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Abstract: Compounds that disrupt microtubule dynamics, such as colchicine, paclitaxel, or Vinca
alkaloids, have been broadly used in biological studies and have found application in clinical anti-
cancer medications. However, their main disadvantage is the lack of specificity towards cancerous
cells, leading to severe side effects. In this paper, we report the first synthesis of 12 new visible light
photoswitchable colchicine-based microtubule inhibitors AzoCols. Among the obtained compounds,
two photoswitches showed light-dependent cytotoxicity in cancerous cell lines (HCT116 and MCF-7).
The most promising compound displayed a nearly twofold increase in potency. Moreover, dissimilar
inhibition of purified tubulin polymerisation in cell-free assay and light-dependent disruption of
microtubule organisation visualised by immunofluorescence imaging sheds light on the mechanism
of action as microtubule photoswitchable destabilisers. The presented results provide a founda-
tion towards the synthesis and development of a novel class of photoswitchable colchicine-based
microtubule polymerisation inhibitors.

Keywords: photopharmacology; colchicine; tubulin; photoswitches

1. Introduction

Photopharmacology is an emerging method based on incorporation of photoswitch-
able component—molecular switches into the skeleton of a parent compound with expected
biological activity. The goal of photopharmacology is to reduce the effects of drug sub-
stances apart from the cellular target and severe systemic/environmental side effects by
establishing an external and selective means of controlling the activity of these compounds
with time and spatial precision. It involves the design, synthesis, research, and applica-
tion of drugs in the form of photochromic molecular switches which can be regulated by
light [1–4]. Although photopharmacology is a relatively new technique that has not yet
found clinical application, recent years have abounded with outstanding research towards
the development of novel photoresponsive bioactive compounds including G protein-
coupled receptors (GPCRs) agonists [5–7], ion channels activity modulators [8–10], and
enzyme inhibitors [11]. Azobenzenes are photoswitches that can have many applications
in photopharmacology. They can be switched between the (E) and (Z) configurations
by light [12,13]. Due to their small size, high quantum efficiency, high extinction coeffi-
cients, low photobleaching factor, and easy synthesis, they are perfect structural elements
for creating complex optical tools—they require low-intensity light and, because of their
stability, they can be switched many times in a large number of cycles [14–16]. For exam-
ple, the action of photopharmaceuticals containing skeletal fragments of azobenzene as a
functionalizing unit allows for control of biological functions with precision in space and
time [17–20]. Classical azobenzenes also have disadvantages that limit their practical use
in biological sciences. The first is the necessity to use destructive and harmful-to-cells UV
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light necessary to induce (E)→ (Z) isomerisation by excitation of π→ π*. The second is
incomplete reverse (Z)→ (E) photoisomerisation, caused by radiation with the maximum
absorption in the visible region, in which the n→ π* bands of (E) and (Z) isomers overlap,
which makes it impossible to selectively analyse each of the geometric isomers and select
excitation. Therefore, azobenzenes should be modified by introducing various substituents,
e.g., halogen, alkoxyl, etc. [21–23]. Implementation of ortho-fluorine atoms renders the
separation of the n → π* absorption bands in the UV-VIS spectrum possible. This en-
ables selective addressing of each geometric isomer and its selective activation [24–27].
Microtubules (MT) are vital cytoskeletal constituent present in eukaryotic cells which
are involved in many cellular processes. MT are hollow cylindrical polymers composed
of αβ-tubulin heterodimers noncovalently bounded longitudinally and laterally. Their
ability to rapidly reorganise from growing (by incorporating new αβ-tubulin subunits
at the (+) end of MT) to shrinking (by removal of αβ-tubulin subunits) and vice versa,
known as “dynamic instability”, is crucial for MT bioactivity and can be modified by small
molecules known as microtubule-targeting agents (MTAs). These compounds can be di-
vided into two main groups, depending on their influence on polymerised tubulin mass at
high concentrations, namely microtubule-stabilising agents (e.g., taxanes and epothilones)
and microtubule-destabilising agents (e.g., vinca alkaloids, maytansines, and colchicine
derivatives) [28,29]. In turn, when low concentrations are applied, both classes suppress mi-
crotubule dynamics [30–32]. Importantly, microtubule-targeting agents disrupt formation
and proper activity of mitotic spindle, leading to impaired chromosome segregation during
mitosis and, consequently, cell death [33]. Over the past few decades, hundreds of MTAs
have been synthesised and evaluated for their bioactivity [34–36]. However, there are only
a handful of classes of photoswitchable microtubule-targeting agents (PMTAs) that are
currently known [19]. Studies from three independent groups have described the first po-
tent photoswitchable analogues of combretastatin A-4 CA4, namely photostatins PTS-1, in
which the isosteric nitrogen–nitrogen double bond replaces the carbon–carbon double bond
of CA4 (Figure 1a) [37–39]. Since then, other photoswitchable microtubule-destabilising
agents based on CA4 analogues have been developed, e.g., hemithioindigos HOTub-
31, PHTub-7 [40–42], spiropyrans [43,44], and styrylbenzothiazoles (SBTub-A4) [45,46]
(Figure 1a). Recently, photoswitchable plinabulin-based microtubule inhibitors have been
developed [47]. Despite extensive research towards novel PMTAs, no colchicine-based
photoswitchable microtubule-destabilising agents have yet been described. In contrast,
only two classes of photoswitchable microtubule-stabilising agents have been published:
paclitaxel-based [48] and epothilone-based photoswitchable microtubule stabilisers [49]
(Figure 1b). Each set of compounds has its own disadvantages and advantages. In cases
where UV light is used to induce photoisomerization in a biological context, several in-
herent limitations have to be taken into account. UV light has low tissue penetration
ability [50], and hard UV light might lead to DNA mutations; thus, it is toxic to normal
cells. Furthermore, high-energy UV light can cause irreversible photolysis (e.g., photoox-
idation, photoisomerisation, free radical formation) and thus cannot be applied in some
pharmacophore structures. It was shown that exposure to UV light irradiation of colchicine
causes the formation of β-lumicolchicine, γ-lumicolchicine, α-lumicolchicine, and loss of
bioactivity [51,52].

