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Abstract: Ion channels are the second largest class of drug targets after G protein-coupled receptors.
In addition to well-recognized ones like voltage-gated Na/K/Ca channels in the heart and neurons,
novel ion channels are continuously discovered in both excitable and non-excitable cells and demon-
strated to play important roles in many physiological processes and diseases such as developmental
disorders, neurodegenerative diseases, and cancer. However, in the field of ion channel discovery,
there are an unignorable number of published studies that are unsolid and misleading. Despite
being the gold standard of a functional assay for ion channels, electrophysiological recordings are
often accompanied by electrical noise, leak conductance, and background currents of the membrane
system. These unwanted signals, if not treated properly, lead to the mischaracterization of proteins
with seemingly unusual ion-conducting properties. In the recent ten years, the technical revolution of
cryo-electron microscopy (cryo-EM) has greatly advanced our understanding of the structures and
gating mechanisms of various ion channels and also raised concerns about the pore-forming ability
of some previously identified channel proteins. In this review, we summarize cryo-EM findings
on ion channels with molecular identities recognized or disputed in recent ten years and discuss
current knowledge of proposed channel proteins awaiting cryo-EM analyses. We also present a
classification of ion channels according to their architectures and evolutionary relationships and
discuss the possibility and strategy of identifying more ion channels by analyzing structures of trans-
membrane proteins of unknown function. We propose that cross-validation by electrophysiological
and structural analyses should be essentially required for determining molecular identities of novel
ion channels.

Keywords: ion channel; cryo-EM; protein structure; transmembrane protein; electrophysiology

1. Introduction

Ion channels are transmembrane protein complexes with internal pathways for ions to
diffuse down their electrochemical gradients rapidly and passively. The opening and clos-
ing (gating) of the ion-conducting pore are tightly controlled by factors such as membrane
potential (voltage-gated channels), ion concentration (osmosensitive or Ca2+/Na+/proton-
regulated channels), high temperature dependence (thermosensitive channels), mechanical
force (mechanosensitive channels) and specific molecules that bind and alter the conforma-
tion of the channel (ligand-gated channels). In addition to distinct activation mechanisms,
ion channels can also be classified according to their permeant ions, including Na+, K+,
Ca2+, Mg2+, Cl−, H+, and others, and those permeable to multiple cations, anions, or both
are termed non-selective channels. Ion channels are involved in many critical physiological
functions and pathogenesis of diseases not only affecting nervous and cardiovascular
systems but also other tissues and organs, including various types of cancer [1–3].
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So far more than 250 ion channels from ~40 families have been recognized in the
human proteome, a huge achievement after the development of the patch clamp [4], molec-
ular biology and biochemical techniques, and the sequencing of genomes. In the 1980s,
molecular identification of ion channels largely depended on protein purification from
tissue/cell fractions (e.g., acetylcholine receptor [5], voltage-gated sodium channel [6],
L-type calcium channel [7], IP3 receptor [8], and ryanodine receptor [9]) and positional
cloning of genes from patients (e.g., cystic fibrosis transmembrane conductance regulator
(CFTR) [10]) and Drosophila mutant strains (e.g., Shaker potassium channel [11,12] and
transient receptor potential (TRP) channel [13]). When transcript sequence datasets became
available, novel proteins with sequence similarity to previously identified ion channels were
recognized via homology searches, such as mammalian TRP channels [14,15], the cation
channel of sperm (CatSper) [16,17], and voltage-gated proton channel Hv1 [18,19]. In the
genomic era, genome-wide RNAi screening of transmembrane proteins has uncovered the
molecular identities of store-operated calcium channel (STIM1/Orai1) [20–22], volume-
regulated anion channel (VRAC) [23,24] and proton-activated chloride (PAC) channel [25].
However, such large-scale fluorescent imaging-based screening is not always necessary as
patch clamp or imaging with small-scale pre-selected candidates (mainly according to their
enriched expression in specific cell types or localization in organelles) has led to the discov-
ery of mechanosensitive channel Piezo1 [26], the proton channel Otopetrin 1 (Otop1) [27],
the lysosomal proton/potassium channel TMEM175 [28,29], the mitochondrial calcium
uniporter MICU1/MCU [30–32] and the calcium homeostasis modulator 1 (CALHM1) [33].

In addition to the above successes in molecular identification of ion channels with well-
characterized currents, one can imagine that there were numerous attempts that have failed
to find proteins conducting these currents, with negative results not published though they
are useful for others to exclude ineligible candidates. In contrast, there are also published
studies that have misidentified pore-forming proteins of some ion channels [34–39]. With
the technical advances in cryo-electron microscopy (cryo-EM), protein structures of various
ion channels have been resolved and provided substantial knowledge for their working
mechanisms since 2013 [40]. On the other hand, cryo-EM structures can also be used
to discriminate misidentified channel proteins if they are found unlikely to form an ion-
conducting pore. In the following sections, we first present a structure-based classification
of mammalian ion channels, and then review cryo-EM evidence that supports or disputes
the molecular identities of ion channels identified in recent ten years and discuss the
potential validity of proposed ion channels without available protein structures from
evolutionary and functional perspectives (Figure 1).
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2. Structure-Based Classification of Mammalian Ion Channels

Although it is theoretically possible that a protein with multiple TMs may be able to
form a functional ion channel in a monomeric architecture, ion channels recognized so far
are all in the form of oligomer or monomer with tandemly arranged structurally duplicated
domains (Table 1), suggesting that structural symmetry may be essential for the precisely
regulated ion-conduction process.

CFTR is a Cl− channel evolved from the ABC transporter family proteins. It keeps
the typical structure of ABC transporters which contains two symmetrical transmembrane
domains each with 6 TMs [41] and therefore presents a pseudodimeric architecture with a
central pore slightly biased toward the N-terminal half [42]. The ClC family of Cl− channels
are also dimeric, however, some of them (ClC3-7) are Cl−/H+ antiporters rather than Cl−

channels [43]. Each protomer of ClC-1, ClC-2, hClC-Ka, and hClC-Kb contains 17 or
18 TMs and a pore and dimerizes into “double-barreled” Cl− channels. TMEM16A-H/J/K
(ANO1-10), TMEM63A/B/C, and TMC1-8 belong to an unexpected family of dimeric
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channels with surprising structural similarity [44]. TMEM16 proteins are either Ca2+-
activated Cl− channels or phospholipid scramblase, while TMEM63 and TMC proteins are
mechanosensitive channels. Each protomer of these channels contains 10 or 11 TMs and a
potential ion-conducting pathway and assembles into a dimeric complex with 2 putative
pores [44].

Table 1. Structure-based classification of mammalian ion channels.

