to arise.

Keywords: fluorescence-based cytomics; spectral flow cytometry; multiomics; single-cell analysis;
microfluidics; high-throughput analysis

1. Background

For over 100 years, scientists have desired to analyze single cells based on a variety of
approaches. As early as 1904, Kohler utilized fluorescence microscopy for the analysis of
epidermal cells of salamander maculosa larvae [1]. This is considered to be the first use
of fluorescence microscopy, the pioneering use of a fluorescence microscopy marker, and
a departure from traditional spectrophotometric analysis. These experiments represent
the beginning of the field of cytometry. Twenty years later, in 1924, the first detection and
analysis of DNA was in experiments carried out by Robert Feulgen in what became known
as the Feulgen reaction [2]. The principle of this reaction was the formation of Schiff’s
reagent from pararosanilin and its reaction with aldehydes to form colored products. In
1936, T. Casperson demonstrated the ability to quantify chromosomal and cytoplasmic
areas of the cell using different UV wavelengths [3]. These exciting experiments were
carried out using the ultraviolet absorption measurement of a grasshopper metaphase
chromosome. Casperson was able to show the differences between chromosomal absorption
and cytoplasmic absorption. Almost 30 years later, Casperson’s son O. Casperson used
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similar techniques to show a comparison of DNA distribution in normal cervical cells,
cervical carcinoma cells, and pre-malignant cells [4]. This work clearly demonstrated that
both detection and quantification of single-cell properties could be a potential diagnostic
tool by showing the frequency distribution of DNA from single cells.

However, some of the earliest cytometry with actual quantification was performed in
1951 by Robert Mellors, who designed a semi-automated instrument called a microfluoro-
metric scanner using ultraviolet light with an objective lens to scan cells in order to measure
extinction, and the cells were scanned with a cathode ray tube using a flying spot scanner.
Mellors introduced the term “fluorochrome” and also identified the use of intrinsic fluores-
cence (or what we now call autofluorescence), as well as utilizing fluorescent dyes such as
berbine. He was also an early user of a photomultiplier tube to collect fluorescence signals.
His aim was to automate the classification of cytological criteria previously introduced by
Papanicolaou [5,6]. A breakthrough in quantification was achieved by Mendelsohn in 1958
when he published a lookup table for calculating the effects of the distributional errors of
Beers law when measuring the two-wavelength photometry of chromosomes [7].

Regarding cell suspension detection, Moldavan developed a simple photoelectric
technique for counting cells in a liquid [8]. The goal of this approach was to accurately
determine the number of bacteria in a liquid sample. By performing accurate plate counts,
Moldavan was able to determine a relationship between his electronic counts and actual
particle numbers. Moldavan’s aim was to quantify blood cells. However, due to the ex-
tremely weak signal strength obtained with commercially available electronics, this proved
to be challenging. Nonetheless, this publication marks the first instance of successfully
counting cells in a tube. Several patents were filed in the 1950s for developing blood cell
counting technologies. These include Wallace Coulter’s 1951 submission for his Coulter
Counter issued in 1957 [9], and Parker and Horst’s patent filed in 1953 to create a two-color
blood cell detection device [10]. Coulter’s groundbreaking contribution to the field of cell
counting came through his revolutionary device, the Coulter Counter, which he introduced
in his sole published work [11].

In the realm of fluidic-based cell detection, the introduction of hydrodynamic focusing
was a critical innovation. This principle, also known as sheath flow, was first described in
Crosland-Taylor’s 1953 paper. Its significance lies in the fact that it serves as the founda-
tion for virtually all flow cytometers. Therefore, Crosland-Taylor’s work was a seminal
contribution to the field of cytometry [12].

2. Fluorescence Detection Principles

The principle of fluorescence has been around for over 100 years and is based on the
ability to excite specific molecules to higher energy levels, which upon return to the ground
state emit fluorescence at a longer wavelength but lower energy. Built upon the principle
established by George Stokes [13] and defined as changes in energy levels described by
Aleksander Jabłoński in 1933 [14], flow cytometry takes advantage of the Stokes shift of
fluorochromes to collect a very sensitive signal well separated from the excitation. In such
a case, multiple fluorochromes can be used simultaneously, allowing for high complexity
analysis of cell populations. Typically, there are a number of common fluorochromes used
in flow cytometry, as shown in Table 1. There are now an enormous number of “proprietary”
dyes on the market—almost every major company has its own “house brand” of dyes, and
it is beyond the scope of this review to identify them all.

Table 1. Typical fluorochromes used in flow cytometry.

Fluorochrome Excitation Spectrum Emission Spectrum

Hoechst 350 nm 450 nm (blue)
DAPI 350 nm 450 nm (blue)

Pacific Blue 405 nm 450 nm (blue)
Brilliant Violet 405 nm Numerous Lines
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Table 1. Cont.

Fluorochrome Excitation Spectrum Emission Spectrum

FITC 488 nm (blue) 530 nm (green)
PE 488–530 nm (green) 575 nm (orange-red)

PerCP 488 nm (blue) 675 nm (orange)
APC 633 nm (red) 660 nm (far-red)

Alexa Fluor 488 488 nm (blue) 519 nm (green)
Alexa Fluor 647 633 nm (red) 668 nm (far-red)
Alexa Fluor 700 633 nm (red) 719 nm (far-red)

Pacific Blue 405 nm (violet) 455 nm (blue)
BV421 405 nm (violet) 421 nm (blue)
BV510 405 nm (violet) 510 nm (green)
BV605 405 nm (violet) 605 nm (orange)
BV650 405 nm (violet) 650 nm (red)
BV711 405 nm (violet) 711 nm (far-red)
PE-Cy7 633 nm (red) 780 nm (near-infrared)

APC-Cy7 633 nm (red) 785 nm (near-infrared)
PerCP-Cy5.5 488 nm (blue) 695 nm (red)

Qdot 605 405 nm (violet) 605 nm (orange)
Qdot 655 405 nm (violet) 655 nm (red)
Qdot 705 405 nm (violet) 705 nm (far-red)
Qdot 800 405 nm (violet) 800 nm (near-infrared)

Because it is possible to use multiple excitation sources, many dyes can be used in
flow cytometry assays. As explained in a later section, how many of these and other dyes
can be used in a single sample depends on the type of flow cytometer.

3. The Principles of Flow Cytometry

Flow cytometry originates from the Greek words “kytos,” meaning cell or container,
and “metron,” meaning measure. Essentially, flow cytometry refers to the measurement of
cells or particles in flow. Flow cytometers can only use cells in suspension. It is possible to
disassociate tissue, as demonstrated by Hedley [15], and then run the single cells through
a cytometer; however, this requires careful management of the cell suspension to avoid
clumps, although it does demonstrate the potential for tissue analysis. The process of
hydrodynamic focusing, as noted earlier [12], allows cells to be focused into a single line
with the cells clearly separated from each other. In this case, each cell can be analyzed
independently from any other cell, even when operating at tens of thousands of cells
per second.

A flow cytometer is composed of several key components: a fluidic system that
controls the flow of cells or particles through the instrument; an optical system composed
of one or multiple lasers for excitation, multiple filters, mirrors, and detectors to capture
the emitted fluorescence and scatter signals; and an electronics and data acquisition system
that is usually integrated within software for data analysis, as shown in Figure 1.

Cell sorting is the physical separation of cells based on various properties that can be
measured. Over many years, the sorting capacity of instruments has evolved into very high
speed sorting primarily for the isolation of rare cells but also for very routine applications,
such as sperm sorting. These advancements have enabled more precise and efficient cell
detection and sorting, facilitating a wide range of applications in research, diagnostics,
and therapeutic development. Cell sorting is the preferred method for single-cell recovery,
particularly when needing pure populations, and, if necessary, delivered under sterile
conditions. Cell sorting enables the recovery of specific cell populations for downstream
applications such as cell culture, genomic analysis, and further functional studies. As
shown in Figure 1, cell sorters can separate multiple populations of cells simultaneously.
Here, four sorted populations are shown, but it is possible to sort six or eight populations
depending on the instrument available. When sorting cells, it is critical to ensure that
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the medium in which cells are deposited is compatible with the metabolic support of the
sorted population.
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Figure 1. A general outline of a flow cytometer showing a sorting instrument capable of isolating
individual cells. On the right side of the figure are examples of possible analyses.

Regardless of all the advancements in flow cytometry since its inception, the basic
principles have remained essentially unchanged for over 60 years, and the technique has
primarily focused on fluorescence-based analysis. Flow cytometry traditionally relies on
detecting fluorescence signals emitted by fluorochrome-labeled probes in order to analyze
cellular properties and identify specific cell populations. This fluorescence-based approach
has been fundamental in characterizing various biomolecules, including antibodies, nu-
cleic acids, and intracellular markers, providing valuable insights into cellular function,
differentiation, and disease states.
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While fluorescence-based detection has been the cornerstone of flow cytometry, recent
developments have expanded the technique’s capabilities. For instance, the introduction
of spectral flow cytometry has enabled the simultaneous detection of a broader range
of fluorochromes, addressing the limitations imposed by the spectral overlap [16–18].
In addition, the development of mass spectrometry technology has brought about the
emergence of mass cytometry, also known as CyTOF. This innovative approach enables
cells to be labeled with metal isotopes instead of fluorochromes, leading to the measurement
of a significantly higher number of parameters [19].

Indeed, flow cytometry (“measurement of cells”) is not limited to fluorescence
alone. Researchers have explored alternative detection methods, such as surface plasmon
resonance (SPR) [20], surface-enhanced Raman scattering (SERS) [21,22], and electrical
impedance [23–25], to complement or augment fluorescence-based analysis. These hybrid
detection approaches aim to expand the range of analytes that can be measured and offer
additional insights into cellular properties beyond fluorescence signals alone.

It is important to distinguish between analysis and sorting techniques because some
analysis methods cannot be directly combined with sorting based on specific properties of
the cells, fixation methods, employed labels, or analysis techniques. Instrument constraints,
time limitations, and the potential for sample damage contribute to this distinction. As
a result, sorting methods primarily rely on fluorescence-based detection because of the
sensitivity of fluorescence and the vast array of fluorescent-conjugated antibodies that are
commercially available.

In contrast, SPR methods, although non-destructive to samples, currently lack instru-
ments that allow for the sorting of cells based on specific properties of interest. SPR is
primarily used for label-free analysis of cellular interactions and molecular binding events.

With CyTOF methods, the atomization and ionization of cells during analysis make it
currently infeasible to recover living cells after the analysis process; however, the relatively
high parameter space and lack of needing to deal with spectral overlap since fluorescence
is not used are clear advantages in mass cytometry.

In this review, we aim to discuss the aforementioned advancements and future devel-
opments in flow cytometry. We will delve into the improvements made in fluidic systems,
including miniaturization and the integration of microfluidic technologies. Additionally,
we will explore the enhancements in detection systems, optics, and software that have
paved the way for more sophisticated and precise analyses.

Furthermore, we will examine the advancements in fluorescence dyes, focusing on
those that exhibit improved stability, reduced spectral overlap, and increased quantum
yield. These developments have expanded the range of detectable parameters and enabled
more comprehensive and multiplexed analysis of cellular characteristics.