In this study, our goal was to develop novel visible light photoswitchable colchicine-
based microtubule disrupting agents and assess their antiproliferative activity against
selected tumorous cell lines.
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Figure 1. Structures of (a) combretastatin A-4 CA4 and known photoswitchable microtubule desta-
bilisers and (b) stabilisers.

2. Materials and Methods
2.1. Synthesis

Compound characterisation and copies of NMR spectra are provided in the Supporting
Information.

(R)-N-deacetyl colchicine was synthesised according to a protocol previously pub-
lished [53].

General procedure A: the aqueous solution (35 mL) of oxone® (3.5 mmol) was added,
dropwise, to the solution of aniline derivative 1a–d (1 mmol) in dichloromethane (20 mL).
The reaction mixture was vigorous stirred at room temperature. After disappearance of the
starting material (analysed by TLC), the reaction was quenched by addition of NaHCO3.
After separation, the aqueous phase was extracted twice with DCM. The combined organic
layers were dried over MgSO4 and concentrated in a vacuum. The residue containing
nitrosoarene 2a–d was dissolved in acetic acid (50 mL) and appropriate isomer of aminoben-
zoic acid (1 mmol) was added. The reaction was stirred at room temperature for 24 h and
then poured into water. The crude product was collected by filtration and recrystallized
from ethyl acetate to afford the analytically pure product. For soluble products, the solvent
was evaporated, and the residue was subjected to column chromatography with 1% of
acetic acid in DCM used as eluent.

General procedure B: a solution of appropriate azobenzene m-, p-3a–d obtained from
procedure A (0.3 mmol) in DMF (5 mL) was added to (R)-N-deacetyl colchicine (0.15 mmol),
HATU (0.15 mmol), and DIPEA (0.9 mmol) under argon atmosphere. The mixture was
stirred at room temperature for 4 h and then diluted with ice-cooled water and extracted
with ethyl acetate (2 × 40 mL). Combined organic layers were washed with brine dried
over MgSO4 and evaporated under reduced pressure. The residue was purified by silica
gel column chromatography (DCM/MeOH 9:1).

General procedure C: thionyl chloride (5.0 mmol) was added to a solution of 2-
aminobenzoic acid (1.05 mmol) in toluene (5 mL), and the mixture was refluxed for 4 h.



Cells 2023, 12, 1866 4 of 16

Next, the solvent was evaporated under reduced pressure to obtain the crude acid chloride
as yellow oil, which was used immediately in the next step without any purification. Et3N
(1.05 mmol) was added to a solution of (R)-N-deacetyl colchicine (1.0 mmol) in DCM
(10 mL) at 0 ◦C and stirred for 15 min. The solution of acid chloride in methylene chloride
(5 mL) was added dropwise to the latter mixture at 0 ◦C and stirred overnight. Thereafter,
the solvent was removed under reduced pressure and the residue was purified by column
chromatography (ethyl acetate/acetone 4:1) to afford intermediate S1. In subsequent reac-
tions, nitrosobenzenes 2a–d (obtained as in general procedure A, 0.2 mmol) was dissolved
in acetic acid (5 mL) and intermediate S1 (0.15 mmol) was added in DCM (5 mL). The
reaction was stirred at room temperature for 24 h and then the solvent was evaporated. The
residue was dissolved in ethyl acetate (10 mL), washed with NaHCO3 (2 × 2 mL) water
(2 mL), dried over MgSO4, and concentrated in a vacuum. The product was purified by
silica gel column chromatography (DCM/MeOH 95:5).