Structural
Family Channel

TMs in Each
Pore-Forming

Protomer

Protomers in Each
Channel Complex

Putative Pores in
Each Channel

Complex
Reference

ABC transporter
pseudodimer

Cystic fibrosis transmembrane
conductance regulator (CFTR) 2 × 6 TMs 1-mer 1 pore [42]

Dimer ClC chloride channels 17/18 TMs 2-mers 2 pores [45]

TMEM16-like
dimer

Calcium-activated chloride
channels (TMEM16) 10 TMs 2-mers 2 pores [46]

Transmembrane channel-like (TMC) 10 TMs 2-mers 2 pores [44]
TMEM63 channels 11 TMs 2-mers 2 pores

Trimer

Acid-sensing ion channels (ASICs) 2 TMs 3-mers 1 pore [47]
Epithelial sodium channel (ENaC) 2 TMs 3-mers 1 pore [48]

Proton-activated chloride
(PAC) channel 2 TMs 3-mers 1 pore [49]

P2X receptors 2 TMs 3-mers 1 pore [50]
Trimeric intracellular cation

(TRIC) channels 7 TMs 3-mers 1 pore [51]

Piezo channels 38 TMs 3-mers 1 pore [52]

Voltage-gated-
like tetramer/

pseudotetramer

Voltage-gated calcium
(CaV) channels 4 × 6 TMs 1-mer 1 pore [53]

Voltage-gated sodium
(NaV) channels 4 × 6 TMs 1-mer 1 pore [54]

Voltage-gated potassium
(KV) channels 6 TMs 4-mers 1 pore [55]

Calcium-activated potassium
(KCa) channels 6 TMs 4-mers 1 pore [56]

Sodium-activated potassium
(KNa) channels 6 TMs 4-mers 1 pore [57]

Hyperpolarization-activated cyclic
nucleotide–gated (HCN) channels 6 TMs 4-mers 1 pore [58]

Cyclic nucleotide-gated
(CNG) channels 6 TMs 4-mers 1 pore [59]

Cation channel of sperm (CatSper) 6 TMs 4-mers 1 pore [60]
Transient Receptor Potential

(TRP) channels 6 TMs 4-mers 1 pore [40]

Two-Pore channels (TPC) 2 × 6 TMs 2-mers 1 pore [61]
Inwardly rectifying potassium

(Kir) channels 2 TMs 4-mers 1 pore [62]

Two-pore domain potassium
(K2P) channels 2 × 2 TMs 2-mers 1 pore [63]

Voltage-gated proton (HV1) channel 4 TMs 2-mers 2 pores [64]

Tetramer/
pseudotetramer

Mitochondrial calcium
uniporter (MCU) 2 TMs 4-mers 1 pore [65]

Ionotropic glutamate receptors 3 TMs 4-mers 1 pore [66]
IP3 receptors (IP3Rs) 6 TMs 4-mers 1 pore [67]

Ryanodine receptors (RyRs) 6 TMs 4-mers 1 pore [68]
Lysosomal proton/potassium

channel (TMEM175) 2 × 6 TMs 2-mers 1 pore [69]

Otopetrin (OTOP) proton channels 2 × 6 TMs 2-mers 4 or 6 pores [70]

Pentamer

5-HT3 receptors 4 TMs 5-mers 1 pore [71]
GABAA receptors 4 TMs 5-mers 1 pore [72]
Glycine receptors 4 TMs 5-mers 1 pore [73]

Nicotinic acetylcholine receptors 4 TMs 5-mers 1 pore [74]
Zinc-activated channel (ZAC) 4 TMs 5-mers 1 pore
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Table 1. Cont.

Structural
Family Channel

TMs in Each
Pore-Forming

Protomer

Protomers in Each
Channel Complex

Putative Pores in
Each Channel

Complex
Reference

Hexamer Store-operated calcium
channels (Orai) 4 TMs 6-mers 1 pore [75]

Large pore
channels

(≥6-mers)

Volume regulated anion channel
(VRAC/LRRC8) 4 TMs 6-mers 1 pore [76]

Gap junctional
channels/hemichannels

(connexins and pannexins)
4 TMs 6-mers 1 pore [77]

Calcium homeostasis
modulators (CALHMs) 4 TMs 7–13-mers 1 pore [78]

Trimeric channels are the family with the most diverse members: except ASIC and
ENaC, there is no homology among other members (PAC, P2X, TRIC, and Piezo) and
each of them has a unique activation mechanism. Although the number of TMs varies
substantially for these channels (2 TMs for ASIC/ENaC/PAC/P2X, 7 TMs for TRIC, and
38 TMs for Piezo), they all possess only a central pore in the trimeric complex [47–52].

Voltage-gated-like channels are the largest family of channels with a common evolu-
tionary origin. The majority of them adopt a tetrameric or pseudotetrameric architecture
with a central pore formed by TM5 and TM6, including the so-called two-pore channels
(TPCs). A protomer of TPCs has two tandem 6-TM regions and thus two pore-forming
domains (TM5-6 and TM11-12), which assemble a central pore in a complex consisting of
two protomers [61]. The same issue is for the two-pore domain K+ (K2P) channels, which
contain two tandem pore-forming domains (TM1-2 and TM3-4) in each protomer, and
mimic the tetrameric architecture of 2-TM inwardly rectifying potassium (Kir) channels by
dimeric assembly [63]. An exception in the voltage-gated-like family is the voltage-gated
proton channel Hv1, which contains only the voltage sensor domain (TM1-4) and lacks
the canonical pore-forming domain (TM5-6). Each Hv1 protomer has a proton-conducting
pathway that opens cooperatively in the dimeric complex [79].

Other tetrameric channels sharing no obvious homology with voltage-gated channels
are also quite different from each other, except IP3Rs and RyRs which are evolutionarily
related to large Ca2+ channels at the sarco/endoplasmic reticulum [80]. The two novel
proton channels, TMEM175 and Otopetrins, both have two tandem 6-TM regions in each
protomer and form a pseudotetrameric channel complex with two protomers. However,
TMEM175 has only a central pore [69], whereas Otopetrins may possess four or six pores in
each channel complex [70,81]. The remaining two types of tetrameric channels, mitochon-
drial calcium uniporter (MCU) and ionotropic glutamate receptors have their independent
evolutionary origins [65,66].

Pentameric channels, including 5-HT3, GABAA, glycine and nicotinic acetylcholine
receptors, and zinc-activated channel (ZAC), are all 4-TM ligand-gated channels with a
common origin [82]. As the pore-forming subunit of the store-operated Ca2+ channel,
Drosophila Orai adopts a hexameric structure [75], while the structures of mammalian
Orai1/2/3 have not been obtained yet. The three types of large pore channels with less
selectivity for ions and small molecule metabolites (VRAC, gap junctions, and CALHMs)
are structurally similar but with distinct activation mechanisms and electrophysiological
properties [83], therefore may have emerged independently during evolution.

3. Proteins with Cryo-EM Structures Supporting Their Ion Channel Functions
3.1. TMEM175, a Lysosomal Proton and K+ Channel

TMEM175 is a risk gene for Parkinson’s disease first identified by a genome-wide
association study in 2014 [84]. It was subsequently found to encode a K+ channel in
endosomes and lysosomes [28]. Deficiency of TMEM175 disturbs lysosomal membrane
potential, luminal pH stability, and autophagosome clearance, resulting in alpha-synuclein



Cells 2023, 12, 1870 6 of 26

aggregation in neurons [28,85]. Two recent studies suggested that TMEM175 is highly
permeable to protons at acidic pH with PH/PK of ~50,000 or even higher [29,86]. Lack of
TMEM175-mediated proton release causes over-acidification of lysosomal lumen which
compromises the activities of lysosomal enzymes and leads to alpha-synuclein aggregation
in vivo [29]. More independent studies are required to reach an agreement on the proton
and K+ selectivity of TMEM175.