The utilization of fluorescence-coded beads and artificial compartments, such as
emulsion systems and droplet microfluidics, will be discussed in relation to their ability to
expand the applications of flow cytometry to secreted molecules, cytokines, and enzymes.
We will explore the advantages and challenges associated with these novel approaches,
highlighting their potential to advance research in various fields.

Moreover, we will mention the ongoing developments in data analysis techniques,
including advanced algorithms, machine learning, and high-dimensional analysis methods.

Lastly, we will explore future directions and potential developments in flow cytome-
try. This will encompass emerging technologies such as spectral flow cytometry and the
integration of flow cytometry with other complementary omics techniques. We will discuss
the implications of these advancements in expanding the capabilities of flow cytometry
and their potential impact on understanding cellular dynamics, disease mechanisms, and
therapeutic interventions.

Through this comprehensive review, we aim to provide an overview of the recent
advancements, current challenges, and future directions in flow cytometry, highlighting
its potential to drive further breakthroughs in biomedical research, diagnostics, and
personalized medicine.
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4. Polychromatic vs. Spectral Cytometry

There are currently two forms of fluorescence-based flow cytometry in use. One has
been the mainstay of the field for the past 45 years and is generally termed polychromatic
flow cytometry. It is based on the principle of employing a dedicated sensor for each dye.
The alternative is spectral flow cytometry, first implemented practically in 2004 [16–18,26–28],
which uses a large bank of detectors to collect all of the fluorescence signals across the entire
spectrum (Figure 2). Spectral cytometry has been more recently reviewed [28–30]. Spectral flow
cytometry offers distinct advantages by utilizing multiple sensors to capture the complete
fluorescence signals from all dyes, without the need to isolate each label’s dominant spectral
band by an individual detector [31,32]. This approach involves employing a greater number
of detectors compared to the number of utilized dyes, resulting in multiple representations
of each label within the dataset.
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Figure 2. A comparison between polychromatic cytometry (A) and spectral cytometry (B). In (A), the
fluorescence from each dye is collected by a single detector, while in (B), many detectors are used to
collect the entire spectrum of all dyes, enabling a process called spectral unmixing that can identify
each dye. There are many advantages to the spectral concept.

The technical challenge of polychromatic cytometry lies in the overlapping signals of
dyes with broad spectra and the difficulty in separating these signals [33]. The sensor output
is inaccurate in reporting the actual signal from a fluor, resulting in incorrect reporting of
the abundance of the labeled marker. The only solution is to compensate for the spectral
overlap through mathematical estimation of the actual values. Compensation procedures
are frequently carried out manually rather than utilizing automated algorithms, leading to
inconsistencies. This creates difficulties when attempting to reproduce the same assay on
separate occasions with complete accuracy. While spectral flow cytometry still faces issues
with spectral overlap due to the complexity of spectral unmixing, it is always performed
in an automated and, consequently, reproducible fashion. Paradoxically, this enhances
the robustness of the data analysis and ensures that the assays are performed consistently.
Typically, the unmixing process is assisted by a database containing each dye’s unique
spectrum, allowing the determination of the component parts of the mixed signal.

5. Applications of Flow Cytometry

Before delving into the numerous applications of flow cytometry, it is essential to
emphasize the distinction between analysis and sorting capabilities. In terms of analysis,
flow cytometry enables the recording of many readouts for each individual cell and across
multiple samples. On the other hand, cell sorting involves the specific isolation and
recovery of the desired cell population from the rest.

Flow cytometry is a versatile technology with a wide range of applications. It is
commonly used for immunophenotyping, which involves identifying cells based on their
surface or intracellular markers, as well as for viability assays and cell cycle analysis.
However, flow cytometry can also be used for more specialized applications, such as
studying ion fluxes, analyzing cytokines, and engineering proteins.
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Flow cytometry’s remarkable strength lies in its capacity to analyze vast populations
of individual cells, rendering it an invaluable tool for unraveling cellular heterogeneity
and identifying rare cell subsets. This capability to examine cells at a single-cell level
empowers researchers to discern and characterize distinct subpopulations, shedding light
on the intricacies of cellular diversity and elucidating the significance of rare cellular events
within disease processes or developmental pathways. Furthermore, flow cytometry sorter
instruments provide the added functionality of physically sorting cells from any subgroup,
expanding the realm of possibilities in cell isolation and downstream applications.

In the following sections, we will explore these applications in detail, highlighting
the significance of flow cytometry in advancing our understanding of cellular biology,
disease mechanisms, and therapeutic interventions. We will also discuss emerging trends,
technological advancements, and future prospects that further enhance the potential of
flow cytometry in various research areas. Through this exploration, we aim to underscore
the versatility and impact of flow cytometry as a powerful tool for cell analysis, sorting,
and gaining deeper insights into complex biological systems (Figure 3).
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5.1. Cell Phenotyping

Immunophenotyping is a prominent application of flow cytometry that involves the
identification and characterization of immune cell populations based on their surface or
intracellular markers.

Flow cytometry enables the precise identification and classification of immune cell
populations, including T cells, B cells, natural killer (NK) cells, dendritic cells, monocytes,
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macrophages, platelets, and granulocytes. By utilizing specific combinations of fluorescent-
labeled antibodies targeting unique cell markers, researchers can discern and quantify
various immune cell subsets within a heterogeneous population. By analyzing the intensity
of fluorescence associated with specific markers or in spectral cytometry and acquiring the
complex spectroscopic signatures of any cell, we can evaluate changes in marker expression
during immune cell activation, differentiation, or disease progression. This profiling helps
in understanding the functional properties and phenotypic characteristics of immune
cell subsets. This is instrumental in diagnosing and monitoring various hematological
disorders, such as leukemia and lymphoma. By analyzing specific surface markers or
abnormal antigen expression patterns on malignant cells, flow cytometry assists in subtype
classification and disease monitoring to guide appropriate treatment strategies.

Immunophenotyping is crucial in monitoring immune responses in research studies as
well as in clinical trials. It enables the assessment of immune cell activation, proliferation,
and functional changes in response to stimuli, vaccines, or therapeutics. This information
contributes to understanding immune mechanisms, evaluating treatment efficacy, and de-
veloping immunotherapeutic strategies. With the advent of monoclonal antibodies [34] and
the subsequent development of specific T cell clones by Schlossman [35] in conjunction with
Ortho Diagnostics, commercial monoclonal antibodies demonstrated perfect integration
into flow cytometry. Subsequently, the new approaches to flow cytometry instrumenta-
tion by Herzenberg [36–39], the subsequent development of 2-color fluorescence (using
polyclonal antibodies) [40], and eventually, the identification and sorting of conjugated
monoclonal antibodies [41] facilitated the development of the vast numbers of monoclonals
available today.

The application of flow cytometry extends beyond immunophenotyping to the pheno-
typing and characterization of various non-immune cell populations. It plays a crucial role
in identifying and isolating stem cell populations, such as hematopoietic stem and progeni-
tor cells, based on specific surface markers like CD34 and CD133 [42–46]. Additionally, flow
cytometry facilitates the characterization of cancer cells, including cancer stem cells, by
staining them with specific markers to assess antigen expression and investigate therapeutic
targets and resistance mechanisms. In neurobiology, flow cytometry is employed to analyze
specific neuronal subtypes, glial cells, and neural progenitor cells using surface markers
like CD133, CD56, and neuronal markers. Moreover, flow cytometry aids in the phenotypic
analysis of endothelial cells involved in vascular development, angiogenesis, and vascular-
related diseases. By examining surface markers, researchers can identify endothelial cell
populations, investigate their function, and study their activation in disease states. Flow
cytometry also enables the phenotypic characterization of mesenchymal cell subsets, includ-
ing mesenchymal stem cells and fibroblasts, by utilizing markers such as CD90, CD73, and
CD105. Additionally, it can be applied to analyze epithelial cell populations, identify and
characterize different subtypes, study the epithelial–mesenchymal transition (EMT) [20],
and investigate cellular dynamics in tissue development and disease progression.

Flow cytometry has also emerged as a valuable tool for the phenotyping of micro-
bial cells, enabling the rapid analysis and characterization of various microbial popula-
tions [47–50]. It can be used to identify and classify different bacterial species based on
their phenotypic characteristics. By using fluorescent dyes or antibodies targeting specific
microbial markers, researchers can estimate the abundance of different microbial species or
cell types present in a sample, providing insights into population dynamics and microbial
community composition.

5.2. Viability Assays

Flow cytometry enables the quantitative measurement of viable and non-viable cells
within a population, as first shown by Jovin’s group [51]. By using fluorescent dyes that
selectively label either live or dead cells, flow cytometry can provide precise and reliable
viability measurements, facilitating the determination of cell viability percentages. In addi-
tion, flow cytometry offers high sensitivity for viability assays, capable of detecting even
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subtle changes in cell viability [52–56]. It can discriminate between viable, apoptotic, and
necrotic cells based on specific markers or dyes, providing a more detailed understand-
ing of cell health and status. It also allows for multiparameter analysis, simultaneously
assessing cell viability and other cellular characteristics. By combining viability dyes with
markers for cell surface antigens, intracellular proteins, or functional assays, researchers can
obtain comprehensive information about cell viability in the context of specific cell types or
experimental conditions. Different cell types may exhibit variations in their responses to
viability dyes or markers due to inherent biological differences. Flow cytometry enables
researchers to tailor viability assays to specific cell types of interest, enhancing the accuracy
and relevance of the results. By repeatedly analyzing samples at defined time intervals,
researchers can track viability alterations in response to various stimuli, treatments, or
environmental conditions, providing valuable insights into cell behavior and response
kinetics. As assessments are performed at the single-cell level, flow cytometry provides
information on the viability status of individual cells within a population. This capability is
particularly valuable when studying heterogeneous cell populations or investigating rare
cellular events, enabling researchers to identify and analyze subpopulations with distinct
viability characteristics.

Viability assessment using flow cytometry and other methods relies on the use of
various small-molecule dyes with different hydrophobic properties, some of which can
penetrate intact cellular membranes while others cannot. The most commonly used dyes
for viability detection, such as propidium iodide and 7-aminoactinomycin D, bind to DNA
but can only enter cells with compromised membranes, rendering dead cells fluorescent.
Although these dyes remain widely used, newer fluorescent molecules with diverse spectral
properties have been developed to enable better multiplexing with other assays while still
adhering to the same underlying principles.

An alternative approach utilizes annexin V, a protein with strong binding affinity for
phosphatidylserine, which becomes exposed on the outer surface of the plasma membrane
during the early stages of apoptosis [57–59]. In flow cytometry, fluorescent-labeled annexin
V is combined with viability dyes to differentiate viable cells (annexin V-negative) from
apoptotic cells (annexin V-positive). This assay, akin to antibody-based techniques, employs
fluorescent-labeled annexin V as a probe for detecting apoptotic cells. The versatility of
annexin V conjugation with various fluorescent dyes provides a wide range of color
options for fluorescence detection in this assay. The annexin V/PI assay is widely used to
differentiate between apoptotic and necrotic cells. In this assay, cells are simultaneously
labeled with annexin V and propidium iodide.