2.2. Tubulin Polymerisation Assay

Tubulin from porcine brain was purified according to a protocol published previ-
ously [54]. The tubulin polymerisation reaction was conducted at 3.5 mg/mL tubulin, in a
tubulin polymerisation buffer (80 mM piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES)
pH = 6.9; 0.5 mM EGTA; 2 mM MgCl2), in a 96-well plate (100 µL), in a EnSpire® multimode
plate reader (PerkinElmer, Turku, Finland) with temperature maintained at 37 ◦C. Tubulin
was initially preincubated for 30 min at room temperature with (Z) enriched isomer (green
light pre-illuminated) or with all (E) isomer (thermally adapted in dark) of o-AzoCol26DF
(10 µM) in buffer with 1% DMSO, without GTP. A sample with 1% DMSO alone was used
as a control. GTP was added to the concentration 1 mM, and the change in absorbance
at 340 nm was monitored at 15 s intervals for 20 min. A solution of colchicine (5 µM) or
cosolvent (DMSO) was used as a control.

2.3. Cell Culturing

Cells were cultured in a humidified incubator at 37 ◦C under 5% CO2. Human breast
adenocarcinoma (MCF-7) cells were maintained in phenol red-free Dulbecco’s Modified
Eagle’s Medium (Thermo Fisher Scientific, Waltham, MA, USA, 11054020) supplemented
with 2 mM L-glutamine, and human colorectal carcinoma (HCT116) cells were maintained
in the same medium but supplemented with 4.5 g/L glucose and 4 mM L-glutamine.
All culture media were supplemented with 1% Penicillin-Streptomycin (Sigma-Aldrich,
Burlington, MA, USA, P4333) and 10% fetal bovine serum (Gibco, Billings, MT, USA, 10270-
106). Cells were sub-cultured at approximately 70–90% confluency to maintain the culture
in the logarithmic growth phase.

2.4. MTT Cytotoxicity Assay with Green and Blue Light Irradiation

Cells were seeded in a 96-well plate at the density of 7 × 103 cells per well and
allowed to grow for 24 h. Afterwards, the medium was aspirated, and a fresh medium
was added (200 µL) with serial dilutions of tested compounds or DMSO at corresponding
concentrations as a control. Following 48 h of incubation under 500 ms pulsed green or blue
light irradiation every 15 s, the medium was replaced with a medium (100 µL) containing
MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, 0.5 mg/mL) and
incubated at 37 ◦C for 4 h. The formed formazan was dissolved in DMSO (100 µL) and
incubated at 37 ◦C for 10 min. The absorbance was measured at 540 nm. After blank
subtraction, the half maximal effective concentration (IC50) was calculated by GraphPad
Prism software version 7 (GraphPad Software Inc., San Diego, CA, USA). Each independent
experiment was performed in triplicate.

2.5. Immunofluorescence

Cells were seeded on coverslips on a 24-well plate at a density of 5 × 104 cells per
well and allowed to grow overnight. Next, the medium was replaced with a medium
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containing the o-AzoCol26DF or the colchicine (without illumination) or DMSO as control
and incubated for 24 h under 500 ms pulsed green or blue light irradiation every 15 s.
Then, cells were fixed and permeabilised with 100% methanol at −20 ◦C for 15 min and
subsequently washed three times with PBS at room temperature. After 1 h blocking
with 3% BSA/PBS at 4 ◦C, slides were incubated with anti-α tubulin 12G10 antibody
(Developmental Studies Hybridoma Bank, University of Iowa, Iowa City, IA, USA) (diluted
1:300 in 3% BSA/PBS) and anti-acetylated α- tubulin antibody (Cell Signalling, Danvers,
MA, USA) (diluted 1:1000 in 3% BSA/PBS) overnight at 4 ◦C. After 3× 10 min washing with
PBS, slides were incubated with AlexaFluor555-conjugated anti-rabbit and AlexaFluor488-
conjugated anti-mouse secondary antibodies (diluted 1:400 in 3% BSA/PBS) (Thermo
Fisher Scientific, Waltham, MA, USA, A31570) and with DAPI (50 ng/mL) for 1 h at room
temperature. After washing (3× 10 min with PBS), slides were mounted in Fluoromount-G
(Southern Biotech., Birmingham, AL, USA). Images were recorded using Leica TCS SP8
(Leica Microsystems, Wetzlar, Germany) confocal microscope and analysed using ImageJ
1.53t software.