Although not possessing lysosomes and other organelles, bacteria also have homologs
of TMEM175 to form K+-permeable channels. Crystal structures of two bacterial TMEM175
homologs showed a tetrameric architecture with six transmembrane helices (TMs) in each
protomer (Figure S1A) [87,88]. The putative K+-conducting pore is formed by four TM1
helices located at the center of the tetramer, without the TVGYG selectivity filter com-
mon for other 6-TM tetrameric K+ channels [87]. Human TMEM175 channels have a
conserved overall topology similar to its bacterial homologs except that each human pro-
tomer contains 12 TMs that can be divided into structurally similar 6-TM N and C domains
(Figure S1B) [69]. Therefore, the dimeric assembly of human TMEM175 is actually a pseu-
dotetramer mimicking its bacterial homologs. As the N and C domains of human TMEM175
share ~23% sequence identity, gene duplication and fusion could have occurred during
evolution and resulted in the tandem structure of human TMEM175 and its homologs in
other vertebrates. The central ion-conducting pore of human TMEM175 is restricted by
residues on TM1 and TM7, which share ~40% sequence identity. Consistent with elec-
trophysiological studies, the cryo-EM structure of human TMEM175 obtained at pH 7.4
exhibited an open conformation whereas that at pH 5.5 represented a closed conformation
for K+ [86]. Molecular dynamics simulation suggests that proton and K+ may use the same
pathway and the change in their relative permeability at different pH could result from
their competition for hydrophilic residues during constriction/dilation of the pore [86].
To better understand the gating mechanism of TMEM175 for proton and K+ permeation,
it will be of great interest to test the pH sensitivity and proton permeability of bacterial
TMEM175 and resolve their structures at acidic pH.

3.2. Otopetrin 1 (Otop1), Proton Channel as the Sour Taste Receptor

Early in 2003, mutations in the Otop1 gene were found to be responsible for the
dysfunction of the vestibular system in mutant mouse lines by affecting the formation of
otoconia [89], the biomineral particles in the inner ear that transduce gravity and motion to
sensory hair cells. The molecular function of Otop1 and its homologs Otop2/3 as proton-
selective channels was uncovered in 2018 by comparative transcriptomics of taste receptor
cells with and without Zn2+-sensitive proton current [27]. Sour taste in mice lacking Otop1
and Drosophila with mutant Otopetrin-like A (OtopLA) are substantially attenuated [90–92],
confirming its role as the sour taste receptor.

Cryo-EM structures of zebrafish Otop1, chicken Otop3, and Xenopus Otop3 showed
conserved dimeric architecture of this channel family, with 12 TMs in each subunit
(Figure S2A,B) [70,81]. Interestingly, similar to that observed for TMEM175, each Otop
subunit can be divided into two structurally mimicking halves (Figure S2B,C), although
there is no homology on their sequences. In each half of the subunit, an α-helical barrel
formed by the TMs is observed, which contains a glutamine–asparagine–tyrosine triad
at the most constricted position. Mutation of critical residues in either the N- or C-half
domain diminished the proton currents, suggesting both of them are probable proton-
conducting pores (Figure S2A) [70,81]. Additionally, the intra-subunit interface between
the two halves contains functionally important residues conserved in all otopetrins and
is likely capable of conducting protons, making it the third potential pathway for proton
conduction (Figure S2A) [70]. Unlike TMEM175, the central tunnel between the two Otop
subunits is highly hydrophobic and occupied by lipids, which blocked water permeation in
molecular dynamics simulation, suggesting this inter-subunit interface is unlikely to form
an ion conduction pathway. Since all the structures of Otop1 and Otop3 reported so far are
likely in the closed state, further studies resolving the open channel structure are required
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to clarify the authentic proton-conducting pore in this family of channels with a unique
structural arrangement.

3.3. Proton-Activated Chloride (PAC) Channel

An acid-sensitive outward-rectifying (ASOR) Cl− current was initially described in
rat Sertoli cells in 2003 [93]. A similar current activated by low extracellular pH (<5.5) was
then characterized in HEK293 cells in 2005 [94], with permeability to anions in the order of
SCN− > I− > NO3

− > Br− > Cl−. This proton-activated anion current was subsequently
identified in human epithelial cancer cells (Hela) [95], erythrocytes [96] and epidermoid can-
cer cells (KB-3-1) [97], and mouse cortical neurons [98] and distal tubular cells (IMCD3) [99].
The molecular identity of this channel was unveiled in 2019 [25,100]. The transmembrane
protein TMEM206 was demonstrated to form the channel pore with functional properties
consistent with previously reported endogenous ASOR channel, and thus renamed proton-
activated chloride (PAC) channel. PAC is ubiquitously expressed in all tissues and cell
types, and involved in brain damage after ischemia [25] and regulation of endosomal pH
and Cl− level [101].

Cryo-EM studies revealed the trimeric assembly of PAC, with two TMs in each subunit
and a ball-shaped extracellular domain (Figure S3) [49]. The structures obtained at pH8 for
human and pufferfish PAC represented the closed state, whereas the human PAC structure
at pH 4 exhibited a proton-bound non-conducting conformation [49,102]. The open channel
structure of human PAC was recently obtained from both detergent and lipid nanodisc
samples at pH 4.5, in which a channel pore wider than 3 Å that allows hydrated Cl−

to pass through was presented [103]. The distinct structures of PAC at activated, closed,
and desensitized states (Figure S3), and the mutagenesis study of key residues that alter
pH sensitivity and ion selectivity of the channel have well documented the molecular
architecture and gating mechanism of the PAC channel.

3.4. Volume-Regulated Anion Channel (VRAC)

Once exposed to a hypotonic environment, cells swell first and then release ions and
water to reduce the volume to the normal range. Swelling-activated anion currents were
first described in human lymphocytes in 1982 [104]. The molecular identity of VRAC
remained elusive until 2014 when LRRC8A (leucine-rich repeat-containing 8 A, or called
SWELL1) was identified as an essential component of VRAC [23,24]. LRRC8A alone is
found not sufficient to form functional VRAC, instead, it assembles with other LRRC8 pro-
teins (LRRC8B/C/D/E) to form heteromers with variable inactivation kinetics [23]. LRRC8
complex is activated by low ionic strength but not an increase in membrane tension [105],
which occur almost concurrently before channel activation. There are also experiments
showing that diacylglycerol signaling but not reduced intracellular ionic strength is respon-
sible for VRAC activation [106]. Therefore, the exact gating mechanism of VRAC still needs
to be determined by further studies.

Cryo-EM structures of LRRC8 proteins available to date include homomeric
LRRC8A [76,107], DCPIB-inhibited LRRC8A [108], and homomeric LRRC8D [109]. All
these structures are hexamers consisting of a trimer of dimers for LRRC8A or a dimer
of trimers for LRRC8D (Figure S4). The LRRC8 channel contains four structural layers:
extracellular domain (ECD), transmembrane domain (TMD), intracellular linker (ICL),
and leucine-rich repeats (LRR) (Figure S4A). The putative ion-conduction central pore of
LRRC8A is most constricted by Arg103 in the ECD to ~7–8 Å in diameter, which may be the
structural basis for anion selectivity [76,107]. The VRAC inhibitor DCPIB binds Arg103 and
blocks the extracellular mouth of the LRRC8A channel [108]. Efforts have also been made
to resolve the LRRC8A/C heteromeric structure, however, the resolution of which is too
low (7.94 Å) to identify the arrangement of LRRC8A/C subunits [76]. Due to the striking
functional difference between LRRC8A homomer and native VRAC [110], heteromeric
structures of LRRC8A with other LRRC8 members under different ionic strengths are
required to elucidate the activation mechanism of VRAC.
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3.5. Calcium Homeostasis Modulators (CALHMs), Non-Selective Channels with Large Pores

CALHMs are a family of voltage-gated non-selective ion channels inhibited by ex-
tracellular calcium [111]. CALHM1 is permeable to both cations and anions, including
small-molecule metabolites like ATP, whereas the ion channel activity of other vertebrate
CALHMs (CALHM2-6) has not been consistently evidenced [83]. CALHM1 is expressed
in the brain and critical for neuronal excitability and calcium homeostasis in response to
a decrease in extracellular calcium [112]. Although originally proposed to be a risk locus
of Alzheimer’s disease (AD) [33], the association between CALHM1 polymorphism and
AD has been challenged by more investigations in different ethnic populations [83,113].
Expression of CALHM1 in taste buds determines ATP release from taste cells that sense
sweet, bitter, and umami substances and subsequent purinergic signaling in afferent neu-
rons [114]. Without CALHM1-mediated ATP release, the mice lost much of the three tastes
above, but the perception of acid and salt remained unaffected [114]. By far, little is known
about the physiological or pathological functions of CALHM1 and its homologs in addition
to sense of taste and neurological disorders.