There is considerable variability in antigen abundance after fixation. Some markers
exhibit almost normal presence when cells are phenotyped after fixation [60]; in some cases,
the total intensity of each marker is reduced while the autofluorescence is increased [61].
On the other hand, several studies have shown that the expression of antigens is either
decreased or completely lost after fixation [62]. Clearly, if cells are to be fixed and stored
prior to analysis, it is critical to check each and every antigen of interest pre- and post-
fixation.

Lastly, viability studies also employ cell-permeant fluorescent dyes that can enter live cells
but only become fluorescent upon interaction with intracellular enzymes [63–65]. Examples
include calcein AM, carboxyfluorescein diacetate (CFDA), and fluorescein diacetate (FDA).
These dyes are taken up by viable cells and converted by intracellular esterases into their
fluorescent forms. As enzymatic activity is crucial, the choice of available dyes for this type
of assay is limited, typically utilizing the fluorescein channel for detection. By utilizing
these dyes and assays, viability assessments using flow cytometry enable the discrimination
of live, apoptotic, and necrotic cell populations, providing valuable information about cell
health and integrity.
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5.3. Cell Cycle Analysis

From the earliest days of flow cytometry, cell cycle analysis became a valuable applica-
tion [66–68]. The key is the relationship between some specific fluors and the amount of
nucleic acid. Several dyes have been identified as binding nucleic acids, such as propidium
iodide (PI), Hoechst, DAPI, 7-aminoactinomycin D, mithramycin, ethidium bromide, and
others. Some dyes have more specificity to RNA, such as thiazole orange and thioflavin.
PI is also known as a stoichiometric dye that intercalates between bases. Because of this,
there is a stoichiometric relationship between the amount of dye and the amount of DNA.
Because of this property, PI can be used to accurately quantify the amount of DNA, and
when carefully run through a flow cytometer, even small changes in nucleic acid content
can be easily identified.

There are a significant number of approaches for combining flow cytometry with
cell cycle analysis. For example, the DNA/Ki67 assay can combine phenotype selection
with cell cycle analysis [69] for monitoring p53 cell cycle arrest [70], evaluating anticancer
activity [71] and sperm cell fractionation [72], and determining multidrug resistance [73],
among many other application. It is highly recommended to refer to Ligasova’s review for
a comprehensive analysis of this subject [74].

5.4. Ion Flux Assays

Calcium, acting as a critical secondary messenger, plays a vital role in numerous
cellular signaling pathways. It is particularly important in immune cell activation, including
T cells [75], B cells [76], and natural killer (NK) cells [77]. Additionally, calcium signaling
is involved in mast cell degranulation, a crucial process in allergic reactions and immune
responses [78]. Moreover, calcium flux is essential for neuronal excitability, synaptic
transmission, and neurotransmitter release [79]. Given its significance, the study of calcium
flux holds immense importance in various medical and drug discovery applications.

Flow cytometry, with its ability to analyze individual cells within a heterogeneous
population, offers a high-resolution assessment of calcium flux dynamics at the single-cell
level. This empowers researchers to identify subpopulations exhibiting distinct calcium
signaling patterns and to explore cell-to-cell variability within a sample. Furthermore, flow
cytometry allows for multiparametric analysis by integrating calcium flux assessment with
other markers or functional assays.

While monitoring calcium flux via flow cytometry requires specific tools, it offers
unique advantages. Early measurements of cellular degranulation were determined by
flow cytometry using calcium ionophore A23187 [80]. Valet also measured intracellular
calcium by flow cytometry [81]. Fluorescent dyes such as fluo-3 [82,83] and indo-1 are
commonly used for calcium flux determination by flow cytometry [84,85].

In mammalian cells, alterations in intracellular calcium concentration are among
the most rapid responses to various stimuli, sometimes occurring within nanoseconds.
However, recording these rapid calcium responses poses a challenge due to gaps in the
data caused by the addition of compounds, resulting in the loss of detailed information.
To address this, modifications have been made to flow cytometers to enable continuous
measurement while compounds are added to the sample [86].

Although Ca2+ flux measurement is one of the most common applications, other ions
like magnesium [87], potassium, sodium [88], and hydrogen [89] can also be monitored
using similar techniques.

5.5. Cellular Function Measurement

Because flow cytometry analyzes single cells, it is possible to obtain very high-quality
data on an entire population of cells from a functional perspective. Some of the earliest
measurements were of cellular esterases [90]. For example, a number of studies defined
the oxidative potential of granulocytes using reactive dyes that respond to changes in
oxidation state. For example, hydroethidine was used to demonstrate neutrophil respiratory
burst [90]; similarly, monocyte functions have been demonstrated by flow cytometry [90].
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Other probes, such as dichlorofluorescein diacetate, have been used for phagocyte function
studies [90–93]. Some studies on cell function could only be performed by flow cytometry
because of the very few cells available, such as crevicular neutrophils [94]. Studies on
phagocytosis by flow cytometry were begun in the early 1980s [95–99], and a variety of
approaches have been developed since [100–103].

5.6. Protein Engineering

Flow cytometry and sorting have not traditionally been among the most common tech-
niques used in protein engineering. However, in recent years, there has been increasing
utilization of these techniques in the field. Several reports have highlighted the usage of
florescence-activated cell sorting (FACS) systems for protein evolution studies on enzymes
such as cytochrome P450 [104], glucose oxidase [105], chitinases [106], cellulases [107,108],
peroxidases [109,110], esterases [111], transferases [112], beta galactosidases [113], thiolac-
tonases [114], and a few other enzymes.

Protein engineering has emerged as a powerful tool for tailoring proteins to meet
specific functional requirements. Conventionally, directed evolution approaches have
been employed, involving the introduction of mutations (random or specific) at the gene
level to create libraries consisting of thousands to millions of individual protein variants
(Figure 4A). The screening of these libraries for desired properties typically relies on colony
picking and microtiter plate assays. However, this process is slow, expensive, generates
a substantial amount of plastic waste, and requires a significant amount of consumables.
Thus, coupling the screening process with a high-throughput technique such as FACS offers
significant advantages. FACS enables the analysis of up 108–109 clones per day and the
sorting of clones exhibiting the desired properties.
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evolution compatible with flow cytometry.

One limitation of applying flow cytometry in protein engineering is the need to
maintain the connection between the genotype and the phenotype throughout the entire
process. In the classical screening approach, this connection is preserved within individual
wells of a microtiter plate, where a single cell expressing a single mutant protein is assayed.
In flow cytometry, new methods must be employed to ensure this connection. One strategy
involves designing a fluorescence assay in which the product of the enzymatic reaction
being improved either covalently labels the cells [110,115,116] or remains trapped within the
cells producing the respective mutant enzyme [111,112,117,118]. However, this approach
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has limitations, as developing an assay with the desired properties that accurately reflects
the properties of the enzyme being improved can be challenging in some instances.

An alternative approach involves the creation of artificial compartments surrounding
individual cell clones during the assay (Figure 4B). Typically, these compartments take
the form of water-in-oil-in-water double emulsions since the sheath fluid of the flow cy-
tometer consists of water-based buffers, and the compartments need to be compatible
with the aqueous phase. While a few successful applications of this approach have been
reported [106,107,113,114,119], the emulsions generated using conventional methods tend
to be highly heterogeneous. As a result, there is a growing trend towards adopting microflu-
idic devices as they offer more uniform emulsion and compartmentalization protocols.
Additionally, since analysis and sorting can also be performed on microfluidic chips, there
has been a tendency lately to move away from using flow cytometers for these tasks.

5.7. Bacterial Cell Sorting

The application of flow sorters for bacterial isolation and detection is fascinating, as
rapid detection and sorting of single bacterial cells in a suspension is possible [120,121]
compared to time-consuming conventional agar plating-based detection methods. Bacterial
cells can be sorted at high throughput and collected in the desired outlet for further
analysis. Despite the high-performance capabilities of cell sorters, their application in
microbiology has been limited. This is mainly due to the small size of microorganisms,
which makes it difficult to differentiate them from cell debris or background particles in
the media [122], and also in some cases due to pathogenicity. In addition, the similarity in
size and shape among different subpopulations of bacteria makes it highly challenging to
sort them efficiently [123]. Another major problem is linked to the concentration of bacteria
in the sample. Gating the population of interest is difficult, which leads to inconsistent
sorting when the concentration of bacteria is very low [121]. If the starting sample is not
pure or there is a need to separate sub-populations of organisms, multiple sorting and
enrichment steps may be needed, which will further affect cell recovery [121]. Even though
whole blood can be directly used, usually red blood cells are lysed before introduction to
the cell sorter [124]. However, more efficient sample preparation steps may be needed if
low concentrations of bacteria are to be detected in blood [125,126]. By combining staining
and scatter data, Irene et al. in 2007 showed that it was possible to detect bacteria as low
as 1 CFU/mL in cell culture production medium [127]. However, high concentrations
of bacterial protein or DNA were needed for downstream analysis. The recommended
concentration of sorted cells for protein analysis is around 109 cells/mL [122] and about 103

or 104 cells for nucleic acid analysis [128]. Another potential issue is that antibodies that are
specific to bacterial strains are often not available, which limits detection to a few bacterial
strains. Nowadays, proteomic strategies are gaining interest for detecting biomarkers that
are specific to bacterial species and strains [129,130].

Other factors that restrict the applicability of cell sorters for bacterial detection and
sorting are mostly related to the sorter hardware capabilities themselves. In the early days
of flow cytometry instruments, a limited number of lasers and detectors restricted the use
of only one or two types of fluorescent dyes at a time [131]. With the development of more
recent instruments, the number of lasers and detectors has increased, allowing multiplexing
capabilities [18]. Some of the examples of modern cell sorters with multiplexing include:
Thermo Fisher’s Bigfoot spectral cell sorter (9 lasers and up to 64 detectors), BD FACSAria
III sorter (6 lasers and 20 detectors), Sony MA900 Cell Sorter (4 lasers and 14 detectors),
and Beckman Coulter’s MoFlo Astrios EQ (7 lasers and up to 44 detectors), among oth-
ers [132]. Regardless of these developments, sorting bacteria for clinical applications is not
particularly easy, especially if the bacteria are pathogenic and can cause health risks to the
users. This demands proper management of samples and waste.

Conventionally, pathogenic bacteria are handled inside a biosafety level 2 (BSL 2)
hood, which ensures safe handling. Operating and sorting pathogenic organisms using
flow cytometers requires maintaining the machine inside a BSL 2 hood [133]. The problem
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is that many sorters do not fit inside a BSL 2 hood, and handling flow sorters inside the
hood can be exhausting to the user and makes service complicated. This has prevented
the use of flow sorters for clinically relevant pathogens. One way to solve this problem
is by incorporating biosafety features into flow sorters. The use of regular Class 2 hoods
with HEPA filters was used with cell sorters from BD Biosciences, such as FACStar and
FACSVantage, using FACSDiVa software [133]. Recently, Thermo Fisher’s Bigfoot spectral
cell sorter was released into the market with advanced safety features [134]. Bigfoot is a
spectral cell sorter that uses the spectral signatures of the dyes for real-time unmixing and
sorting of cells of interest [134]. It is equipped with special biosafety features similar to a
BSL2 hood with a HEPA filter for aerosol and biocontamination management. Six samples
can be maintained simultaneously in a separate sample chamber that limits exposure of the
sample to the user when running the machine. A separate sorting chamber is provided in
which sorting can be performed only when the door is closed, preventing splashing of the
sample on the user. These features facilitate the safe handling of pathogens, and the Bigfoot
sorter can be therefore operated within standard laboratory settings. In addition, the
Bigfoot cell sorter has the capability of handling up to 100,000 cells/second in multi-stream
sorting mode, demonstrating high-throughput abilities [134]. The combination of spectral
sorting and biosafety features can further enable the handling of pathogenic organisms
with safety.

