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Abstract: Toll-like receptors (TLRs) have a critical role in the pathogenesis and disease course of viral
infections. The induced pro-inflammatory responses result in the disturbance of the endovascular
surface layer and impair vascular homeostasis. The injury of the vessel wall further promotes
pro-thrombotic and pro-coagulatory processes, eventually leading to micro-vessel plugging and
tissue necrosis. Moreover, TLRs have a direct role in the sensing of viruses and platelet activation.
TLR-mediated upregulation of von Willebrand factor release and neutrophil, as well as macrophage
extra-cellular trap formation, further contribute to (micro-) thrombotic processes during inflammation.
The following review focuses on TLR signaling pathways of TLRs expressed in humans provoking
pro-thrombotic responses, which determine patient outcome during viral infections, especially in
those with cardiovascular diseases.
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1. Toll-like Receptors’ Role in Inflammation and Thrombosis

Toll-like receptors (TLRs) play a major role in the modulation and progression of in-
flammation as a result of different pathogens such as bacteria, fungi and viruses [1,2]. Once
they are synthesized in the endoplasmic reticulum, TLRs are transported to endosomal or
plasma membranes [3]. TLRs mediate, as well as propagate, inflammation and, depending
on how strongly a TLR is activated, the initiated responses can be beneficial or harmful to
the host [4].

Pro-inflammatory diseases increase the rates of thrombo (-embolic) events as a result of
increased thrombin generation due to inflammation [5]. Thrombin is the strongest human
platelet activator [6] and systemic inflammation plays a major role in atherosclerosis [7];
hence, TLRs also have a direct effect on platelets’ capacity to modulate inflammation [8,9].
Pathways of immuno-thrombosis, initiated by platelet activation following viral sens-
ing, are crucial in the pathogenesis of viral infections [10–12]. Herein, TLR-3, TLR-9 and
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TLR-10 respond to double-stranded (ds) ribonucleic acid (RNA), TLR-7 and -8 recognize
single-stranded (ss) RNA and TLR-2 and TLR-4 sense viral envelope glycoproteins [13,14].
However, other TLRs also play a role in viral recognition [13,15]. TLR-3 has been shown
to be involved in the development of the immune response to severe acute respiratory
syndrome coronavirus type 2 (SARS-CoV-2) and Middle East respiratory syndrome coro-
navirus (MERS-CoV) [16]. Increased levels of RNA transcription similar to the profile of
TLR-3 were observed on the second day after coronavirus infection, shown in a model of
non-sterile inflammation induced by viral injection in mice [16].

This increase in TLR-3 activity enhances downstream activities of toll-interleukin
receptor (TIR) domain-containing adaptor protein inducing interferon (TRIF), interferon
regulatory factor 3 (IRF3), NF-kB and pro-inflammatory cytokines, all of which can induce
pro-coagulatory and pro-thrombotic responses [16]. During viral or bacterial infection type I
interferon (IFN), signaling is induced upon detection of pathogens (by pathogen-associated
molecular patterns) via pattern recognition receptors (PRRs) [17]. IRF3 is activated im-
mediately after viral infection occurs and is a primary activator of IFN genes and the
RANTES chemokine gene, finally resulting in the recruitment of leukocytes to sites of
inflammation [18]. IFN signaling induces coagulation by activating the coagulation cascade
by increasing the expression of high mobility group box 1 (HMGB1), which is a damage-
associated molecular pattern (DAMP), in the bloodstream. In thrombi, HMGB1 is most
commonly expressed on platelets [19]. TRIF redirects HMGB1 to activate granulocytes,
monocytes, macrophages and dendritic cells, inducing coagulation [20]. Monocytes react
to inflammation by expressing tissue factor, which induces the coagulation cascade. NF-kB
further increases inflammation by inducing adhesion molecules necessary for leukocyte
binding and transmigration [21].

Contrarily, TLR-3 deficient mice had an increased survival when compared with
wild-type mice when subjected to influenza A virus by non-sterile inflammation due to
intra-nasal inoculation [22]. Unsurprisingly, the TLR-3 deficient mice had higher viral pro-
duction in their lungs [22]. Mouse models showed that protease-activated receptor (PAR)-2
suppressed TLR-3 signaling and thus contributed to viral infectivity [23]. These findings
were contrary to previous reports showing increased susceptibility to non-sterile influenza
A virus infection in PAR-2 deficient mice when compared with wild-type mice [24].