Unlike other channels with fixed numbers of protomers in oligomeric assembly,
CALHM members showed quite variable oligomeric compositions (Figure S5A): 7-mer
(CALHM1) [115], 8-mer (CALHM1) [115–118], 9-mer (C. elegans CLHM-1) [116], 10-mer
(CALHM5/6) [119], 11-mer (CALHM2/5/6) [78,116,117], 12-mer (CALHM5) [120] and
13-mer (CALHM5) [120]. In addition to forming (hemi)channels, CALHMs also assemble
into junctions in a tail-to-tail or head-to-head configuration, also with different oligomeric
states (Figure S5B): 10-mer junction (CALHM4 and C. elegans CLHM-1) [119,121] and
11-mer junction (CALHM2/4) [78,119]. It is unknown whether these variable oligomeric
compositions represent their native states or are artifacts resulting from overexpression and
high protein density during cryo-EM sample preparation. All these CALHM structures are
in open conformations with a pore size large enough to permeate ATP (~14 Å). However,
almost no insight into the gating mechanisms of CALHMs has been provided due to the
lack of structures with closed conformation. As lipid-like density is observed in the pore
of CALHM2/4/5 [117,119,120], further experimentation is required to test the hypothesis
that lipids may participate in the regulation of pore size and ion permeation.

3.6. OSCA, Osmo/Mechanosensitive Channels in Plants

OSCA is a large family of proteins in plants originally found to be hyperosmolarity-
activated Ca2+-permeable channels in Arabidopsis by mutant screening and expression
cloning in 2014 [122,123]. With this osmosensor, plants can regulate transpiration and
growth to adapt to water deficiency and osmotic stress. The mechanosensitive nature of
OSCA channels was unveiled by two independent groups in 2018 [124,125]. Heterologous
expression of various OSCA proteins produced robust membrane stretch-activated currents
in PIEZO1-KO HEK293 cells, and the mechanosensitivity and pore-forming role of OSCA1.2
was further confirmed by reconstitution of proteins in liposomes [124].

Cryo-EM structures of OSCA1.1, OSCA1.2, and OSCA3.1 share a surprisingly similar
dimeric architecture with TMEM16 proteins (Figure S6), a family including Ca2+-activated
ion channels and phospholipid scramblases [125–128]. Each OSCA subunit contains
11 TMs, with the latter 10 TMs well matching the 10 TMs in TMEM16 proteins. Although
the structures of OSCA proteins obtained are all in a closed conformation, a putative ion
conduction pore could still be identified in each subunit (Figure S6A). The pores of OSCA
proteins resemble the shape of an hourglass and are constricted by a series of hydrophobic
residues located in different TMs, and are clearly dilated by surface tension in molecular
dynamics simulation [125]. A notable difference between OSCA and TMEM16 proteins is
that OSCA structures do not possess a stable Ca2+-binding site in the region corresponding
to the negatively charged residues-rich domain of TMEM16A [125–128]. Several modes
of mechanosensitive gating of OSCA channels have been proposed based on molecular
dynamics simulations, including the movement of TMs and stretch of the long helices and
linkers in the intracellular domain [125–128]. However, solid evidence can only come from
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structures showing the open channel conformation, which may be a great challenge for
mechanically gated channels without small molecule agonists available.

3.7. Flycatcher1, the Touch-Sensitive Channel of Venus Flytrap

Flycatcher1 is a stretch-activated channel identified in the sensory hair on the leaf of
the Venus flytrap [129], a well-known carnivorous plant (Figure S7A). Flycatcher1 belongs
to the family of bacterial mechanosensitive channels of small conductance (MscS)-like
(MSL) ion channels in plants. Heterogenous expression of Flycatcher1 in PIEZO1-KO
HEK cells results in large stretch-activated Cl− currents [129]. The efflux of Cl− from
sensory cells of the Venus flytrap upon mechanical stimulation would induce membrane
depolarization [129] and subsequent Ca2+ influx and propagation in the leaf, which triggers
trap closure [125]. Interestingly, homologs of Flycatcher1 are also highly expressed in the
touch-sensitive structures of Cape sundew, another carnivorous plant in the family of Venus
flytrap but with distinct morphology (Figure S7B) [129]. Stretch-activated Cl− currents
have also been recorded from the mechanosensitive cells in the leaflet of Mimosa pudica, a
plant well known for its rapid leaflet movement in response to touch (Figure S7C) [130],
implying that homolog of Flycatcher1 may also exist and function as the mechanosensor in
this distally related species.

The cryo-EM structure of Flycatcher1 revealed a heptameric architecture (Figure S7D)
resembling that of the bacterial MscS and plant MSL1 channels, with both N and C termini
intracellularly located [131]. Each Flycatcher1 subunit contains six TMs, of which TM1/2/3
are additional to MscS/MSL1. Single-channel conductance and Cl− permeability are
affected by lysine residue mutations in the side portals of the cytoplasmic cage. A unique
feature of Flycatcher1 is its flexible cytoplasmic TM4-TM5 linker that is much longer than
the corresponding region in MscS/MSL1 and exhibits either up or down orientation. This
linker interacts with the cytoplasmic cage and its conformational change can modulate
channel gating, at least for deactivation kinetics [131].

4. Proteins with Cryo-EM Structures Disputing Their Claimed Ion Channel Functions

4.1. TMCO1, ER Ca2+-Leak Channel or Accessory Subunit of the ER Translocon?

Homozygous frameshift mutation in the transmembrane and coiled-coil domain-containing
protein 1 (TMCO1) gene was identified in 11 patients from the Amish community and
responsible for their congenital anomalies including craniofacial dysmorphism, skeletal
malformation, and intellectual disability [132]. This “TMCO1-defect syndrome” was then
found to share many clinical features with cerebrofaciothoracic dysplasia (CFTD) when
more pathogenic variants were characterized from other populations [122,133,134]. TMCO1
is a transmembrane protein at the ER and its deficiency resulted in supernormal ER Ca2+

level and was therefore proposed to form a Ca2+ channel that releases Ca2+ when the ER
Ca2+ store is overfilled [34]. TMCO1 was proposed to assemble an ion-conducting pore in
a tetrameric architecture, and purified TMCO1 proteins were capable to form functional
Ca2+-selective channels in reconstituted proteoliposomes [34].

Nevertheless, a cryo-EM study that isolated TMCO1-ribosome complexes with Flag-
tagged TMCO1 as a bait demonstrated that TMCO1 is associated with the Sec61 ER translo-
con as an accessory component [135]. TMCO1 is present in the macrocomplex as a monomer
and apparently unable to form a pore by itself (Figure S8). Instead, defect in TMCO1 could
affect the biogenesis of a large variety of multi-pass membrane proteins [135], which may
include the putative Ca2+ load-activated Ca2+-leak channel, and cause the abnormal ER
Ca2+ content in TMCO1-deficient cells. However, a more feasible explanation for the phe-
notype of TMCO1 deficiency is that the Sec61 complex is not only a pathway for importing
polypeptides into the ER but also a Ca2+-permeable channel due to its large pore size [136].
Silencing or inhibition of Sec61 suppressed Ca2+ leakage from the ER [137,138], while a
bacterial exotoxin can facilitate the Ca2+ leakage by arresting Sec61 in a Ca2+-permeable
state [139]. As a critical component of the Sec61 complex, TMCO1 is eligible to function as
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an auxiliary subunit of the Sec61 channel and modulate its Ca2+ permeability in parallel
with polypeptide transportation.