2.6. Cell Cycle Stages Analysis

Approximately 106 cells were plated and treated with DMSO, colchicine, or o-AzoCol26DF.
Next, the medium was replaced with a medium containing solution of the o-AzoCol26DF
or solution of the colchicine (without illumination) or DMSO as control and incubated for
24 h under 500 ms pulsed green or blue light irradiation every 15 s, as described above.
After 24 h, cells were harvested, fixed with 70% ethanol, and stained with 50 µg/mL
propidium iodide with presence of 50 µg/mL RNAse A. Stained cells were immediately
analysed in Cytometer BD FACSCalibur (BD, Franklin Lakes, NJ, USA).

3. Results and Discussion
3.1. The Computational Study

As mentioned in the introduction, the implementation of fluorine atoms makes it
possible to separate the n→ π* absorption bands in the UV-VIS spectrum and to separate
them from the π→ π* band. This is why we first computed and analysed the geometry
proposed by using compounds, o-, m-, p-3a–d for (E) and (Z) isomers, using the density
functional theory (DFT). In the calculations, the B3LYP functional, 6-31G*, and basis set was
employed and the continuum model (PCM; Gaussian 03W, see Supporting Information)
was used to simulate the effects of the solvent, DMSO [55,56]. This method successfully
reproduces the relative energies of the isomers of many azobenzene derivatives, including
bridged azobenzenes [57,58]. The SCF energy for the (E) and (Z) isomers of o-, m-, p-3a–d is
presented in Table S1 in the Supporting Information. For all compounds, the (E) isomer
has a lower energy (mostly 55.8–59.8 kJ/mol). The smallest differences were observed for
(E)-p-3d/(Z)-p-3d and (E)-m-3d/(Z)-m-3d at 43.38 kJ/mol and 45.98 kJ/mol, respectively.
Moreover, for compounds (E)-o-3b/(Z)-o-3b and (E)-o-3a/(Z)-o-3a, due to the large spheri-
cal hindrance, differences are the largest at 81.08 kJ/mol and 80.61 kJ/mol, respectively. In
the case of (E)-o-3d/(Z)-o-3d and (E)-o-3c/(Z)-o-3c, the hydrogen bonds between fluor of
first ring and hydrogen of second ring can be observed, such bonds reducing the energy
difference between the (E) and (Z) isomers (56.13 kJ/mol and 56.78 kJ/mol, respectively, see
Supporting Information). The geometry of the respective photoswitch has a strong influ-
ence on the n→ π* excitation energies. To determine whether the conformational changes
of the photoswitch structures provide shifts in the excitation energies, we calculated the
energy of (E) and (Z) orbitals HOMO and LUMO for switches o-, m-, p-3a–d (Table S2). It is
known from the framework of MO theory that the lowest excited states of azobenzenes
can be quite well described using singly excited n→ π* and π→ π* configurations [59].
The separation of n and π orbitals by symmetry is easy for the planar (E) isomers, and the
relevant orbitals, i.e., π, n, and π*, are readily recognised in MO calculations also for the
differently shaped (Z) isomer. Analysing the obtained data, we can observe that, for all
compounds, the π* orbital level is much higher in the (Z) isomer relative to the (E) isomer.
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This relates to the fact that in the (Z) isomers the π-electron delocalisation is reduced due to
the large dihedral angles about the N−C single bonds. The n-orbital energy level in the (Z)
isomer is also much higher than in the E-isomer. This effect is connected with the linearity
of the (E) isomer and the interaction of the lone pair orbitals on the two neighboring N
atoms through bonds. In the case of the nonlinear (Z) isomer, the lone pair orbitals interact
much more strongly through space. As described by Hecht [24,26], the repulsive interac-
tion of the nitrogen lone pairs increases the n-level in azobenzenes and the introduction
of a fluorine atom (σ-electron withdrawing groups) to aromatic ring; especially in ortho
position, it should lower the n-orbital energy. It is worth noting that the n→ π* excitation
energies are very similar for both (E) and (Z) isomers. This conclusion is consistent with the
results of Ali et al. and Hecht et al. obtained for other fluorinated compounds [24,59]. The
energy differences of the (E) and (Z) orbitals HOMO and LUMO are small, ranging from
3.597 eV to 3.935 eV. The information obtained theoretically was verified by synthesis of o-,
m-, p-3a–d compounds (Figure 2) and by measuring their UV-Vis spectra (see Supporting
Information).
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3.2. Design and Synthesis of Azocolchicines