Since the sorting of pathogens is relatively recent, we have included some material
in this review from work within our laboratory. To demonstrate bacterial sorting using
the Bigfoot cell sorter, we sorted and deposited bacteria at desired spots on agar plates.
Using the 96-well plate map available in Bigfoot software (Figure 5A), we deposited
single non-pathogenic Salmonella enteritis cells on Xylose Lysine Tergitol-4 (XLT4) agar
and Salmonella Shigella (S.S) agar. Both of these agars are selective agars that permit the
growth of Salmonella species [135,136]. The agar plates were incubated at 37 ◦C for 24 h.
Figure 5B shows the colonies formed at the deposited spots on both agar plates. It can be
observed that some spots did not show colony formation, which could be attributed mainly
to the mathematical limitations of Poisson’s distribution, which reflects the probability
of a droplet encapsulating a cell [137]. This rapid, precise, and controlled deposition of
cells at the desired spots opens up new possibilities for tracking the growth of a single
bacterial cell as it develops into a colony. In addition, the biosafety features in the Bigfoot
sorter enabled the handling of pathogenic organisms without needing special facilities. It
is important to note that more optimization is needed to establish a safety protocol and
prevent contamination before handling pathogenic organisms using Bigfoot.
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5.8. Droplet Microfluidics

Droplet microfluidics is a relatively new field that focuses on the formation, manip-
ulation, and analysis of discrete droplets containing cells or DNA in picoliter volumes.
T-junctions [138–140] and flow focusing [141–143] are the most common approaches em-
ployed in microfluidic systems to create emulsion compartments, each having specific
advantages [144] in terms of droplet size control, throughput, and functionality [145].
These techniques enable the precise formation of water-in-oil or oil-in-water droplets. Once
formed, the droplets can be manipulated and processed within the microfluidic system
through operations like merging [146–148], splitting [149–151], analysis, and sorting [152,153].

Droplet microfluidics offers several advantages over traditional bulk-scale methods.
Firstly, it enables the handling of small volumes of reagents, reducing consumption and
waste. Secondly, the compartmentalization of reactions into individual droplets allows for
high-throughput analysis and parallelization of experiments, enabling rapid screening and
optimization of reaction conditions. Additionally, droplet microfluidics provides excellent
control over reaction kinetics, facilitating precise timing and monitoring of reactions. The
small droplet sizes also promote efficient mixing and heat transfer, leading to enhanced
reaction performance and reduced reaction times. The applications of droplet microfluidics
span a wide range of fields, including biology, chemistry [154,155], material science [156,157],
and medicine [158,159]. In biology, droplet microfluidics enables single-cell analysis, high-
throughput screening of biomolecules, studies of cellular heterogeneity, and drug discovery.

Flow cytometry analysis is a powerful technique for studying single cells, providing
valuable information about various parameters. However, its measurements are limited to
molecules that are directly connected to the cells, such as surface or intracellular markers.
This limitation restricts the ability to study molecules that are secreted by cells or produced
by DNA molecules but are not physically attached to them.

Droplet microfluidics, on the other hand, offers a novel approach to overcome this
limitation. Encapsulating cells or DNA within individual droplets creates discrete com-
partments that enable the analysis of compounds that are released or generated by the
encapsulated entities. The droplets act as miniaturized reaction vessels, preserving the
connection between the molecules of interest and enabling their characterization even when
they are not directly connected to the cells or DNA.

Additionally, the application of droplet microfluidics expands to DNA analysis [160,161].
Encapsulating DNA molecules within droplets enables the detection and quantification of
nucleic acids as well as the characterization of enzymatic activities or gene expression profiles.

Some valuable applications of droplet microfluidics that are not yet widely used
include the selection of stable cell lines and high protein producers for industrial manufac-
turing purposes, offering a more efficient and rapid alternative to traditional methods such
as microtiter screening and cloning by limiting dilution.

Generating a vast number of droplets containing single cells creates a high-throughput
screening platform. Each droplet acts as an isolated microscale bioreactor [162,163], pro-
viding a controlled environment for cell growth and selection. This setup enables the
parallel evaluation of numerous clones, significantly reducing the time and effort required
to identify the desired traits, such as stable production of a specific product or resistance to
specific conditions.

Similarly, droplet microfluidics has proven to be highly beneficial in the field of protein
engineering [164,165]. In protein engineering, the generation and screening of large gene
libraries containing millions of variants is a crucial step to identify improved protein proper-
ties such as enhanced stability, altered specificity, or increased activity. Traditional methods
of library screening are time consuming and labor intensive, as previously discussed.

By leveraging droplet microfluidics, entire gene libraries can be encapsulated within
droplets, with each droplet containing a unique gene variant. This allows for the paral-
lel screening of many variants within a single experiment. The droplets act as isolated
reaction compartments, facilitating the expression of encoded proteins and subsequent
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functional assays. This approach dramatically speeds up the screening process, enabling
the evaluation of tens of millions of protein variants in a single day.

Droplet microfluidics has proven to be successful in directed evolution campaigns
for screening a range of enzymes, including cellulases [166], glucose oxidase [167], al-
dolases [168], xylanases [169] DNA polymerases [170], transaminases [171], and a few
others.

Most of the assays reported are based on fluorescence-assisted droplet sorting (FADS).
In the last five to ten years, a couple of new detection methods have been adapted for droplet
microfluidics analysis and sorting. These include detection based on absorbance [172],
mass spectrometry [171,173], electrochemistry [174], Raman spectroscopy [175], and even
NMR [176]. The advantages and limitations of these methods have been reviewed else-
where [164]. Overall, the integration of droplet microfluidics with advanced analytical
techniques, such as the ones described above, offers unprecedented capabilities in protein
engineering and single-cell characterization. One additional advantage of microfluidics
systems over classical flow cytometers is the utilization of single-use fluidics. Chips can be
designed as disposable devices, eliminating the need for cleaning and reducing the risk of
contamination, thus enabling the use and screening of BSL-3 and BSL-4 pathogens.

Droplet microfluidics, despite its numerous advantages, is not without its drawbacks.
One notable limitation is the analysis and droplet generation speed, which typically ranges
from 1000 to 4000 Hz and can sort up to 1000 events per second. In comparison, classical
flow cytometry instruments can achieve much higher analysis speeds, reaching up to
70,000 events per second.

An effective strategy involves the integration of microfluidic technology for generating
double emulsions, which are subsequently analyzed and sorted using conventional flow
cytometers and sorters [177,178]. This approach combines the advantages of microfluidics
in creating uniform compartments with the rapid processing capabilities and detection
methods provided by flow cytometry systems.

Furthermore, the availability of instruments designed specifically for droplet microflu-
idics is another limitation. While droplet microfluidics has gained significant attention
and interest, the number of commercially available instruments specifically optimized
for droplet-based analysis is relatively limited. Even within research laboratories, most
available instruments are often designed for basic functionalities such as one or two flu-
orescence detection or sequencing capabilities. This limited availability of specialized
instruments can restrict the scalability and accessibility of droplet microfluidics for re-
searchers in specific applications.

Nevertheless, it is essential to note that ongoing advancements in droplet microfluidics
are continually addressing these issues in order to overcome current limitations.

The adaptation of detection systems designed for flow cytometers into microfluidic
chips promises to unlock the full potential of droplet microfluidics, making it an unstop-
pable and indispensable technique in biology research labs. It enables enhanced analysis,
improved throughput, and expanded applications, empowering researchers to delve deeper
into the complexities of cellular systems and accelerate scientific discoveries.

5.9. Next-Generation Bioengineered Biologics

The bioengineered drug market, excluding COVID-19 vaccines, had a value of $327 bil-
lion in 2021 and is projected to reach $521 billion by 2027 [179]. This growth is predom-
inantly driven by therapeutic proteins, accounting for 65% of the market, followed by
vaccines at 20% and other products at 15%. Monoclonal antibodies (mAbs) form a promi-
nent product group due to their versatility in binding to a wide range of disease targets
and their amenability to protein engineering modifications [180]. mAbs serve as reagents,
diagnostics, and therapeutics, with OKT3, a murine CD3-specific transplant rejection drug,
being the first FDA-approved therapeutic mAb in 1986. To date, over 130 monoclonal
antibodies have received regulatory approval [181,182]. The pipeline for mAbs is robust,
and advancements in protein engineering have facilitated the production of modified
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antibody molecules, including variations in size and the development of chimeric and
humanized antibodies. The high specificity and low immunogenicity of antibodies have led
to their widespread use in diagnosing and treating life-threatening diseases. The antibody
market is driven by unmet medical needs, the rising incidence of various diseases, and the
expanding global population. Notably, significant market opportunities exist in developing
countries where such therapies are currently unaffordable. To address the challenge of
manufacturing costs, faster identification of high-affinity target-specific antibodies as well
as improvements in production methods are crucial.

State-of-the-art technologies such as single-cell isolation have revolutionized the dis-
covery and development of antibodies, addressing the limitations of traditional meth-
ods [183]. Instead of relying on time-consuming and expensive processes involving the
injection of disease targets into mice, isolation of B cells, and hybridoma generation and
screening, cutting-edge techniques have emerged. Single B cell repertoire analysis and
clonal expansion-guided identification via next-generation sequencing (NGS) have enabled
the isolation of high-affinity neutralizing antibodies by cloning immunoglobulin genes
directly from human survivors [184,185], eliminating the need for mouse immunization and
subsequent humanization. By identifying and recruiting individuals who have recovered
from infectious diseases like HIV, influenza, COVID-19, and Zika, human B cells can be
directly isolated. These cells have undergone in vivo maturation, significantly increasing
the likelihood of rapidly identifying high-affinity and neutralizing antibodies. This method,
which does not require prior knowledge of antibody structure, leverages real-world patient
and epidemiological data to identify and engage promising donors [186]. However, this
approach is costly and time consuming, restricting analysis to only the most expanded
clones, without considering rare clones that primarily reside in germinal centers, which
may bind and neutralize the target antigen more efficiently. To overcome these challenges, a
promising new strategy could involve coupling single-cell isolation with functional screen-
ing using flow cytometry, MACS, or microfluidics, thus reducing development costs and
eliminating failed candidates.