4.2. TMEM120A, Mechanosensitive Channel or Enzyme in Fat Metabolism?

TMEM120A and TMEM120B are initially found to be transmembrane proteins at
the nuclear envelope involved in the differentiation of adipocytes in 2015 [140]. Since
2020, much attention has been drawn to the study showing the role of TMEM120A as
a mechanosensitive channel in dorsal root ganglia (DRG) neurons to sense mechanical
pain [36]. The new name TACAN (“movement” in Farsi) was suggested for TMEM120A in
the same study. Cryo-EM structures of TMEM120A and TMEM120B were soon resolved
by several research groups. The structures of TMEM120A from five independent studies,
as well as a structure of TMEM120B, are almost the same: symmetrical homodimer with
N-terminal coiled-coil domain and C-terminal transmembrane domain with six TMs in each
subunit (Figure S9A) [37,38,141–143]. The TMEM120A structures are highly similar to that
of fatty acid elongase 7 (ELOVL7) (Figure S9B) and contain a coenzyme A molecule bound
within the transmembrane domain (Figure S9A). These results suggest that TMEM120A
may participate in fatty acid metabolism as an enzyme with unknown catalytic activity.

Moreover, four of these five studies failed to record mechanosensitive currents in
cells with TMEM120A overexpression [37,38,142,143]. The remaining one performed a
pressure clamp on TMEM120A-transfected COS-7 cells and identified the M207A mutant
that generated much larger stretch-activated currents than wildtype TMEM120A [141]. As
the authors did not investigate the localization of TMEM120A in COS-7 cells, it is unclear
whether the large mechanosensitive currents are due to the channel activity of TMEM120A
itself, or its regulation of an endogenous mechanosensitive channel. TMEM120A has
been shown to inhibit PIEZO2, but has no effect on PIEZO1 and TREK1 channels [144].
Single-cell RNA sequencing of mechanosensory DRG neurons revealed that TMEM120A is
expressed in all subtypes of mechanosensory neurons but dispensable for the mechanosen-
sitive activity in these neurons [145]. In another aspect, adipocyte-specific deletion of
TMEM120A in mice results in latent lipodystrophy [146], which is in line with the original
finding of the same research group in 2015 [140]. Interestingly, a recent study uncovered
the antiviral function of TMEM120A, which is achieved by interacting with STING and
promoting STING translocation from the endoplasmic reticulum (ER) to the ER-Golgi inter-
mediate compartment [147]. The above studies suggest that the exact molecular function of
TMEM120A in lipid metabolism needs to be recognized to understand its regulatory roles
in fat accumulation, mechanosensitive response, and STING activation, though the possi-
bility that an ion-conducting pore exists in the TMEM120A structure cannot be completely
excluded [141].

4.3. TMEM87A, Mechanosensitive Channel Component or Trafficking Chaperone?

TMEM87A and its homolog TMEM87B are initially recognized as membrane proteins
involved in endosome-to-trans-Golgi network (TGN) retrograde transport [148]. Later in
2020, a study found that the mechanically activated currents in melanoma cells are asso-
ciated with TMEM87A, and expression of TMEM87A induced robust mechanosensitive
currents in PIEZO1-KO HEK293 cells [149]. It was thus renamed Elkin1, from the Greek
word Elko (“to pull”). The cryo-EM structure of human TMEM87A published recently [150]
shows that TMEM87A is a monomer with a sandwich-like extracellular domain and a trans-
membrane domain of seven TMs (Figure S10). Ion-conducting pores cannot be identified
from the structure, and the authors also failed to record mechanosensitive currents from
TMEM87A reconstituted proteoliposomes [150]. Further structural analyses revealed that
TMEM87A is not a G protein-coupled receptor but shares similarities with several Golgi
dynamics (GOLD) domain seven-transmembrane helix (GOST) proteins that function in
membrane-associated protein trafficking. Therefore, if a mechanosensitive channel truly
exists in melanoma cells, TMEM87A may promote its trafficking to the plasma membrane
though it is not specifically involved in this mechano-transduction pathway.
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4.4. TTYH1/2/3, Another VRAC or Not?

Tweety is a gene identified from the flightless locus of Drosophila melanogaster and hence
named after a flightless cartoon bird. Human homologs of tweety (TTYH1/2/3) have
been proposed to be maxi-Cl− channels or VRAC [151–153]. Two recent studies have
presented cryo-EM structures of human TTYH1/2/3 and mouse TTYH2/3 with identical
dimeric architecture and an extended extracellular domain (Figure S11A) [154,155]. A
potential Ca2+-binding site is found in the extracellular domain of TTYH2, which may help
to stabilize the dimeric association of protomers with negatively charged surfaces [154]. In
the absence of Ca2+, TTYH2 proteins are either monomers or head-to-head dimers in lipid
nanodiscs (Figure S11B,C) [154]. Both studies have failed to find the structural basis of an
ion-conducting pore in the TTYH structures. First, TM2-TM5 are tightly packed, and it is
unlikely that a minor conformational change could create an aqueous pathway for ions to
go through in the hydrophobic microenvironment. Second, the inter-subunit interface is
predominantly hydrophobic and incapable of forming a pore. Third, no hydrophilic groove
is found in the transmembrane domain that can potentially serve as an ion-conducting path.
Fourth, all the residues previously proposed critical for ion conduction are located distally
from the membrane and are not useful to indicate the ion-permeation route. In consistency
with these structural observations, electrophysiological recordings confirmed that TTYH
family proteins do not form ion channels [154,155]. Interestingly, a more recent study using
cross-linking and single-molecule fluorescence microscopy demonstrated that TTYH1/3
assembles as tetramers at the plasma membrane, while detergent disrupts tetramers into
dimers [156]. This raised the question of whether the cryo-EM structures obtained from
purified proteins can represent their native architecture in the cell. Nevertheless, this result
also provides evidence that the TTYH complex is not as stable as bona fide ion channels.

4.5. SARS-CoV-2 Viroporins

Viroporins are viral transmembrane proteins that assemble into oligomeric pores
in the plasma membrane or organellar membrane of host cells to allow flux of ions or
small molecules [157]. Among the 29 proteins encoded in the SARS-CoV-2 genome, the
envelope (E) protein, ORF3a, ORF7b, and ORF10 have been proposed to be ion channels
and potential drug targets against viral infection [158,159]. In the meantime, there are
also publications criticizing that the currents of these viroporins are more likely technical
artifacts or endogenous currents of the expression system [160,161].

To date, the only full-length protein structure of SARS-CoV-2 viroporins is from
ORF3a [162]. It forms a dimeric architecture with three TMs in each subunit and C-
termini in the cytosol (Figure S12A). A large polar cavity is found in the inner half of
the transmembrane domain and opens to the cytosol by water-accessible lower tunnels
(Figure S12A). Toward the extracellular or luminal side, hydrophobic residues form a
tight seal above the cavity, making it almost impossible to open a central pore for ions to
pass through. Instead, the authors suggest that the partially hydrophilic grooves between
TM2 and TM3 would be a path for ions, however dramatic conformational change in the
outer half of the transmembrane domain is still required. The authors also found that two
ORF3a dimers can further assemble into a tetramer by a side-by-side connection between
the cytosolic domains, but this contact is limited to eight residues from each side and
thus unable to create a pore [162]. Although the existence of an ion-conducting pore in
the ORF3a structure is somehow ambiguous, the authors provided evidence for ORF3a
being a Ca2+-permeable non-selective cation channel by electrophysiological recording and
fluorescent imaging in proteoliposomes containing ORF3a and mutants [162].