Traditionally, platelets have been thought to play a role in the amplification of the
coagulation cascade at the site of vascular injury [25]. More recently, platelets have been
recognized as drivers of leucocyte-mediated immunity [26,27]. Platelets express Fc gamma
receptor IIa, which increases platelet functions, causing them to form platelet–leukocyte
aggregates [28]. These aggregates can trap and immobilize pathogens [29]. Platelets can also
actively regulate immuno-thrombosis in various diseases such as infection [30], injury as a
result of ischemia and/or reperfusion [31], cardiovascular diseases (CVD) [32], sepsis [33]
and cancer [34].

TLRs are central to immuno-thrombotic platelet function via expression on or within
immune cells (such as platelets, monocytes/macrophages, neutrophil granulocytes, den-
dritic cells, natural killer cells and cells of adaptive immunity (T- and B- cells)) and thus
play a vital role in the first line of protection from injury and infection [9,35–37].

TLRs are among the PRRs [38] and can recognize both PAMPs and DAMPs [39].
PAMPs are derived from pathogens [40], while DAMPs are associated with tissue damage,
which is endogenous [38]. As such, TLRs are partially responsible for the elimination of
viruses [41]. However, it must be noted, that this positive aspect can also have a negative
impact on the host as a result of tissue destruction and persistent inflammation, such as in
the pathogenesis of coronavirus disease 2019 (COVID-19) [42].

2. TLR Signaling

In humans, 10 types of TLR have been identified that fall into one of two groups
based on their expression on different immune cells. The localization of the TLR expression
determines the PAMP/DAMP specificity of the TLR [43]. TLRs 3, 7, 8 and 9 are expressed
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primarily intra-cellularly [44,45], while TLRs 1, 2, 4, 5, 6 and 10 are expressed primarily
on the surface of the cell membrane [2,46–48]. The site of expression corresponds to their
roles [43]. TLRs generally signal by dimerization after ligand binding [49]. The exception is
TLR-2, which hetero-dimerizes with TLR-1 or TLR-6 and recognizes tri-acylated (TLR-1)
and di-acylated (TLR-6) lipopeptides, respectively [50]. The occurrence of all 10 human
TLRs has been described for human platelets [12].

TLRs consist of an extra-cellular leucine-rich repeat (LRR) domain responsible for
PAMP and DAMP sensing, a transmembrane helix and a TIR domain located in the
cytosol [51]. Downstream signaling involves the adaptor proteins called toll-interleukin-
1 receptor resistance (TIR) domain-containing proteins. In humans, these are myeloid
differentiation primary response protein 88 (MyD88), MyD88 adaptor-like (MAL) (also
called TIR domain-containing adaptor protein (TIRAP)), TRIF (also known as TICAM1)
and TRIF-related adaptor molecule (TRAM, also known as TICAM2) and TIR domain
sterile alpha and HEAT/Armadillo motif (SARM) [52–54]. In contrast to MyD88, MAL,
TRIF and TRAM (which have activating functions), SARM has negative regulatory effects
on TRIF-dependent signaling [52–55]. Importantly, various TLRs use different TIR domain-
containing adaptor proteins and induce a broad set of intra-cellular signal transduction
pathways, which predominantly result in NF-κB activation [54].

In addition, a pro-apoptotic PI3K/AKT/GSK-3β pathway has been described in
rats. [56,57].

TLRs initiate immune responses by activating transcription factors of the nuclear factor-
κB (NF-κB) and the interferon regulatory factor (IRF) family in both a MyD88-dependent
as well as a MyD88-independent manner [54,58,59]. NF-κB causes the production of
pro-inflammatory cytokines and chemokines while also participating in inflammasome
regulation. It is also critical in regulating inflammatory T cells and innate immune cells [58].
Modulation of TLR-induced pathways in a positive or negative manner can occur via
activation of PI3K by different TLR-agonists such as LPS, CpG, flagellin and by-products
resulting from viral infection [60]. In humans, all TLR-receptors utilize MyD88-induced sig-
naling to induce inflammatory cytokine production [61,62]. The impact of MyD88 signaling
after TLR-4 activation on inflammatory pathways can also be shown for TLR-3, which was
initially thought to exclusively use the TRIF pathway [63]. Once these adaptor proteins
bind to TLRs, cytosolic signaling complexes are activated. These contain tumor necrosis
associated factor (TRAF) and interleukin receptor associated kinase (IRAK) proteins, which
activate NF-κB and IRF, a transcription factor. These in turn trigger the production of pro-
inflammatory cytokines and type 1 interferons [54,59]. NF-κB is required for interleukin
(IL)-6 and tumor necrosis factor (TNF) production, which in turn activates the transcrip-
tion of NF-κB [61,64]. As a result of this pro-inflammatory cascade, TLR-1/2 and TLR-4
cause increased P-selectin expression on platelets, activation of integrin alpha(IIb)beta(3)
and increased production of reactive oxygen species (ROS) [65,66]. Moreover, thrombin
generation can be induced by platelet activation via TLR-2 and TLR-4 [67]. Thus, TLRs
can be considered to be the drivers behind the activation of pro-inflammatory processes in
platelets, as NF-κB is responsible for first procaspase activating compound (PAC-1) and fib-
rinogen binding as well as adenosine triphosphate (ATP) release as a result of inflammatory
and pro-thrombotic stimuli [68].