Primary human B cell isolation from peripheral blood presents challenges in terms
of sample availability, cell contamination, and low yields. Although methods like FACS,
MACS, and microfluidics have been utilized to enhance purity and yield, they can nega-
tively impact cell viability and functionality, requiring further improvement [187]. One
potential solution lies in leveraging droplet microfluidics to optimize antibody discovery
processes [188]. This can be achieved by employing standardized data-rich approaches and
highly-integrated workflows, focusing on the development of novel functional assays while
ensuring the preservation of B cell viability. Rather than utilizing the entire B cell popula-
tion, the separation of pan B cells, memory B cells, and plasma cells using flow cytometry,
MACS, or microfluidics based on surface markers (CD19, CD27, and CD38) should be
considered [189]. These B cell subpopulations can then be stimulated with target antigens to
activate and induce the proliferation of rare memory B cells, facilitating affinity maturation
through activation-induced cytidine deaminase (AID) and somatic hypermutations (SHM),
as described in [190–192]. Lanzavecchia’s work also revealed that T cell-produced IL-10
and IL-21 regulate the differentiation of B cells into antibody-secreting plasma cells.

The isolation of viable and functional B cells using FACS, MACS, or microfluidics
poses challenges in antibody discovery workflows. To address these challenges, recent
advancements in microfluidics have combined single-cell isolation with droplet-based
FACS/microfluidics techniques, ensuring the preservation of correct heavy/light-chain
pairings during functional screening and next-generation sequencing (NGS). Two auto-
mated platforms, the Berkeley Lights Beacon and the Sphere Fluidics Cyto-Mine systems,
have been introduced to enable high-throughput screening of thousands to millions of
B-cells within a short timeframe [193]. These platforms offer the ability to analyze and
manipulate individual B cells [194,195] and can be seamlessly integrated with downstream
workflows, such as cell culture, functional assays, and sequencing. Cyto-Mine employs a
picodroplet-based platform, encapsulating single cells in picoliter-scale droplets containing
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culture medium, assay reagents, and fluorogenic substrates [195]. The system utilizes
fluorescence-activated droplet sorting (FADS), in which droplets containing the cells of
interest are sorted based on their fluorescence signals, enabling high-throughput sorting
and recovery of selected cells within a microfluidic sorting chip [183].

Droplet microfluidics has become an established technology in supporting antibody
discovery workflows, although continuous improvements are being reported. It involves
the creation of water-in-oil emulsions using microfluidic techniques, generating numerous
spatially separate reaction compartments at a small scale. Each droplet, containing suitable
media to maintain B cell viability and assay reagents, can be seeded with a single B cell. As
cells express antibodies, their detection is achieved through fluorescence binding assays.
Droplets containing cells can then be sorted without damaging the cells by flowing them at
high speed through additional microfluidic geometries. Droplets offer advantages such as
spatial separation, localized retention of secreted molecules, and isolation of cells from high
shear stress during rapid movement, making them highly relevant for antibody discovery.
However, droplet microfluidics also have limitations. Currently, all B cell screening plat-
forms are based on binding assays that allow only one or two parameters to be analyzed.
By combining a microfluidic chip design, droplet microfluidics and multiparameter detec-
tion systems should enable multiparameter analysis on the same single cell. The current
assessment of cell performance based on fluorescence measurements at a limited number
of wavelengths necessitates further post-sorting assessment and quantification, leading
to additional time required to identify the preferred cells in a population. Moreover, the
current throughput and capacity of microfluidics systems are insufficient and too slow to
assess an entire B cell repertoire in a single operation using conventional one-cell-at-a-time
approaches. Enhancing the throughput from 4 × 107 cells to 1 × 108 cells is a key chal-
lenge, along with finding better strategies to explore the full repertoire of B cells within the
droplet format, in order to achieve high precision and improve the overall specificity of the
process of identifying best-in-class ‘developable’ antibodies through data-rich screening in
a unified format ecosystem. Next-generation FACS, MACS, microfluidics, multiparameter
analysis, automation, and process standardization will play a crucial role in achieving
these objectives.

6. Flow Cytometry Data Science and Informatics

Sophisticated data processing informatics and machine learning techniques, all of
which fall under the broad umbrella of artificial intelligence (AI), are at the heart of modern
life sciences [196]. Recently, AI has captured substantial attention thanks to its impressive
progress in various fields, such as medical image recognition and analysis [197]. In the
context of cytometry, AI plays a crucial role in several areas, in particular, transforming
data analysis and interpretation [198–200].

This review does not aim to offer a detailed analysis of the growing field of AI and data
science in cytometry, given the numerous reviews already available on the subject [199,201–205].
However, we will highlight a few examples that demonstrate the significant current and
future impact of data science on this area.

6.1. Spectral Unmixing and Compensation

As already mentioned, the advent of spectral cytometry introduced complexities be-
yond the traditional polychromatic approach [31,206,207]. While simple matrix inversion
has been used for inter-channel compensation (unmixing) in traditional cytometry [33,208],
spectral cytometry requires more advanced methods [27]. Although matrix pseudo-inverse,
representing a closed-form solution to least-square minimization, seems like a natural
choice for spectral unmixing, following work in remote sensing [209], the implicit as-
sumption of Gaussian distribution for fluorescence measurement noise is fundamentally
flawed due to stochastic photon emission and the nature of photodetection [32]. Therefore,
alternative noise models, such as those accounting for Poissonian uncertainty or even
overdispersed models, need to be considered. These physical limitations open up oppor-
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tunities for creative data pre-processing approaches that incorporate various constraints
into unmixing models [32,210]. In the future, we will likely see the use of data-driven noise
models, which characterize the process of photon emission and collection via statistical
rather than mechanistic representations and generate unmixed data employing the latest
feature-learning techniques.

6.2. Data Pre-processing and Curation

Flow cytometry often involves the acquisition of large datasets from multiple samples,
sometimes performed over an extended period or across multiple facilities. Furthermore,
experiments may span a significant duration, resulting in varying data collection conditions.
To address these challenges, pre-processing software is employed to perform tasks such
as batch-to-batch normalization, outlier removal, and correction of other data acquisition
errors that may arise during cytometry experiments [198,211–215]. These automated data
pre-processing techniques ensure the quality and consistency of the data for subsequent
analysis.

6.3. Data Visualization

The substantial amount of data generated by flow cytometry requires effective vi-
sualization techniques for interpretation and decision making. Traditional 2D dot plots
displaying fluorescence intensities associated with markers of interest may be insufficient
in high-dimensional cases. Therefore, cytometrists increasingly rely on visualization ap-
proaches that incorporate data reduction techniques. Spanning trees, self-organizing maps,
and, most importantly, manifold learning models (including t-SNE, UMAP, PHATE, and
others) are commonly utilized to reveal complex relationships and structures within multi-
dimensional cytometry data, enabling a better understanding of cellular heterogeneity and
identification of distinct cell populations [216–220].

6.4. Automated Gating and Cell Population Identification

Historically, flow cytometry data interpretation heavily relied on trained experts who
manually gated and identified specific patterns of fluorescence co-occurrences associated
with particular cell types. However, this process is labor intensive, subjective, and prone
to inter-operator variability. Expectedly, the initial use of machine learning algorithms in
cytometry was for gating purposes [221–229]. As a result, multiple approaches have been
developed that directly or indirectly learn from expert-defined gates and consistently apply
gating criteria across large datasets. This route improves efficiency, reduces human bias,
and enhances reproducibility. Additionally, machine learning algorithms can be trained to
identify and classify different cell populations based on their fluorescence profiles, even
in the presence of overlapping populations or rare events. A plethora of methods can be
employed for this task, from clustering and supervised learning through various Bayesian
techniques and feature learning (deep learning) approaches [230–235]. These algorithms
provide accurate and reliable cell population identification, facilitating a comprehensive
exploration of cellular heterogeneity and, if used in clinical settings, an understanding of
disease mechanisms [232,236–239].

6.5. Biomarker Discovery and Predictive Modeling

Statistical machine learning techniques have proven valuable in biomarker discovery
when paired with various omics techniques [240–242]. By integrating flow cytometry pro-
files with other omics data, such as genomics, metabolomics, and proteomics, AI algorithms
can improve the ability to identify novel biomarkers or combinations of markers associated
with specific cell populations or disease states. Although this is still a relatively underappre-
ciated direction in cytometry, the fundamental logic behind these techniques is quite simple
and has been employed in other omics studies, such as lipidomics [243]. The approach
involves feature selection procedures, which operate under the assumption that the fea-
tures most essential for optimal classifier performance are likely to be associated with the



Cells 2023, 12, 1875 19 of 30

mechanisms of the underlying biological processes [244,245]. This methodology employs
classification models with embedded feature selection or techniques of explainable AI,
which interrogate the trained models post hoc [246]. The feature selection algorithms reveal
hidden patterns, enabling insights into disease mechanisms and identification of potential
therapeutic targets. Furthermore, AI-powered predictive models utilizing mechanistically
relevant features can be developed to diagnose diseases, predict treatment responses, or
prognosticate patient outcomes [239]. By incorporating various patient-specific factors,
clinical data, and flow cytometry profiles, these models may provide personalized and
data-driven insights for precision medicine [247].

6.6. Omics Integration

The use of data science techniques in flow cytometry has already significantly ad-
vanced the field. However, it is essential to emphasize that the expertise of cytometrists
and biologists remains vital for interpretation, validation, and translation of the findings
into meaningful biological insights. Nevertheless, there is no doubt that the full integration
of flow cytometry data with other omics data utilizing AI tools will provide a more compre-
hensive understanding of cellular function and disease processes in the future [241]. This
endeavor necessitates collaboration between flow cytometrists and data science researchers
to develop new analysis methods that amalgamate flow cytometry profiles with other omics
perspectives, possibly using multiview learning and other cutting-edge techniques [248].
Such a partnership will generate a holistic view of biological systems, facilitating the
identification of key regulatory pathways, cellular interactions, and therapeutic targets.

7. Cytometry Market Opportunities

Flow cytometry has become a versatile tool with widespread applications in various
fields, including immunology, cancer research, stem cell research, drug discovery, and
diagnostics. The increasing prevalence of chronic diseases, advancements in immune
therapy and personalized medicine, and the demands for efficient diagnostic tools and ef-
fective therapies have been major drivers of growth in the flow cytometry market. Notable
advancements in flow cytometry technology have improved its capabilities and expanded
its applications. High-throughput flow cytometry systems, imaging flow cytometry, and in-
tegrating multiple parameters and functionalities in a single instrument have enhanced the
speed, sensitivity, and multiplexing capabilities of flow cytometry, enabling more detailed
analyses of cells and their subpopulations. Moreover, the integration of flow cytometry
with techniques like mass spectrometry and single-cell analysis has provided deeper in-
sights into cellular functions and interactions. The development of novel fluorochromes,
antibodies, and reagents with enhanced specificity and brightness has further improved
the performance and versatility of flow cytometry [249].

The global flow cytometry market was valued at $4.8 billion in 2021 and is estimated to
reach $7.6 billion by 2027, with a projected CAGR of 8.0% [179]. Technological innovations
across all product categories, including instruments, reagents, and software, are driving
the growth of this market. Advances in reagents, instrumentation, and software have
propelled the field forward. Although the high cost of instruments and the requirement
for skilled personnel pose challenges, the introduction of bench-top and affordable flow
cytometry platforms addresses these concerns and keeps the market attractive for investors.
The market for flow cytometry will continue to grow due to the increasing demands for
personalized medicine, immunotherapy, and immuno-oncology, advancements in high-
dimensional analysis, and the exploration of new applications such as liquid biopsy and
rare cell detection. The expanding adoption of flow cytometry in emerging markets also
contributes to its market growth.