Most recently, a new study presented cryo-EM structures of ORF3a from SARS-CoV-2
and SARS-CoV-1 [39]. Both structures are dimeric and similar to the previously re-
ported one of SARS-CoV-2. The authors argued that the cavity in the transmembrane
domain of ORF3a is surrounded by several positively charged residues that repel cations
(Figure S12B), and thus unlikely to form a pore for cation permeation, regardless of whether
the captured structures are in a closed state or not. The authors also performed compre-
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hensive electrophysiological experiments including whole-cell and endolysosomal patch
clamp in HEK293 cells, and recordings in Xenopus oocytes and reconstituted proteolipo-
somes, but none of these attempts have obtained evidence supporting the channel activity
of ORF3a. The large currents from reconstituted proteoliposomes generally result from
membrane leakiness and/or contamination of endogenous channel proteins in the purified
sample [39].

Different from ORF3a, other proposed SARS-CoV-2 viroporins, including protein
E, ORF7b, and ORF10, possess only one or no transmembrane segment (Figure S12C).
As currently recognized pore-forming proteins from bacteria to mammals all possess at
least 2 TMs, the ability of single-TM proteins to constitute a functional channel would
be highly suspicious. The NMR structure of the transmembrane domain of protein E
showed a pentameric architecture [163]; however, it is unknown whether the full-length
protein E could assemble in the same way. Residues lining the putative central pore of the
pentameric complex are predominantly hydrophobic and the structural basis of its claimed
cation selectivity is unclear, which would indicate a preference for lipid occupation other
than ion permeation. A similar amino acid composition is present in the transmembrane
segment of ORF7b (Figure S12C). For ORF10, it should be noted that it is only a hypothetical
gene, and its transcript was not detected in the subgenomic RNAs (RNA intermediates for
ORF translation, transcribed from viral genomic RNA) of SARS-CoV-2 [164]. The putative
ORF10 coding region is intact in only a few cases of coronaviruses closely related to SARS-
CoV-2. The pathogenicity and transmissibility of SARS-CoV-2 variants with a premature
stop codon in ORF10 were not attenuated, suggesting that ORF10 is not essential for the
virus, or it does not exist at the protein level [165].

5. Proposed Ion Channel Proteins Awaiting Structural Determination
5.1. TMEM63 Proteins as Osmo/Mechanosensitive Channels

TMEM63 proteins are homologs of plant OSCA channels in animals and are proposed
to form either osmosensitive [136] or mechanosensitive channels [124]. Three members
of the TMEM63 family are present in mammals (TMEM63A/B/C) and only one exists in
Drosophila (TMEM63). TMEM63A and TMEM63B are co-expressed in most (if not all) tis-
sues and organs in humans and mice, while TMEM63C is mainly expressed in the nervous
and endocrine systems. Patients carrying heterozygous missense variants of TMEM63A
manifested infantile-onset neurodevelopmental disorders due to transient or severe hy-
pomyelination [132,134,166]. Missense variants of TMEM63B were identified in patients
with intellectual disability and abnormal motor function and brain morphology [167]. No
homozygous mutations for TMEM63A or TMEM63B in humans have been recorded yet.
Biallelic variants of TMEM63C are found to cause hereditary spastic paraplegias, with mild
intellectual impairment in some patients.

Phenotyping data from the International Mouse Phenotyping Consortium (IMPC)
showed that constitutive KO of Tmem63a resulted in abnormal gait, whereas Tmem63b-
null mice all died before weaning, and the heterozygotes showed behavioral phenotypes
similar to the patients. Tmem63c-deficient mice are generally normal and only exhibited
morphological changes in the brain, heart, and liver at the late adult stage. A recent study
found that TMEM63A is expressed in nociceptors in the dorsal root ganglion of mice and
involved in mechanical allodynia [34]. For TMEM63B, the only physiological function
reported so far is its role as a hypo-osmolarity-activated channel regulating the survival of
cochlear hair cells and which supports hearing in mice [136]. Downregulation of TMEM63C
in podocytes is associated with kidney damage in rats and affects glomerular function in
zebrafish [168]. In Drosophila, TMEM63 is used as a mechanosensor to detect the grittiness
of food [131] and environmental humidity [169].

The major controversy on TMEM63 channels is their activation mechanisms in het-
erologous expression systems, while activation by hyper-osmolarity, hypo-osmolarity, and
mechanical stretch have all been reported but cannot be cross-validated [123,124,136,138].
According to AlphaFold prediction, TMEM63 proteins share the same structural arrange-
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ment with the OSCA proteins, with 11 TMs in each subunit which place the N- and
C-terminus outside and inside the cell, respectively (Figure S13). It can be expected that
TMEM63 channels also adopt a dimeric architecture as OSCA channels, however, a detailed
comparison between the cryo-EM structures of these two close homologs will help to
further understand the structural basis of their ion-conducting pathway, ion selectivity, and
gating mechanisms.

5.2. TMEM150C/Tentonin3, Mechanosensitive Channel or Just a Regulator?

TMEM150C was found to be a component of a mechanosensitive channel with slow-
inactivating kinetics in 2016 and the name Tentonin3 (from the Greek word “Tentono” which
means “to stretch”) was proposed by the authors [170]. The deficiency of TMEM150C at-
tenuated the slow adapting mechanically induced currents in DRG neurons and affected
motor coordination in mice [170]. Studies from the same research group further found that
TMEM150C also participates in the sensing of blood pressure in the aortic arch by function-
ing as a component of the baroreceptor [171], and contributes to glucose-stimulated insulin
secretion in pancreatic β-cells [172]. However, the mechanosensitivity of TMEM150C
was argued by the slow inactivating mechanosensitive current was only observed in
TMEM150C-transfected HEK293 cells with endogenous expression of Piezo1. In Piezo1-
knockout HEK293 (HEK-P1KO) cells, overexpression of TMEM150C did not produce any
current that responds to mechanical stimulus [173]. In response to this argument, evi-
dence that partially supports the channel-forming role of TMEM150C was provided by
authors of the original article: (1) the currents of Piezo1 and TMEM150C were additive
to each other when they were overexpressed in HEK293T cells separately or together;
(2) mutations in the putative pore region of TMEM150C altered the relative permeability
of Cl− to Na+ [174]. Nonetheless, a later study from another independent research group
demonstrated that TMEM150C was able to slow down the inactivation of mechanosen-
sitive currents of Piezo1/2 and the two-pore K+ channel TREK-1, and overexpression
of TMEM150C alone in HEK-P1KO showed no mechanical response [175]. Moreover, a
recent study found that TMEM150C also failed to generate a mechanosensitive current in
Piezo1-knockout N2A neuroblastoma cells, and the Tmem150c−/− mice showed no changes
in the activity of cutaneous sensory neurons and motor coordination [176], which further
doubted the role of TMEM150C in mechanosensation.