Our synthetic strategy towards photoswitchable azobenzamides-colchicnes AzoCols
is based on the replacement of the acetoamide group of a well-known and potent micro-
tubule disrupting agent, colchicine, with an azobenzene unit (Figure 2). Previous data
suggest that substitutions at this position are well tolerated and do not lead to loss of
bioactivity [60,61]. Hence, we anticipated that this approach would maintain the antiprolif-
erative activity and simultaneously allow for precise spatiotemporal control of its activity
with light irradiation. Recently, we explored the various synthetic methods to obtain azo
compounds. Utilising the optimised conditions, we focused on a one-step method with
oxone synthesis [62]. We started from aniline derivatives substituted with a fluorine atom
at various positions 1a–d and oxidised them to corresponding nitroso compounds 2a–d by
reaction with potassium peroxymonosulfate in biphasic dichloromethane/water solution.
Obtained nitroso derivatives were used in Baeyer−Mills reactions with ortho-, meta-, and
para- aminobenzoic acid affording azobenzenes o-, m-, p-3a–d (Scheme 1) [14]. A one-pot
condensation reaction between N-deacetycolchicine 4 and meta- or para-3a–d isomers al-
lowed for a straightforward synthesis of photoswitchable azobenzamides-colchicines m-,
p-AzoCols. Unfortunately, reactions with ortho-3a–d resulted in a complicated, inseparable
products mixture. Thus, we decided to react 4 with 2-aminobenzoyl chloride in the presence
of triethylamine and, in the following step, with nitrosobenzene 2a–d. This synthetic route
resulted in the desired target compounds ortho-AzoCols (Scheme 2).
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AcOH, RT, 24 h.
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Scheme 2. Synthesis strategy towards photoswitchable azobenzamides-colchicines o-, m-, p-AzoCols.
Reagents and conditions: (a) m-, p-3a–d, HATU, DIPEA, DMF, RT, Ar, 4 h; (b) 2-aminobenzoic acid
chloride, NEt3, DCM, 0 ◦C to RT, 12; (c) 2a–d, AcOH/DCM (1:1 v:v), 24 h.

3.3. Photochemical Characterisation

Photochemical properties of AzoCols photoswitches are attributed to azobenzene
3a–d moiety incorporated into the parent pharmacophore structure; therefore, we evalu-
ated the photochemical properties of obtained azobenzenes by NMR spectroscopy and
UV-Vis spectrophotometry. As a solvent, we chose DMSO due to its ability to dissolve polar
and nonpolar molecules, which is crucial for the analytical methods used in this study. Ad-
ditionally, its intermediate polarity allows for good approximation of organic and aqueous
solvents. Furthermore, in the context of photopharmacology, DMSO is used for stock solu-
tion preparation which is illuminated and then diluted into aqueous systems for biological
activity assessment [63–65]. The photoisomerisation of azobenzenes 3a–d is not altered
upon condensation with colchicine (see Supporting Information Figures S2 and S3). We
assumed that ultraviolet light would cause photocatalyzed degradation of azobenzamides-
colchicines AzoCols. Indeed, irradiation of p-AzoCol4F with UV light (365 nm) lead to the
formation of a complex mixture of products (see Supporting Information Figure S4). This
result confirms that ultraviolet light is incompatible with photoswitchable ligands based on
the colchicine structure. Therefore, we determined the distribution of (E) and (Z) isomers
for azobenzenes o-, m-, p-3a–d at the photostationary state (PSS) under constants illumina-
tion with selected wavelengths of the visible spectrum (390–610 nm) by 1H or 19F NMR
analysis (see Supporting Information Figures S6–S17). The obtained results are summarised
in Figure 3a. The green light (505–535 nm) induced (E)→ (Z) photoconversions, affording
the highest PSS ratios. On the other hand, blue light (390–430 nm) induced reverse (Z)→
(E) photoconversion, affording low PSS compositions. The lowest PSS percentages were
obtained for compounds without a fluorine substituent, i.e., o-, m-, p-3a (46, 35, and 35%,
respectively), while introducing a fluorine atom at 4- and 2,4-positions in compounds o-,
m-, p-3b–c caused only a slight increase in PSS ratios. The azobenzenes bearing an ortho-
fluorine substituent, i.e., o-, m-, p-3d, displayed the highest PSS compositions (88, 77, and
71%, respectively). After selection of optimal wavelengths, we acquired UV-Vis absorption
spectra for azobenzenes o-, m-, p-3a–d in dimethyl sulfoxide at 500 µM concentrations
for visualisation and analysis of weak n–π* bands. Spectroscopic data are summarised in