3. TLRs and Diseases

Viruses, such as severe acute respiratory syndrome corona virus type 2 (SARS-CoV-2),
are pro-inflammatory and pro-thrombotic in nature [69]. The cytokine storm induced by
SARS-CoV-2 is thought to highly involve TLR signaling [70,71]. Herein, SARS-CoV-2 shares
these patho-mechanisms with other viruses; however, distinct differences in the regulation
of inflammation and viral persistence can be observed [10,72–74]. In addition, SARS-CoV-2
leads to an upregulation of a plethora of TLRs [42,72]. Systemic hyper-inflammation is
triggered via the previously outlined mechanism via TLR-2, -4, -6, -7 and -8 [42,72,75].
IL-1β is produced as a result of inflammasome activation and induces IL-6 [76]. High
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levels of inflammasome activation have been associated with poor outcomes in COVID-
19 patients [77]. Moreover, long-lasting inflammatory processes maintaining endothelial
dysfunction due to viral persistence might be the underlying cause of thromboembolic
events and cardiovascular complications frequently observed in patients suffering from
COVID-19 [10,78]. TLR-4 and Nox-2 inhibition is suggested to reduce oxidative stress and
platelet-dependent thrombus growth in ex vivo models using the blood of SARS-CoV-2
patients. [79] Moreover, TNF α inhibition also reduces Nox-2-related oxidative stress and
platelet activation enhanced by plasma of SARS-CoV-2 patients, thus eliciting signaling
pathways in which TLR-4 activation promotes platelet-dependent thrombus growth [79].

There is increasing evidence that TLRs contribute to inflammatory vascular diseases,
such as aneurysm formation and different forms of vasculitis [80], and might also be linked
to micro- and macro-vascular complications in type 2 diabetes [81,82]. Disease involvement
of TLRs is displayed in Table 1.

3.1. TLR-1

TLR-1 signaling involves downstream pathways of MyD88 [54]. Hally et al. showed
TLR-1 to be significantly upregulated in platelets of patients with acute myocardial infarc-
tion (AMI). Platelets from AMI patients and healthy controls were analyzed and compared
via Western blotting. While the role of TLR-1 is poorly characterized in AMI patients, it
is likely that, similar to the manner in which TLRs exacerbate inflammation, TLR-1 may
increase platelet reactivity and therefore thrombosis during and after AMI and thus present
a further method of platelet activation [83].

Furthermore, there is evidence that overstimulation of TLR-1 is involved in the patho-
genesis of autoimmune diseases such as diabetes mellitus type 1 (DM1) [84], which in
itself induces a pro-thrombotic state [85]. The TLR 1/2 pathway, together with TLR-
3-induced signaling, is implicated in the defense against chikungunya virus (CHIKV)
infection [15]. CHIKV belongs to the alphavirus genus of Togaviridae and is transmitted
by female mosquito Aedes arthropods [86]. The signaling pathways induced by CHIKV
sensing involve MyD88 (by TLR 1/2) and NF-κB, as well as TRIF (by TLR-3) and IRF1 [15].
These pathways result in high IL-27 expression [15]. The latter has pleiotropic effects
regarding immuno-modulation and may have implications for the pathogenesis of immune
thrombocytopenia [87].

3.2. TLR-2

TLR-2 signaling involves downstream pathways of MyD88, TIRAP, TRAM and
TRIF [88–90].

In addition, SARM is capable of TLR-2 signaling modulation [91].
After dimerization with TLR-1, TLR-2/1 causes platelet activation in a dose-dependent

manner when subjected to the TLR-2/1 agonist Pam3CSK4 in both healthy subjects’ and
AMI platelets and with and without dual anti-platelet therapy (DAPT, in this case aspirin
and clopidogrel or ticagrelor) in in vitro experiments. It has been theorized that, by this
mechanism, TLR-2/1 may be involved in the pathogenesis of AMI and could aggravate
myocardial ischemia or reperfusion injury and recurrent atherothrombotic events [83].