TMEM150C belongs to a transmembrane protein family with two other members
TMEM150A and TMEM150B, and all share a highly conserved 6-TM structure according
to AlphaFold prediction (Figure S14). As reported, the amplitudes of mechanosensitive
currents by TMEM150A/B in HEK293T cells were much smaller than TMEM150C and not
significantly different from the GFP-transfected control [170], suggesting the mechanosensi-
tivity of TMEM150A/B should be very weak or none. TMEM150A has been found to inter-
act with phosphatidylinositol 4-kinase type IIIα (PI4KIIIα), the major enzyme responsible
for the synthesis of phosphatidylinositol 4-phosphate (PI4P) at the plasma membrane [169].
PI4P is the precursor of phosphatidylinositol 4,5-bisphosphate (PIP2), which is a critical
phospholipid regulating a variety of ion channels by itself and its downstream metabo-
lites diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) [177]. Overexpression of
TMEM150A enhances the rate of PIP2 recovery following PIP2 depletion by phospholipase
C [167,169], implying that it may modulate the activity of ion channels via lipid regulation.
Although unable to directly interact with PI4KIIIα, TMEM150B has been shown to perform
a similar function as TMEM150A when the C terminal tail of TMEM150A was fused to its
full-length sequence [169]. Since no cellular functions of TMEM150C other than its role in
mechanosensation have been proposed, it is attractive to investigate whether it has a similar
action in phospholipid metabolism as TMEM150A. To better understand the molecular
functions of the TMEM150 protein family, cryo-EM structural study will greatly help to
determine whether they are pore-forming proteins, facilitators of phospholipid synthesis,
or something else.
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5.3. MITOK and MITOSUR as the Mitochondrial ATP-Sensitive K+ Channel

ATP-sensitive K+ (KATP) currents across the mitochondrial inner membrane were
first described in mitoplasts from rat liver in 1991 [178]. Unlike the plasma membrane
KATP channel (first reported in 1983 [179]) with the sulfonylurea receptor (SUR) and Kir6.2
subunits characterized in 1995 [180,181], the molecular identity of mitoKATP has remained
elusive until 2019. Screening of mitochondrial membrane proteins with unknown func-
tions identified MITOK (encoded by the CCDC51 gene) and MITOSUR (ATP-binding
cassette protein 8, ABCB8) as the pore-forming and regulatory subunits of mitoKATP, re-
spectively [182]. Reconstitution of MITOK and MITOSUR into liposomes produced currents
with major properties of mitoKATP. Because MITOK/MITOSUR share no homology in
sequences with their counterparts Kir6.2/SUR in the plasma membrane KATP channel, it
is currently unknown whether they could form a mitoKATP channel in a similar architec-
ture: a pore-forming Kir6.2 tetramer with four peripheral SUR subunits each docked on
a Kir6.2 protomer (Figure S15A) [183]. The structure of MITOK (CCDC51) predicted by
AlphaFold contains several unordered TMs and is not very informative (Figure S15C). The
cryo-EM structure of MITOSUR (ABCB8) exhibited a dimeric architecture typical of ABC
transporters [184], which lacks the additional transmembrane domain 0 (TMD0) of SUR
subunit that interacts with Kir6.2 (Figure S15D,E). It can be expected that the structure of an
MITOK/MITOSUR complex will be presented in the near future to demonstrate whether
they are a bona fide structural basis of mitoKATP.

5.4. SLCO2A1 as the Maxi Cl− Channel

Maxi Cl− channel is an anion-selective channel with large conductance that exists in
species from amphibians to mammals [185]. Its activity was initially detected in skeletal
muscle cells [186] and subsequently observed in neurons, glia, lymphocytes, cardiomy-
ocytes, and many other cell types [187]. Maxi Cl− channel is considered an important ATP
release pathway in addition to gap junctional hemichannels and CALHMs [185]. Attempts
to characterize the molecular identity of maxi Cl− channel have excluded a long list of
known anion channels, solute carrier (SLC) family transporters, and other transmembrane
proteins, and eventually identified SLCO2A1 (Figure S16), a well-recognized prostaglandin
transporter [188,189], as the core component of the maxi Cl− channel [190]. When heterol-
ogously expressed in cells and reconstituted into liposomes, SLCO2A1 recapitulated the
properties of the maxi Cl− channel, and its role in ATP release was also confirmed [190]. Al-
though it is proposed that SLCO2A1 may function as a prostaglandin transporter at resting
state, and becomes permeable to Cl− and ATP in the activated state [185], no substantial
evidence has been provided for this hypothesis. Cryo-EM study on SLCO2A1 and its po-
tential regulatory proteins ANXA2 and S100A10 [191] will be the most straightforward way
to determine whether it is eligible to implement dual functions of prostaglandin transport
and anion permeation. The role of SLCO2A1 as the pore-forming subunit of the maxi Cl−

channel would be ultimately confirmed only if a large pore lined with positively charged
residues is observed.

5.5. Mixed Lineage Kinase Domain-like (MLKL) Protein as a Necroptotic Cation Channel

MLKL is the “executioner” of necroptosis [192]. After necroptotic induction and
formation of receptor-interacting protein kinase 1 (RIPK1)/RIPK3 complex (necrosome),
MLKL is recruited into the necrosome and phosphorylated by RIPK3 [193]. Phosphorylated
MLKL is then dissociated from the necrosome, oligomerized, and translocated to the plasma
membrane [194]. Aggregation of MLKL oligomers at the plasma membrane permeabilizes
the cell and results in lytic cell death (Figure S17A) [195]. Structurally, MLKL possesses an
N-terminal transmembrane domain with four TMs and a C-terminal pseudokinase domain
interacting with RIPK3 [196]. Full-length MLKL or its N-terminal domain is sufficient to
form a cation channel in the planar lipid bilayer, with permeability to Na+, K+, and Mg2+,
but not Ca2+ [197]. MLKL is found to form tetramers or octamers (dimer of tetramers)
before or during translocation [198]; however, there is also a study showing that MLKL
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forms large amyloid-like polymers with a molecular weight of over 2 million Daltons [199].
The only protein structure of full-length MLKL available so far is the crystal structure of
mouse MLKL at an unphosphorylated state, which is simply monomeric (Figure S17B) [196].
The structural basis of the MLKL channel and its ion selectivity is unclear. Cryo-EM study
on phosphorylated MLKL oligomers will help to address this issue.

5.6. Chloride Intracellular Channels (CLICs), Transformers of Soluble Proteins?

CLICs are a family of evolutionarily conserved proteins in animals, normally with
six members (CLIC1-6) in vertebrates [200]. The first CLIC protein (p64) was identified
in a study searching for a Cl− channel in the bovine kidney [201,202] and later named
CLIC5B. Although sequence analyses of p64 and later discovered NCC27 (CLIC1) and
p64H1 (CLIC4) did not show signs of transmembrane proteins, ion channel activities were
recorded in microsomes or cells overexpressing these proteins [203–205]. The pore-forming
properties of CLIC proteins were demonstrated by incorporating purified proteins into
artificial lipid bilayers and electrophysiological measurements (reviewed by Littler, Harrop,
Goodchild, Phang, Mynott, Jiang, Valenzuela, Mazzanti, Brown, Breit and Curmi [200]).

As the best studied CLIC protein, CLIC1 is a soluble monomeric protein with the
typical structure of the glutathione S-transferase (GST) superfamily proteins under reducing
condition [206]. Upon oxidation, CLIC1 proteins assemble into non-covalent dimers due
to structural rearrangement of the N-terminal domain, in which a disulfide bond (Cys24-
Cys59) is formed in each protomer and a large hydrophobic surface is exposed to serve as
the dimer interface (Figure S18) [207]. The major structural transition during oxidation is
the conversion of the four-stranded β sheet into a helical structure, which is potentially
integrated into lipid bilayers as a transmembrane segment [208]. The membrane-spanning
CLIC1 proteins then oligomerize into a channel complex (Figure S18) [209]. Nonetheless, it
was also shown that soluble CLIC1 proteins can spontaneously insert into the membrane
without oxidation [210]. A recent study found that binding of intracellularly released
Zn2+ triggers CLIC1 insertion into the membrane and Cl− efflux through presumed CLIC1
channels is activated at low pH [211].