Cells 2023, 12, 1866 8 of 16

Table 1. In general, the strong π–π* transition band was observed at 315–330 nm and the
weaker n–π* band at approximately 445 nm for (E) isomers. After illumination with green
light (causing photoconversion to the (Z) isomer), a decrease in π–π* band intensity and
an increase in n–π* bands were observed. Most importantly, for compounds o-, m-, p-3d,
due to the introduction of an ortho-fluoro substituent, causing stabilisation of nonbonding
electron pairs of the azo-bond, significant separation of the n → π* transition band of
the (E) and (Z) isomers (around 30 nm) was observed (Figure 3b), allowing for selective
addressing of both isomers with visible light. Multiple cycles of photoreversible switching
under alternating green and blue light irradiation without noticeable photobleaching or
degradation confirmed repeatable and robust photochromic conversion of the obtained
azobenzenes (Figure 3c). Moreover, we checked photochemical stability of o-AzoCol26DF
and corresponding azobenzene o-3d in cell growth media at conditions similar to pho-
topharmacological assays (high glucose medium supplemented with 4 mM L-glutamine,
500 ms pulses of green or blue light every 15 s for 48 h, 10% of DMSO). No changes in spec-
trum indicating degradation were observed. The only change in spectrum was attributed
to (E)→ (Z) photoconversions (see Supporting Information Figure S5). All photoswitches
displayed substantially slower spontaneous (Z) → (E) relaxation (the half-life at 37 ◦C
varied from 5 h to >48 h) than the biological assays timescale. Stability in organic and
aqueous media, near-ideal photochemical characteristics, and bidirectional photoswitching
showed that the obtained molecular switches can be used in photopharmacological assays
or in vivo.
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Figure 3. (a) Photostationary state (PSS) compositions for azobenzenes o-, m-, p-3a–d determined
by 1H or 19F NMR analysis (c ≈ 10 mM in DMSO-d6); (b) representative UV-Vis absorption spectra
of thermally adapted and green light (535 nm) irradiated 500 µM o-3d in DMSO; (c) representative
multiple photoswitching rounds of 50 µM o-3d in DMSO by pulsed green (535 nm) and blue (430 nm)
light illumination.

3.4. Photocontrollable in Cellulo Studies

Colchicine is a potent microtubule polymerisation inhibitor leading to mitotic arrests
and, as a consequence, cell death [66]. We expected photoswitchable azobenzamides-
colchicnes AzoCols to show similar antiproliferative activity. Therefore, we decided to eval-
uate in cellulo cytotoxicity for twelve obtained colchicine analogues at the most favourable
illuminating conditions (430 nm for predominantly (E) and 535 nm for predominantly
(Z) isomer, respectively). For irradiation of cell cultures, we used self-built arrays of
24 low-power light-emitting diodes (LED) controlled by the Adurino board (see Supporting
Information). Such an automated system allowed for precise pulsed illumination (500 ms



Cells 2023, 12, 1866 9 of 16

pulses of light every 15 s in our experiments) during long-term assays. Most importantly,
it has been proven to be compatible with cell culturing conditions [37,40,42,45,46]. We
first screened for bioactivity on an MCF-7 cell line as a model for human breast adenocar-
cinoma (N = 1). For lead compound exhibiting light-dependent cytotoxicity, we further
expanded our research to include a HCT116 cell line (human colorectal carcinoma) and
a HKE293 cell line (human embryonic kidney). The obtained results are summarised in
Table 2. Notably, all AzoCols showed potent antiproliferative activity (IC50 ranging from
28 to 187 nM), clearly demonstrating that incorporation of azobenzene moiety neither
suppress binding to tubulin nor disrupt permeation through the cytoplasmic membrane.
The meta-AzoCols set of compounds displayed equipotent bioactivity under illumination
with green or blue light. In contrast, throughout para- and ortho- isomers, p-AzoCol24DF
and o-AzoCol26DF showed dissimilar cytotoxicity, dependent on the irradiation condi-
tions. However, for o-AzoCol and o-AzoCol4F, we obtained somewhat inconsistent results.
In the predominantly (Z) isomer state (green light illumination), p-AzoCol24DF and o-
AzoCol26DF showed higher potency than in the predominantly (E) isomer state (blue light
illumination). The most promising compound, o-AzoCol26DF, displayed c.a. a double
potency shift on HCT116 cells upon illumination with green light.

Table 1. Spectroscopic data for 500 µM solution of o-, m-, p-3a-d in DMSO at 25 ◦C. The photostation-
ary state (PSS) composition was determined by 19F or 1H NMR (c ≈ 10 mM in DMSO-d6). Thermal
relaxation half-life (t1/2) was measured for 100 µM DMSO solutions at 37 ◦C.