In the presence of histones, which are released into the circulation during neutrophil
extra-cellular trap (NET) formation, thrombin generation is driven by TLR-2- and TLR-
4-induced platelet signaling [67]. This enhances platelet activation and promotes further
platelet–leukocyte aggregate formation and activation of neutrophils leading to NETo-
sis [10].

Thrombin is the strongest platelet activator and, despite current guideline-driven
antiplatelet therapy, thrombin-induced platelet activation still accounts for a considerable
and stable platelet aggregate formation [92–94].

TLR-2 is also upregulated in patients with abdominal aortic aneurysm (AAA) when
compared with healthy individuals; it is currently believed that TLR-2 may be integral at
regulating inflammation in the aorta in the context of AAA formation [95].
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There is strong evidence that TLRs have a crucial role in the formation of AAA, which
are defined as saccular distensions of the abdominal aorta exceeding 30 mm in diameter
or 1.5-fold of the regular diameter [96–99]. The pathogenesis of AAAs is characterized by
excessive diapedesis of leukocytes [100], inflammation [101] and the subsequent release of
matrix metalloproteinases and elastase from macrophages and lymphocytes that degrade
the extra-cellular matrix [102,103] and weaken the vessel wall. While the exact mechanisms
that initiate the inflammatory response in the aortic wall have not yet been thoroughly
understood, there are hints that TLR activation may be crucial in initiating inflammatory
processes, which ultimately lead to AAA formation and atherogenesis [104,105].

There are several studies that have linked TLR-2 and TLR-4 to the formation of AAAs.
Yan et al. showed that increased levels of TLR-2 expression were found in human samples
of AAA tissue [106]. In addition, the inhibition of TLR-2 in a murine AAA model resulted in
a significant reduction in AAA size and TLR-2-deficient mice failed to develop AAAs [106].
Proteins involved in inflammatory downstream signaling pathways, including matrix
metalloproteinase and NF-κB, and macrophage recruitment were also significantly reduced
in TLR-2-deficient mice [106]. In a TLR-4-deficient murine model of AAA formation,
reduced levels of chemokines and interleukins were observed in comparison with a TLR-4-
non-deficient murine control group [107].

The role of TLRs for AAA formation was further endorsed by Jabłońska et al. [99],
who examined the levels of TLR messenger ribonucleic acid (mRNA) in the blood of
AAA patients, healthy volunteers and AAA tissue samples. In the blood, both TLR-2 and
TLR-4 mRNA expression was increased in AAA patients compared with control subjects.
However, elevated protein levels in serum could only be proven for TLR-4. Compared
with the serum levels, TLR-2 expression was increased 20-fold in the AAA specimens [99].
Furthermore, certain polymorphisms in the gene encoding for TLR-2 and TLR-3 were
demonstrated to codetermine the risk of AAA formation [98].

Lastly, the knock-out of MyD88, a downstream signaling molecule involved in both
the TLR-2 and TLR-4 pathway, reduced both AAA formation and atherosclerosis after
angiotensin II infusion in mice predisposed to both disease entities by the knock-out of
either apolipoprotein E or low-density lipoprotein receptor (LDL-R) [108]. While in TLR-2
and LDL-R-deficient mice, angiotensin II infusion resulted in AAA formation but not
atherosclerosis, both were attenuated in mice deficient in TLR-4 and LDL-R [108].

These findings demonstrate that TLRs and their pro-inflammatory downstream sig-
naling pathways have a crucial role in AAA initiation and formation.

As TLR involvement is crucial in AAA formation, it is not surprising that viral infec-
tions such as cytomegalovirus [109] or human immunodeficiency virus (HIV) [110] are
discussed to contribute to aneurysm pathophysiology. However, the exact mechanisms and
potential novel therapeutic target molecules will need to be identified in future studies.

In viral infections, TLR-2 not only recognizes SARS-COV-2 but is also responsible
for sensing the CMV envelope glycoproteins B and H and responding to varicella zoster,
vaccinia, Epstein–Barr, hepatitis B and hepatitis C viruses [13,111,112].