In summary, flow cytometry has emerged as a powerful tool with diverse applications,
and its market continues to expand, driven by technological advancements and increasing
demand across different sectors. The growth in the market for flow cytometry instruments,



Cells 2023, 12, 1875 20 of 30

reagents, and software highlights the ongoing advancements and need for high-quality
products and reagents to support research and diagnostic and therapeutic applications.

8. Next-Generation Instruments

Flow cytometry technology has evolved over many years, but even the most recent
instruments contain variations of the same components and thus suffer from the same
problems. For example, most instruments use lasers as simple light sources. However, the
sophisticated controls that could be employed by advancing laser management have evaded
flow cytometry manufacturers. This is one area that will enhance the new generation of
instruments. Secondly, more advanced, more sensitive, and much faster sensors are needed
if the field is to advance. Current PMTs and APDs that are used have been used for decades,
and while they provide excellent results most of the time, the limitations of dynamic range,
signal noise, and low sensor speed reduce the potential for detection innovation. By using
very high speed sensors [250,251], next-generation instruments could produce all of the
current fluorescence signals commonly collected but could, in some cases, simultaneously
collect fluorescence lifetime data without compromising total fluorescence measurements.
A far better understanding of signal noise could enable a much better understanding of
the composite signals that are collected. In addition, if entirely digital detection methods
were used, such as single photon detection, it is entirely possible that an instrument could
be developed that would be genuinely quantitative in every respect. This would enable
absolute signal quantification, leading to proper standardization of flow cytometry. Finally,
there are currently no instruments in which either the excitation or emission system does not
require alignment by the user. This is a massive component in the variability of instruments,
and with the electronic and optical sophistication currently available, such a feature is
desirable. The last component of next-generation flow cytometry instruments is the total
integration of AI concepts, moving the field well into the mid-21st century since AI will
undoubtedly to be a critical aspect of future instruments.

9. Conclusions

Over the past 50 years, the field of single-cell analysis has expanded from a simplistic
single-parameter approach to being able to analyze well over 40 simultaneous param-
eters. This has been possible through the development of monoclonal antibodies, new
fluorophores, the ready availability of solid-state lasers, new sensor technology, and of
course, powerful desktop computers. A critical component of the success of flow cytometry
has been the advancement of analytical techniques that facilitate the complex extraction
of multiple populations from mixtures. As analytical techniques improved, so too did the
potential for integration of these analytical processors into cell sorters, which enabled the
physical separation of identified populations. With the current emergence of microfluidic
systems that can facilitate sorting and separation, this will likely expand clonal selection
techniques. As new sensors and better optical approaches develop, we are likely to see sig-
nificant advances in flow cytometry instrumentation that will promote innovative discovery
opportunities.
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167. Prodanović, R.; Ung, W.L.; Ilić Ðurd̄ić, K.; Fischer, R.; Weitz, D.A.; Ostafe, R. A High-Throughput Screening System Based on
Droplet Microfluidics for Glucose Oxidase Gene Libraries. Molecules 2020, 25, 2418. [CrossRef] [PubMed]

168. Obexer, R.; Godina, A.; Garrabou, X.; Mittl, P.R.E.; Baker, D.; Griffiths, A.D.; Hilvert, D. Emergence of a catalytic tetrad during
evolution of a highly active artificial aldolase. Nat. Chem. 2017, 9, 50–56. [CrossRef]

169. Ma, C.; Tan, Z.L.; Lin, Y.; Han, S.; Xing, X.; Zhang, C. Gel microdroplet–based high-throughput screening for directed evolution of
xylanase-producing Pichia pastoris. J. Biosci. Bioeng. 2019, 128, 662–668. [CrossRef] [PubMed]

170. Vallejo, D.; Nikoomanzar, A.; Paegel, B.M.; Chaput, J.C. Fluorescence-Activated Droplet Sorting for Single-Cell Directed Evolution.
ACS Synth. Biol. 2019, 8, 1430–1440. [CrossRef]

171. Holland-Moritz, D.A.; Wismer, M.K.; Mann, B.F.; Farasat, I.; Devine, P.; Guetschow, E.D.; Mangion, I.; Welch, C.J.; Moore, J.C.;
Sun, S.; et al. Mass Activated Droplet Sorting (MADS) Enables High-Throughput Screening of Enzymatic Reactions at Nanoliter
Scale. Angew. Chem. Int. Ed. 2020, 59, 4470–4477. [CrossRef]

172. Gielen, F.; Hours, R.; Emond, S.; Fischlechner, M.; Schell, U.; Hollfelder, F. Ultrahigh-throughput–directed enzyme evolution by
absorbance-activated droplet sorting (AADS). Proc. Natl. Acad. Sci. USA 2016, 113, E7383–E7389. [CrossRef]

173. Kempa, E.E.; Smith, C.A.; Li, X.; Bellina, B.; Richardson, K.; Pringle, S.; Galman, J.L.; Turner, N.J.; Barran, P.E. Coupling Droplet
Microfluidics with Mass Spectrometry for Ultrahigh-Throughput Analysis of Complex Mixtures up to and above 30 Hz. Anal.
Chem. 2020, 92, 12605–12612. [CrossRef]

174. Goto, H.; Kanai, Y.; Yotsui, A.; Shimokihara, S.; Shitara, S.; Oyobiki, R.; Fujiwara, K.; Watanabe, T.; Einaga, Y.; Matsumoto, Y.; et al.
Microfluidic screening system based on boron-doped diamond electrodes and dielectrophoretic sorting for directed evolution of
NAD(P)-dependent oxidoreductases. Lab Chip 2020, 20, 852–861. [CrossRef] [PubMed]

175. Wang, X.; Ren, L.; Su, Y.; Ji, Y.; Liu, Y.; Li, C.; Li, X.; Zhang, Y.; Wang, W.; Hu, Q.; et al. Raman-Activated Droplet Sorting (RADS)
for Label-Free High-Throughput Screening of Microalgal Single-Cells. Anal. Chem. 2017, 89, 12569–12577. [CrossRef] [PubMed]

176. Hale, W.; Rossetto, G.; Greenhalgh, R.; Finch, G.; Utz, M. High-resolution nuclear magnetic resonance spectroscopy in microfluidic
droplets. Lab Chip 2018, 18, 3018–3024. [CrossRef]

177. Yan, J.; Bauer, W.-A.C.; Fischlechner, M.; Hollfelder, F.; Kaminski, C.F.; Huck, W.T.S. Monodisperse Water-in-Oil-in-Water
(W/O/W) Double Emulsion Droplets as Uniform Compartments for High-Throughput Analysis via Flow Cytometry. Microma-
chines 2013, 4, 402–413. [CrossRef]

178. Brower, K.K.; Carswell-Crumpton, C.; Klemm, S.; Cruz, B.; Kim, G.; Calhoun, S.G.K.; Nichols, L.; Fordyce, P.M. Double emulsion
flow cytometry with high-throughput single droplet isolation and nucleic acid recovery. Lab Chip 2020, 20, 2062–2074. [CrossRef]
[PubMed]

179. Report, B.M. Global Markets for Bioengineered Protein Drugs; BCC Publishing: Wellesley, MA, USA, 2023.
180. Nelson, P.N.; Reynolds, G.M.; Waldron, E.E.; Ward, E.; Giannopoulos, K.; Murray, P.G. Monoclonal antibodies. Mol. Pathol. 2000,

53, 111–117. [CrossRef]
181. Mullard, A. FDA approves 100th monoclonal antibody product. Nat. Rev. Drug Discov. 2021, 20, 491–495. [CrossRef]
182. Kaplon, H.; Crescioli, S.; Chenoweth, A.; Visweswaraiah, J.; Reichert, J.M. Antibodies to watch in 2023. MAbs 2023, 15, 2153410.

[CrossRef]
183. Pedrioli, A.; Oxenius, A. Single B cell technologies for monoclonal antibody discovery. Trends Immunol. 2021, 42, 1143–1158.

[CrossRef]
184. Georgiou, G.; Ippolito, G.C.; Beausang, J.; Busse, C.E.; Wardemann, H.; Quake, S.R. The promise and challenge of high-throughput

sequencing of the antibody repertoire. Nat. Biotechnol. 2014, 32, 158–168. [CrossRef] [PubMed]
185. Parola, C.; Neumeier, D.; Reddy, S.T. Integrating high-throughput screening and sequencing for monoclonal antibody discovery

and engineering. Immunology 2018, 153, 31–41. [CrossRef] [PubMed]
186. Abul-Husn, N.S.; Kenny, E.E. Personalized Medicine and the Power of Electronic Health Records. Cell 2019, 177, 58–69. [CrossRef]

[PubMed]
187. Anderson, K.C.; Boyd, A.W.; Fisher, D.C.; Slaughenhoupt, B.; Groopman, J.E.; O’Hara, C.J.; Daley, J.F.; Schlossman, S.F.;

Nadler, L.M. Isolation and functional analysis of human B cell populations. I. Characterization of the B1+B2+ and B1+B2- subsets.
J. Immunol. 1985, 134, 820–827. [CrossRef] [PubMed]

188. El Debs, B.; Utharala, R.; Balyasnikova, I.V.; Griffiths, A.D.; Merten, C.A. Functional single-cell hybridoma screening using
droplet-based microfluidics. Proc. Natl. Acad. Sci. USA 2012, 109, 11570–11575. [CrossRef]

189. Garraud, O.; Borhis, G.; Badr, G.; Degrelle, S.; Pozzetto, B.; Cognasse, F.; Richard, Y. Revisiting the B-cell compartment in mouse
and humans: More than one B-cell subset exists in the marginal zone and beyond. BMC Immunol. 2012, 13, 63. [CrossRef]

190. Konforte, D.; Simard, N.; Paige, C.J. IL-21: An Executor of B Cell Fate1. J. Immunol. 2009, 182, 1781–1787. [CrossRef]
191. Lanzavecchia, A. Antigen-specific interaction between T and B cells. Nature 1985, 314, 537–539. [CrossRef]
192. Bernasconi, N.L.; Traggiai, E.; Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B

cells. Science 2002, 298, 2199–2202. [CrossRef]
193. Tiller, T.; Meffre, E.; Yurasov, S.; Tsuiji, M.; Nussenzweig, M.C.; Wardemann, H. Efficient generation of monoclonal antibodies

from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol. Methods 2008, 329, 112–124. [CrossRef]
194. Kang, S.; Yang, M.; Hong, Z.; Zhang, L.; Huang, Z.; Chen, X.; He, S.; Zhou, Z.; Zhou, Z.; Chen, Q.; et al. Crystal structure of

SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B 2020,
10, 1228–1238. [CrossRef] [PubMed]

https://doi.org/10.3390/molecules25102418
https://www.ncbi.nlm.nih.gov/pubmed/32455903
https://doi.org/10.1038/nchem.2596
https://doi.org/10.1016/j.jbiosc.2019.05.008
https://www.ncbi.nlm.nih.gov/pubmed/31235414
https://doi.org/10.1021/acssynbio.9b00103
https://doi.org/10.1002/anie.201913203
https://doi.org/10.1073/pnas.1606927113
https://doi.org/10.1021/acs.analchem.0c02632
https://doi.org/10.1039/C9LC01263J
https://www.ncbi.nlm.nih.gov/pubmed/31984406
https://doi.org/10.1021/acs.analchem.7b03884
https://www.ncbi.nlm.nih.gov/pubmed/29099582
https://doi.org/10.1039/C8LC00712H
https://doi.org/10.3390/mi4040402
https://doi.org/10.1039/D0LC00261E
https://www.ncbi.nlm.nih.gov/pubmed/32417874
https://doi.org/10.1136/mp.53.3.111
https://doi.org/10.1038/d41573-021-00079-7
https://doi.org/10.1080/19420862.2022.2153410
https://doi.org/10.1016/j.it.2021.10.008
https://doi.org/10.1038/nbt.2782
https://www.ncbi.nlm.nih.gov/pubmed/24441474
https://doi.org/10.1111/imm.12838
https://www.ncbi.nlm.nih.gov/pubmed/28898398
https://doi.org/10.1016/j.cell.2019.02.039
https://www.ncbi.nlm.nih.gov/pubmed/30901549
https://doi.org/10.4049/jimmunol.134.2.820
https://www.ncbi.nlm.nih.gov/pubmed/3917476
https://doi.org/10.1073/pnas.1204514109
https://doi.org/10.1186/1471-2172-13-63
https://doi.org/10.4049/jimmunol.0803009
https://doi.org/10.1038/314537a0
https://doi.org/10.1126/science.1076071
https://doi.org/10.1016/j.jim.2007.09.017
https://doi.org/10.1016/j.apsb.2020.04.009
https://www.ncbi.nlm.nih.gov/pubmed/32363136


Cells 2023, 12, 1875 28 of 30

195. Ogunniyi, A.O.; Story, C.M.; Papa, E.; Guillen, E.; Love, J.C. Screening individual hybridomas by microengraving to discover
monoclonal antibodies. Nat. Protoc. 2009, 4, 767–782. [CrossRef] [PubMed]

196. Greener, J.G.; Kandathil, S.M.; Moffat, L.; Jones, D.T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 2022,
23, 40–55. [CrossRef]

197. Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural
Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med.
Imaging 2016, 35, 1285–1298. [CrossRef]

198. O’Neill, K.; Aghaeepour, N.; Špidlen, J.; Brinkman, R. Flow Cytometry Bioinformatics. PLoS Comput. Biol. 2013, 9, e1003365.
[CrossRef] [PubMed]

199. Liechti, T.; Weber, L.M.; Ashhurst, T.M.; Stanley, N.; Prlic, M.; Van Gassen, S.; Mair, F. An updated guide for the perplexed:
Cytometry in the high-dimensional era. Nat. Immunol. 2021, 22, 1190–1197. [CrossRef]

200. Rahim, A.; Meskas, J.; Drissler, S.; Yue, A.; Lorenc, A.; Laing, A.; Saran, N.; White, J.; Abeler-Dörner, L.; Hayday, A.; et al. High
throughput automated analysis of big flow cytometry data. Methods 2018, 134–135, 164–176. [CrossRef] [PubMed]

201. Saeys, Y.; Van Gassen, S.; Lambrecht, B.N. Computational flow cytometry: Helping to make sense of high-dimensional immunol-
ogy data. Nat. Rev. Immunol. 2016, 16, 449–462. [CrossRef] [PubMed]

202. Hu, Z.; Bhattacharya, S.; Butte, A.J. Application of Machine Learning for Cytometry Data. Front. Immunol. 2022, 12, 787574.
[CrossRef]

203. Liu, P.; Liu, S.; Fang, Y.; Xue, X.; Zou, J.; Tseng, G.; Konnikova, L. Recent Advances in Computer-Assisted Algorithms for Cell
Subtype Identification of Cytometry Data. Front. Cell Dev. Biol. 2020, 8, 234. [CrossRef]

204. Keyes, T.J.; Domizi, P.; Lo, Y.-C.; Nolan, G.P.; Davis, K.L. A Cancer Biologist’s Primer on Machine Learning Applications in
High-Dimensional Cytometry. Cytom. Part A 2020, 97, 782–799. [CrossRef]

205. Lucchesi, S.; Furini, S.; Medaglini, D.; Ciabattini, A. From Bivariate to Multivariate Analysis of Cytometric Data: Overview of
Computational Methods and Their Application in Vaccination Studies. Vaccines 2020, 8, 138. [CrossRef] [PubMed]

206. Nolan, J.P.; Condello, D.; Duggan, E.; Naivar, M.; Novo, D. Visible and near infrared fluorescence spectral flow cytometry. Cytom.
Part A 2013, 83, 253–264. [CrossRef]

207. Ferrer-Font, L.; Kraker, G.; Hally, K.E.; Price, K.M. Ensuring Full Spectrum Flow Cytometry Data Quality for High-Dimensional
Data Analysis. Curr. Protoc. 2023, 3, e657. [CrossRef]

208. Bagwell, C.B.; Adams, E.G. Fluorescence Spectral Overlap Compensation for Any Number of Flow Cytometry Parameters. Ann.
N. Y. Acad. Sci. 1993, 677, 167–184. [CrossRef]

209. Keshava, N.; Mustard, J.F. Spectral unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [CrossRef]
210. Wang, R.; Lemus, A.A.; Henneberry, C.M.; Ying, Y.; Feng, Y.; Valm, A.M. Unmixing biological fluorescence image data with sparse

and low-rank Poisson regression. Bioinformatics 2023, 39, btad159. [CrossRef] [PubMed]
211. Van Gassen, S.; Gaudilliere, B.; Angst, M.S.; Saeys, Y.; Aghaeepour, N. CytoNorm: A Normalization Algorithm for Cytometry

Data. Cytom. Part A 2020, 97, 268–278. [CrossRef]
212. Hahne, F.; Khodabakhshi, A.H.; Bashashati, A.; Wong, C.-J.; Gascoyne, R.D.; Weng, A.P.; Seyfert-Margolis, V.; Bourcier, K.;

Asare, A.; Lumley, T.; et al. Per-channel basis normalization methods for flow cytometry data. Cytom. Part A 2010, 77, 121–131.
[CrossRef] [PubMed]

213. Finak, G.; Jiang, W.; Krouse, K.; Wei, C.; Sanz, I.; Phippard, D.; Asare, A.; De Rosa, S.C.; Self, S.; Gottardo, R. High-throughput
flow cytometry data normalization for clinical trials. Cytom. Part A 2014, 85, 277–286. [CrossRef] [PubMed]

214. Fletez-Brant, K.; Špidlen, J.; Brinkman, R.R.; Roederer, M.; Chattopadhyay, P.K. flowClean: Automated identification and removal
of fluorescence anomalies in flow cytometry data. Cytom. Part A 2016, 89, 461–471. [CrossRef]

215. Ashhurst, T.M.; Marsh-Wakefield, F.; Putri, G.H.; Spiteri, A.G.; Shinko, D.; Read, M.N.; Smith, A.L.; King, N.J.C. Integration,
exploration, and analysis of high-dimensional single-cell cytometry data using Spectre. Cytom. Part A 2022, 101, 237–253.
[CrossRef]

216. Quintelier, K.; Couckuyt, A.; Emmaneel, A.; Aerts, J.; Saeys, Y.; Van Gassen, S. Analyzing high-dimensional cytometry data using
FlowSOM. Nat. Protoc. 2021, 16, 3775–3801. [CrossRef] [PubMed]

217. Qiu, P.; Simonds, E.F.; Bendall, S.C.; Gibbs, K.D.; Bruggner, R.V.; Linderman, M.D.; Sachs, K.; Nolan, G.P.; Plevritis, S.K. Extracting
a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 2011, 29, 886–891. [CrossRef]

218. Amir, E.-a.D.; Davis, K.L.; Tadmor, M.D.; Simonds, E.F.; Levine, J.H.; Bendall, S.C.; Shenfeld, D.K.; Krishnaswamy, S.; Nolan, G.P.;
Pe’er, D. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat.
Biotechnol. 2013, 31, 545–552. [CrossRef]

219. Becht, E.; McInnes, L.; Healy, J.; Dutertre, C.-A.; Kwok, I.W.H.; Ng, L.G.; Ginhoux, F.; Newell, E.W. Dimensionality reduction for
visualizing single-cell data using UMAP. Nat. Biotechnol. 2019, 37, 38–44. [CrossRef] [PubMed]

220. Moon, K.R.; van Dijk, D.; Wang, Z.; Gigante, S.; Burkhardt, D.B.; Chen, W.S.; Yim, K.; Elzen, A.v.d.; Hirn, M.J.; Coifman, R.R.; et al.
Visualizing structure and transitions in high-dimensional biological data. Nat. Biotechnol. 2019, 37, 1482–1492. [CrossRef]
[PubMed]

221. Mair, F.; Hartmann, F.J.; Mrdjen, D.; Tosevski, V.; Krieg, C.; Becher, B. The end of gating? An introduction to automated analysis
of high dimensional cytometry data. Eur. J. Immunol. 2016, 46, 34–43. [CrossRef]

https://doi.org/10.1038/nprot.2009.40
https://www.ncbi.nlm.nih.gov/pubmed/19528952
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1371/journal.pcbi.1003365
https://www.ncbi.nlm.nih.gov/pubmed/24363631
https://doi.org/10.1038/s41590-021-01006-z
https://doi.org/10.1016/j.ymeth.2017.12.015
https://www.ncbi.nlm.nih.gov/pubmed/29287915
https://doi.org/10.1038/nri.2016.56
https://www.ncbi.nlm.nih.gov/pubmed/27320317
https://doi.org/10.3389/fimmu.2021.787574
https://doi.org/10.3389/fcell.2020.00234
https://doi.org/10.1002/cyto.a.24158
https://doi.org/10.3390/vaccines8010138
https://www.ncbi.nlm.nih.gov/pubmed/32244919
https://doi.org/10.1002/cyto.a.22241
https://doi.org/10.1002/cpz1.657
https://doi.org/10.1111/j.1749-6632.1993.tb38775.x
https://doi.org/10.1109/79.974727
https://doi.org/10.1093/bioinformatics/btad159
https://www.ncbi.nlm.nih.gov/pubmed/36964716
https://doi.org/10.1002/cyto.a.23904
https://doi.org/10.1002/cyto.a.20823
https://www.ncbi.nlm.nih.gov/pubmed/19899135
https://doi.org/10.1002/cyto.a.22433
https://www.ncbi.nlm.nih.gov/pubmed/24382714
https://doi.org/10.1002/cyto.a.22837
https://doi.org/10.1002/cyto.a.24350
https://doi.org/10.1038/s41596-021-00550-0
https://www.ncbi.nlm.nih.gov/pubmed/34172973
https://doi.org/10.1038/nbt.1991
https://doi.org/10.1038/nbt.2594
https://doi.org/10.1038/nbt.4314
https://www.ncbi.nlm.nih.gov/pubmed/30531897
https://doi.org/10.1038/s41587-019-0336-3
https://www.ncbi.nlm.nih.gov/pubmed/31796933
https://doi.org/10.1002/eji.201545774