(E)-isomer a (Z)-isomer b

Compound λmax (π−π*)
[nm]

λmax (n−π*)
[nm]

λmax (n−π*)
[nm]

∆λ (n−π*)
[nm] t1/2[h] PSS(E)

c

(%)
PSS(Z)
d (%)

o-3a 324 448 440 8 6 95 46
o-3b 326 445 437 8 5 99 48
o-3c 330 444 433 11 23 96 66
o-3d 315 450 420 30 >48 97 88
m-3a 321 437 429 8 >48 94 35
m-3b 322 431 423 8 >48 95 32
m-3c 326 440 423 17 >48 96 46
m-3d 315 448 417 31 >48 96 77
p-3a 330 447 440 7 17 91 35
p-3b 330 446 440 6 16 99 47
p-3c 334 448 437 11 23 93 47
p-3d 322 454 421 33 >48 91 71

a Thermally adapted; b PSS after irradiation with green light (535 nm); c Percentage of (E) isomer at 430 nm PSS;
d Percentage of (Z) isomer at 535 nm PSS.

Table 2. Light-dependent cytotoxicity of AzoCols from MTT assay.

Compound Cell Line IC50 Blue Light (nM) IC50 Green Light (nM) IC Ratio

p-AzoCol MCF-7 (N = 1) 48 ± 2 44 ± 2 1.1
p-AzoCol4F MCF-7 (N = 1) 44 ± 1 43 ± 1 1.0

p-AzoCol24DF MCF-7 (N = 3) 50 ± 1 36 ± 1 1.4
p-AzoCol26DF MCF-7 (N = 1) 55 ± 1 54 ± 1 1.0

m-AzoCol MCF-7 (N = 1) 31 ± 2 27 ± 1 1.1
m-AzoCol4F MCF-7 (N = 1) 42 ± 1 40 ± 1 1.1

m-AzoCol24DF MCF-7 (N = 1) 49 ± 1 47 ± 1 1.0
m-AzoCol26DF MCF-7 (N = 1) 45 ± 2 46 ± 4 1.0

o-AzoCol MCF-7 (N = 1) nc nc nc
o-AzoCol4F MCF-7 (N = 1) nc nc nc

o-AzoCol24DF MCF-7 (N = 1) 183 174 1.1
o-AzoCol26DF MCF-7 (N = 3) 184 ± 4 126 ± 2 1.5
o-AzoCol26DF HCT116 (N = 2) 187 ± 9 97 ± 2 1.9
o-AzoCol26DF HEK293 (N = 3) >250 >250 -

Colchicine MCF-7 12 a - -
Colchicine HCT116 11 b - -

a without illumination ref. [67].; b without illumination ref. [68].; nc—not calculated.
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3.5. o-AzoCol26DF Disrupt Tubulin Polymerisation and Cellular Microtubule Organisation in
Light-Dependent Manner

To further explore the molecular mechanism of o-AzoCols light-dependent cellular
activity, we examined the influence of o-AzoCol26DF on tubulin polymerisation in cell-free
assays with purified tubulin. In the mainly (Z) isomer state (green light), 10 µM solution of
o-AzoCol26DF resulted in ca. 40% inhibition of polymerisation over control (referenced
to DMSO as 0%), while the thermally adapted state yielded only a 30% polymerisation
inhibition. In comparison, 5 µM solution of colchicine caused ca. 70% of tubulin polymeri-
sation inhibition (Figure 4b). It is worth noticing that this is a highly nonlinear assay in an
environment far from cellular conditions. Thus, these results cannot be used for evaluating
potencies, but rather to shed light on the mechanism of action as microtubule destabilis-
ers, as the parent colchicine is. To verify the effect of o-AzoCol26DF on the microtubular
cytoskeleton in vivo, we incubated HTC116 cells for 24 h with either DMSO (control) or
o-AzoCol26DF. During the incubation, all cell samples were illuminated with green or blue
light as described in the Material and Methods section. As an additional positive control, we
used cells treated with 20 nm colchicine without light illumination. In both control samples,
non-dividing cells had a dense, well-expanded network of interphase microtubules, while
dividing cells formed a bipolar mitotic spindle (Figure 5a,b). A similar cell phenotype was
observed in o-AzoCol26DF-treated, blue-light-illuminated cells (Figure 5c). In cells treated
with 100 nM o-AzoCol26DF and activated by the green light, the interphase microtubular
cytoskeleton was only slightly less prominent with respect to the control. However, we
observed more dividing cells, and the mitotic spindle structure was frequently abnormal,
with more than two spindle poles or misaligned microtubules (Figure 5d). This phenotype
was even more pronounced in 120 nM o-AzoCol26DF-treated and green-light-illuminated
cells (Figure 5f). Importantly, similar changes were observed in cells treated with 20 nM
colchicine (Figure 5g).
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Figure 4. (a) Cell viability curves for o-AzoCol26DF under green (535 nm) or blue (430 nm) light
irradiation displayed approximately a double shift in potency on HCT116 cells (MTT assay, N = 2);
(b) light-dependent influence of o-AzoCol26DF (10 µM) on tubulin polymerisation in cell-free assays.
Solution of colchicine (5 µM) or cosolvent (DMSO) used as a control (curves represent mean from
two replicates).