In addition to the channel function, CLIC proteins are also found to interact with
ezrin, radixin, and moesin (ERM) proteins that crosslink membrane and cortical actin.
CLIC and ERM proteins regulate actin-facilitated membrane processes such as microvillar
maintenance, phagocytosis, and vesicle trafficking under the control of Rho GTPases
(reviewed by Jiang, et al. [212]). It is not surprising that a metamorphic protein can perform
distinct functions with different conformations. However, before adding CLICs to the
expanding list of metamorphic proteins, it is essential to resolve the structures of all the
presumed conformations. If the membrane integral form of CLIC proteins does stably
exist, they could be captured with nanodiscs and subject to cryo-EM analysis. The claim
that CLICs are an exceptional class of ion channels will be accepted undoubtedly only
if a structure of the membrane-spanning complex with internal hydrophilic pathways
is observed.

6. Perspective: Structure-Guided Discovery of Unrecognized Ion Channels

It has been much more challenging to identify novel ion channels nowadays as most of
the characteristic membrane currents have been assigned to ion channels with unambiguous
molecular identities. However, there are still a considerable number of transmembrane
proteins of unknown function in the human proteome, which potentially contain some
pore-forming proteins not yet recognized. Based on different algorithms, the number
of transmembrane proteins in the human proteome ranges from 5508 to 7651, ~45% of
which are single-TM proteins [213,214]. To assemble an ion channel with transmembrane
proteins, amino acid residues lining the TMs should fulfill the following criteria: (1) be
overall hydrophobic to ensure stable integration into the membrane; (2) be able to create a
hydrophilic pathway for ions to go through; (3) interact with residues in adjacent TMs to
stabilize the architecture of the pore. It is almost impossible to allocate all these properties
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to a single TM, so ion channels recognized so far are all formed by proteins with at least
two TMs.

Among the ~3000 (conservative estimate) proteins with two or more TMs, the largest
family is the 7-TM G protein-coupled receptors (GPCRs) with more than 800 members [215].
The promiscuous TMEM proteins, which were randomly assigned with numerical names
(TMEM1-TMEM275) and sometimes mistakenly called a “family”, represent the most myste-
rious collection of transmembrane proteins. Some TMEM proteins, including TMEM38A/B
(TRIC-A/B), TMEM175, TMEM206 (PAC), and TMEM63A/B/C, have been recognized
as ion channels, while some others are found to conduct other cellular functions, such as
TMEM30A/B being auxiliary subunits of phospholipid flippases [216]. However, most
of the TMEM proteins have not been functionally characterized and are potentially an
important source of unidentified ion channels.

The cases of SLCO2A1 and CFTR indicate that the over 400 SLC transporters [217]
and 49 ATP-binding cassette (ABC) transporters [218] may also contain some ion channels
due to evolutionary modifications. Family with sequence similarity (FAM) proteins, where
Piezo1/2 were recognized from, are also a large collection of ~200 miscellaneous pro-
teins (including non-transmembrane ones) with unknown functions. Coiled-coil domain-
containing (CCDC) proteins are potential complex-forming proteins with ~150 members,
one of which has been found to be the pore-forming subunit of the mitoKATP channel
(CCDC51/MITOK). The 70 members of the leucine-rich repeat-containing (LRRC) proteins,
including VRAC components LRRC8A-E and big-conductance K+ (BK) channel auxil-
iary subunits LRRC52/55/38/26 [219], represent one more class of channel candidates
or regulators.

Identification of novel ion channels may not be essentially limited to proteins of
unknown function. Even when a cellular function has been assigned to a transmembrane
protein, one cannot simply rule out the possibility that it can be assembled into an ion
channel complex. Although not accomplished, the F-type ATP synthase in the inner
mitochondrial membrane has been considered the leading candidate for mitochondrial
permeability transition pore (mPTP) with structural evidence [220,221]. It can be expected
that along with the rapid progress of structural determination of transmembrane proteins,
a certain number of novel pore-forming complexes will be identified and subjected to
electrophysiological validation (Figure 2). This is a completely reverse way compared to
the traditional route of ion channel discovery, and probably the most rational strategy to
recognize new ion channels in the cryo-EM era.

For structural biologists, it is routine work to characterize potential hydrophilic path-
ways within a protein complex even when it is in a closed state. If an ion-conducting pore is
structurally predicted, the most challenging task will be assigned to electrophysiologists: to
find out how to activate the structurally specified ion channel candidates. Various factors,
such as voltage, Ca2+, Na+, pH, osmolarity, ionic strength, temperature, and mechanical
force, need to be tested. If none of these works, the possibility of the candidate being a
ligand-gated channel could be considered, which may require high-throughput screening
of metabolites to catch the activating molecules. Single-cell expression analyses and subcel-
lular localization of the candidates will also provide useful information to help uncover
their activation mechanisms by shortlisting physiological factors with potential actions on
the candidates.
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Figure 2. Strategy of structure-guided discovery of unrecognized ion channels. A pore-forming
channel protein is expected to have at least two TMs and a hydrophilic ion-conducting pathway that
can be detected in either closed or open states.

7. Conclusions

The characterization of electrical currents generated by specific ion channels on cell
membranes with the patch clamp technique is often interfered with by electrical noise
from the equipment, leak conductance from unstable micropipette–membrane seal, and
background currents of the cells. In reconstituted proteoliposomes and artificial lipid
bilayers with purified proteins, electrophysiological recordings are frequently associated
with membrane leak currents and contamination of endogenous channel proteins from the
expression system. These technical issues and the selective use of data contributed to most
cases of misidentified channel proteins.

Cryo-EM has been demonstrated to be a powerful tool to validate the pore-forming
ability of claimed channel proteins. To assemble an ion-permeable transmembrane structure,
proteins should be capable of creating a hydrophilic pathway for ions to pass through the
overall hydrophobic environment. Even when an ion channel structure is in the closed
state, this hydrophilic pathway should be still identifiable, with the potential to expand
into the open state by small conformational changes.

The large number of understudied transmembrane proteins is the most important
source of unrecognized ion channels. With the fast progress of cryo-EM structural deter-
mination and the assistance of artificial intelligence, structural data will not only be used
to interpret the molecular basis of protein functions already known, but also to predict
unidentified functions of proteins de novo. When integrated with conventional approaches,
this structure-guided functional prediction strategy will be very useful for identifying more
ion channels with unusual properties.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells12141870/s1, Figure S1. Cryo-EM structures of TMEM175;
Figure S2: Cryo-EM structure of Otop 1; Figure S3: Cryo-EM structures of human proton activated
chloride (PAC) channel; Figure S4: Cryo-EM structures of volume regulated anion channel (VRAC);
Figure S5: Cryo-EM structures of calcium homeostasis modulators (CALHMS); Figure S6: Structures
of OSCA 1.2 and TMEM 16; Figure S7: Touch-sensitive plants and cryo-EM structure of Flycatcher 1;
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Figure S8: Cryo-EM structure of the ribosome-TMCO1 translocon complex; Figure S9: Cryo-EM
structure of TMEM120A; Figure S10: Cryo-EM structure of human TMEM87A; Figure S11: Cryo-
EM structures of mouse TTYH2; Figure S12: Structures of SARS-CoV-2 viroporins; Figure S13:
Structural comparison of OSCA and TMEM63 proteins; Figure S14: AlphaFold-predicted structures
of TMEM150A/B/C; Figure S15: Structural comparison of the components of plasma membrane
KATP and mitoKATP; Figure S16: AlphaFold-predicted structure of human SLCO2A1; Figure S17:
Function and structure of MLKLprotein; Figure S18: Hypothesis of the channel-forming process
of CLIC1.
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