Cells 2023, 12, 1875 29 of 30

222. Aghaeepour, N.; Nikolic, R.; Hoos, H.H.; Brinkman, R.R. Rapid cell population identification in flow cytometry data. Cytom.
Part A 2011, 79, 6–13. [CrossRef]

223. Weber, L.M.; Robinson, M.D. Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data.
Cytom. Part A 2016, 89, 1084–1096. [CrossRef]

224. Finak, G.; Bashashati, A.; Brinkman, R.; Gottardo, R. Merging Mixture Components for Cell Population Identification in Flow
Cytometry. Adv. Bioinform. 2009, 2009, 247646. [CrossRef]

225. Dorfman, D.M.; LaPlante, C.D.; Li, B. FLOCK cluster analysis of plasma cell flow cytometry data predicts bone marrow
involvement by plasma cell neoplasia. Leuk. Res. 2016, 48, 40–45. [CrossRef] [PubMed]

226. Yang, X.; Qiu, P. Automatically generate two-dimensional gating hierarchy from clustered cytometry data. Cytom. Part A 2018,
93, 1039–1050. [CrossRef] [PubMed]

227. Commenges, D.; Alkhassim, C.; Gottardo, R.; Hejblum, B.; Thiébaut, R. cytometree: A binary tree algorithm for automatic gating
in cytometry analysis. Cytom. Part A 2018, 93, 1132–1140. [CrossRef] [PubMed]

228. Aghaeepour, N.; Finak, G.; Hoos, H.; Mosmann, T.R.; Brinkman, R.; Gottardo, R.; Scheuermann, R.H.; FlowCAP Consortium;
Dream Consortium. Critical assessment of automated flow cytometry data analysis techniques. Nat. Methods 2013, 10, 228–238.
[CrossRef] [PubMed]

229. Lo, K.; Brinkman, R.R.; Gottardo, R. Automated gating of flow cytometry data via robust model-based clustering. Cytom. Part A
2008, 73, 321–332. [CrossRef]

230. Dundar, M.; Akova, F.; Yerebakan, H.Z.; Rajwa, B. A non-parametric Bayesian model for joint cell clustering and cluster matching:
Identification of anomalous sample phenotypes with random effects. BMC Bioinform. 2014, 15, 314. [CrossRef]

231. Azad, A.; Rajwa, B.; Pothen, A. Immunophenotype Discovery, Hierarchical Organization, and Template-Based Classification of
Flow Cytometry Samples. Front. Oncol. 2016, 6, 188. [CrossRef]

232. Béné, M.C.; Lacombe, F.; Porwit, A. Unsupervised flow cytometry analysis in hematological malignancies: A new paradigm. Int.
J. Lab. Hematol. 2021, 43, 54–64. [CrossRef]

233. Hu, Z.; Tang, A.; Singh, J.; Bhattacharya, S.; Butte, A.J. A robust and interpretable end-to-end deep learning model for cytometry
data. Proc. Natl. Acad. Sci. USA 2020, 117, 21373–21380. [CrossRef]

234. Rajwa, B.; Wallace, P.K.; Griffiths, E.A.; Dundar, M. Automated assessment of disease progression in acute myeloid leukemia by
probabilistic analysis of flow cytometry data. IEEE Trans. Biomed. Eng. 2017, 64, 1089–1098. [CrossRef]

235. Rajwa, B.; Venkatapathi, M.; Ragheb, K.; Banada, P.P.; Hirleman, E.D.; Lary, T.; Robinson, J.P. Automated classification of bacterial
particles in flow by multiangle scatter measurement and support vector machine classifier. Cytom. Part A 2008, 73, 369–379.
[CrossRef] [PubMed]

236. Aghaeepour, N.; Jalali, A.; O’Neill, K.; Chattopadhyay, P.K.; Roederer, M.; Hoos, H.H.; Brinkman, R.R. RchyOptimyx: Cellular
hierarchy optimization for flow cytometry. Cytom. Part A 2012, 81, 1022–1030. [CrossRef] [PubMed]

237. O’Neill, K.; Jalali, A.; Aghaeepour, N.; Hoos, H.; Brinkman, R.R. Enhanced flowType/RchyOptimyx: A Bioconductor pipeline for
discovery in high-dimensional cytometry data. Bioinformatics 2014, 30, 1329–1330. [CrossRef] [PubMed]

238. Malek, M.; Taghiyar, M.J.; Chong, L.; Finak, G.; Gottardo, R.; Brinkman, R.R. flowDensity: Reproducing manual gating of flow
cytometry data by automated density-based cell population identification. Bioinformatics 2014, 31, 606–607. [CrossRef] [PubMed]

239. Greene, E.; Finak, G.; D’Amico, L.A.; Bhardwaj, N.; Church, C.D.; Morishima, C.; Ramchurren, N.; Taube, J.M.; Nghiem, P.T.;
Cheever, M.A.; et al. New interpretable machine-learning method for single-cell data reveals correlates of clinical response to
cancer immunotherapy. Patterns 2021, 2, 100372. [CrossRef]

240. Nicora, G.; Vitali, F.; Dagliati, A.; Geifman, N.; Bellazzi, R. Integrated Multi-Omics Analyses in Oncology: A Review of Machine
Learning Methods and Tools. Front. Oncol. 2020, 10, 1030. [CrossRef]

241. Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-omics Data Integration, Interpretation, and Its Application.
Bioinform. Biol. Insights 2020, 14, 1177932219899051. [CrossRef]

242. Whetton, A.D.; Preston, G.W.; Abubeker, S.; Geifman, N. Proteomics and Informatics for Understanding Phases and Identifying
Biomarkers in COVID-19 Disease. J. Proteome Res. 2020, 19, 4219–4232. [CrossRef]

243. Franco, J.; Rajwa, B.; Ferreira, C.R.; Sundberg, J.P.; HogenEsch, H. Lipidomic profiling of the epidermis in a mouse model of
dermatitis reveals sexual dimorphism and changes in lipid composition before the onset of clinical disease. Metabolites 2020,
10, 299. [CrossRef]

244. Hira, Z.M.; Gillies, D.F. A Review of Feature Selection and Feature Extraction Methods Applied on Microarray Data. Adv.
Bioinform. 2015, 2015, 198363. [CrossRef] [PubMed]

245. Bruggner, R.V.; Bodenmiller, B.; Dill, D.L.; Tibshirani, R.J.; Nolan, G.P. Automated identification of stratifying signatures in
cellular subpopulations. Proc. Natl. Acad. Sci. USA 2014, 111, E2770–E2777. [CrossRef] [PubMed]

246. Shi, Z.; Wen, B.; Gao, Q.; Zhang, B. Feature Selection Methods for Protein Biomarker Discovery from Proteomics or Multiomics
Data. Mol. Cell. Proteom. 2021, 20, 100083. [CrossRef] [PubMed]

247. Mamoshina, P.; Vieira, A.; Putin, E.; Zhavoronkov, A. Applications of Deep Learning in Biomedicine. Mol. Pharm. 2016,
13, 1445–1454. [CrossRef] [PubMed]

248. Nguyen, N.D.; Wang, D. Multiview learning for understanding functional multiomics. PLoS Comput. Biol. 2020, 16, e1007677.
[CrossRef]

https://doi.org/10.1002/cyto.a.21007
https://doi.org/10.1002/cyto.a.23030
https://doi.org/10.1155/2009/247646
https://doi.org/10.1016/j.leukres.2016.07.003
https://www.ncbi.nlm.nih.gov/pubmed/27479652
https://doi.org/10.1002/cyto.a.23577
https://www.ncbi.nlm.nih.gov/pubmed/30176185
https://doi.org/10.1002/cyto.a.23601
https://www.ncbi.nlm.nih.gov/pubmed/30277649
https://doi.org/10.1038/nmeth.2365
https://www.ncbi.nlm.nih.gov/pubmed/23396282
https://doi.org/10.1002/cyto.a.20531
https://doi.org/10.1186/1471-2105-15-314
https://doi.org/10.3389/fonc.2016.00188
https://doi.org/10.1111/ijlh.13548
https://doi.org/10.1073/pnas.2003026117
https://doi.org/10.1109/TBME.2016.2590950
https://doi.org/10.1002/cyto.a.20515
https://www.ncbi.nlm.nih.gov/pubmed/18163466
https://doi.org/10.1002/cyto.a.22209
https://www.ncbi.nlm.nih.gov/pubmed/23044634
https://doi.org/10.1093/bioinformatics/btt770
https://www.ncbi.nlm.nih.gov/pubmed/24407226
https://doi.org/10.1093/bioinformatics/btu677
https://www.ncbi.nlm.nih.gov/pubmed/25378466
https://doi.org/10.1016/j.patter.2021.100372
https://doi.org/10.3389/fonc.2020.01030
https://doi.org/10.1177/1177932219899051
https://doi.org/10.1021/acs.jproteome.0c00326
https://doi.org/10.3390/metabo10070299
https://doi.org/10.1155/2015/198363
https://www.ncbi.nlm.nih.gov/pubmed/26170834
https://doi.org/10.1073/pnas.1408792111
https://www.ncbi.nlm.nih.gov/pubmed/24979804
https://doi.org/10.1016/j.mcpro.2021.100083
https://www.ncbi.nlm.nih.gov/pubmed/33887487
https://doi.org/10.1021/acs.molpharmaceut.5b00982
https://www.ncbi.nlm.nih.gov/pubmed/27007977
https://doi.org/10.1371/journal.pcbi.1007677


Cells 2023, 12, 1875 30 of 30

249. Cossarizza, A.; Chang, H.D.; Radbruch, A.; Acs, A.; Adam, D.; Adam-Klages, S.; Agace, W.W.; Aghaeepour, N.; Akdis, M.;
Allez, M.; et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur. J.
Immunol. 2019, 49, 1457–1973. [CrossRef] [PubMed]

250. Yamamoto, M.; Robinson, J.P. Quantum approach for nanoparticle fluorescence by sub-ns photon detection. Cytom. Part A 2020,
99, 145–151. [CrossRef]

251. Yamamoto, M.; Hernandez, K.; Robinson, J.P. Photon Spectroscopy by Picoseconds Differential Geiger-Mode Si Photomultiplier; SPIE:
San Francisco, CA, USA, 2018; Volume 10500, pp. 10501–10513. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/eji.201970107
https://www.ncbi.nlm.nih.gov/pubmed/31633216
https://doi.org/10.1002/cyto.a.24310
https://doi.org/10.1117/12.2286743

	Background 
	Fluorescence Detection Principles 
	The Principles of Flow Cytometry 
	Polychromatic vs. Spectral Cytometry 
	Applications of Flow Cytometry 
	Cell Phenotyping 
	Viability Assays 
	Cell Cycle Analysis 
	Ion Flux Assays 
	Cellular Function Measurement 
	Protein Engineering 
	Bacterial Cell Sorting 
	Droplet Microfluidics 
	Next-Generation Bioengineered Biologics 

	Flow Cytometry Data Science and Informatics 
	Spectral Unmixing and Compensation 
	Data Pre-processing and Curation 
	Data Visualization 
	Automated Gating and Cell Population Identification 
	Biomarker Discovery and Predictive Modeling 
	Omics Integration 

	Cytometry Market Opportunities 
	Next-Generation Instruments 
	Conclusions 
	References