To verify these observations, we determined the distribution of cell cycle stages
using FACS analysis (Figure 6). Under the control treatment, within the HTC116 samples,
~31–34% cells were in G1 phase, 22–26% in S phase, and 25–26% in G2/M phases. We also
observed some polyploid and apoptotic cells (Figure 6). In 100 nM o-AzoCol26DF-treated
and blue-light-illuminated cells, the distribution of cell cycle stages was similar to that
in control cells; however, we observed a higher number of apoptotic cells. In contrast, in
green-light-illuminated 100 nM o-AzoCol26DF-treated cells, the number of G2/M cells
increased to ~40%, while the number of apoptotic cells was the same as that in blue-light-
illuminated cells. Treatment of cells with 20 nM colchicine raised the number of G2/M
cells to ~45%, indicating that, likely, 100 nM o-AzoCol26DF has similar activity to 20 nM
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colchicine. Importantly, the increase in the concentration of o-AzoCol26DF to 120 nM
elevated the number of G2/M cells to ~60% in green-light-illuminated cells, while in the
corresponding blue-light-treated cells G2/M cell numbers remained at 29%.
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Figure 5. Analysis of HTC116 cells upon treatment with DMSO, o-AzoCol26DF, or colchicine. Cells
were stained with 12G10 monoclonal antibody against total α-tubulin (green) and with anti-acetylated
α-tubulin antibody (red). Nuclei stained with DAPI (blue). Insets show magnification of the mitotic
spindle structure. Bars in all subfigures = 10 µm. Control cells (DMSO) illuminated with blue
(a) or green (b) light, respectively. Cells show dense microtubular cytoskeleton and normal cell shape.
(c) Cells incubated with 100 nM o-AzoCol26DF illuminated with blue light. Notice that microtubular
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cytoskeleton resembles control. (d) Cells incubated with 100 nM o-AzoCol26DF illuminated with
green light. Mitotic spindles frequently are aberrant, showing multipolarity and misarrangement.
(e) Cells incubated with 120 nM o-AzoCol26DF illuminated with blue light. (f) Cells incubated
with 120 nM o-AzoCol26DF illuminated with green light. Many mitotic cells with disarranged
and/or nearly completely depolymerized mitotic spindle are present. (g) Cells incubated with
20 nM colchicine. The arrangement of mitotic spindles is similar as in cell treated with 100 nM
o-AzoCol26DF illuminated with green light.
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Figure 6. Analysis of cell cycle stages of HTC116 cells upon treatment with DMSO, o-AzoCol26DF,
or colchicine and blue or green light exposure. Graphs show representative flow cytometry analysis
for each sample. In the table, the mean of at least two experiments for each sample are included. The
increase with respect to the control is marked by the red color and upwards arrow, while the decrease
is marked by the blue color and downwards arrow.

To summarise, under used conditions, we were able to control the activity of o-AzoCol26DF
and, consequently, disrupt microtubular cytoskeleton leading to mitotic arrest and, eventu-
ally, cell death.

4. Conclusions

In this study, we successfully designed and synthesised a set of novel photoswitchable
colchicine-based microtubule dynamics disrupting agents. The developed photoswitches
can be photoisomerised by visible light instead of UV light, which is used in classical
photopharmaceutical reagents. This is crucial due to colchicine instability under UV light
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irradiation. For the lead compound o-AzoCol26DF, we demonstrated light-dependent
cytotoxicity in both the HCT116 and the MCF-7 cancerous cell lines. Inhibition of purified
tubulin polymerization, as well as disruption of microtubule organization, support proof-
of-concept of using AzoCols as photoswitchable microtubule dynamics disrupting agents.
In summary, we have proven that AzoCols provide the basis for further improvement
and development of the novel class of photoswitchable colchicine-based microtubule
polymerisation inhibitors that could be used in future studies and applications.
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