Furthermore, Sepehri et al. discussed the upregulated expression of TLR-2 being
associated with an increased risk of type 2 diabetes mellitus (DM2). They concluded that, as
a result of TLR-2 involvement in activating the innate immune response upon recognition
of DAMPs, TLR-2 was responsible for the induction of ROS and inflammatory cytokines,
which contributed to the exacerbation of DM2. TLR-2 expression increased in obese patients
and correlated with increased serum levels of glucose and free fatty acids. Infections may
be considered crucial for the development of DM2 as a result of PAMP-activated TLR-2-
initiated pathways and that insulin suppresses TLR-2 expression. These mechanisms shed
light on the circulus vitiosus of DM2 [113].

Finally, TLR-2 was shown to have similar involvement in the pathogenesis of auto-
immune diseases as TLR-1 (DM1 [84], Graves’ Disease (GD) [114]).
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3.3. TLR-3

TLR-3 can be stimulated in endothelial cells by endogenous RNA, which is released as
a result of apoptosis and necrosis and causes a pro-inflammatory cellular response [115].
Short, single and double strands of RNA result in an inhibition to neo-angiogenesis [116].
TLR-3 signaling is mediated by TRIF and MyD88, hereby conferring the pro-inflammatory
responses [63]. Signaling results in the phosphorylation of Akt, ERK1/2 and p38 MAPK
and of the subunit p65 of NF-κB [117]. Najem et al. used a cell-permeant nucleic acid
stain to test whether TLR-3 was involved in inflammatory venous thrombosis. Polyinosine
polycytidylic acid (poly:C), a synthetic double-stranded RNA analog and TLR-3 ligand
were given to wild-type mice after FeCl3 (non-sterile) induced inferior vena cava injury,
increasing the size and cellular density of thrombi when compared with TLR-3 knock-out
mice. As a result of this stimulation of the TLR-3 in this model of sterile inflammation,
an increased production of reactive oxygen species was observed, as well as increased
macrophage and neutrophil recruitment in the wild-type mice. These results strongly
suggest that TLR-3 stimulation and RNA release, after endothelial injury, are involved
in thrombus formation as a result of the pro-inflammatory response, which leads to the
recruitment of macrophages and neutrophils to the injury site [118]. TLR-3 seems to play
a more promotional role in platelet activation, as opposed to TLR-2 and -4, which react
to classic platelet stimulation by thrombin, ADP or arachidonic acid (AA); in in vitro
models TLR-3 activation fails to induce platelet aggregation [117]. However, the presence
of suboptimal concentrations of AA, ADP and collagen and thrombin TLR-3 activation
by synthetic dsRNA analog lead to a platelet aggregation of 60–80%. Thus, TLR-3 may be
considered a promoter for platelet activation [117].

In vivo mouse models showed that TLR-3 knock-out mice reduced coagulatory mark-
ers when subjected to poly I:C compared with wild-type mice [119]. Thus, the activation
of TLR-3 can induce an endothelial pro-coagulatory state, which can influence cellular
hemostasis [119]. There is evidence that the activation of protease activated receptor (PAR)-
1 in the presence of dsRNA analog induced INF-β expression in murine models that were
infected with coxsackievirus B3 (CBV3). However, this induction of INF-β expression was
not present when PAR-2 was activated. Thus, it is believed that PAR-2 negatively regu-
lates TLR-3-dependent INF-β expression [23,120,121]. In vitro experiments using mouse
models showed that PAR-4 activation increased chemokine expression, while decreasing
TLR-3-related NF-κB expression of pro-inflammatory genes [122]. Wild-type mice had
lower immune cell numbers, fewer inflammatory mediators in the lung and decreased
mortality when compared with PAR-4 knock-out mice [122].

In a cohort of Danish females, the upregulation of TLR-3 was associated with systemic
lupus erythematosus (SLE) [123]. The pro-thrombotic state of SLE was, in part, due to the
systemic inflammation and increased circulating immune complexes that were modulated
by TLRs [124]. Akin to SLE, TLR-3 is believed to be involved in the pathogenesis of
DM1 [84].

TLR-3 is essential for anti-viral activity during rhinovirus infection by inducing IL-6,
CXCL8 and CCL5 [125]. Moreover, TLR-3 mRNA expression is induced by rhinovirus
replication [125]. During infection with the West Nile virus, TLR-3 response accounts for the
development of lethal encephalitis [126]. Herein, the breakdown of the blood–brain barrier
is mediated by tumor necrosis factor alpha receptor 1 signaling [126]. It may be assumed
that inflammation-mediated endothelial dysfunction with glycocalyx disintegration may
be crucial in the disruption of the blood–brain barrier [127].

3.4. TLR-4

TLR-4 can be activated by various ligands, including lipopolysaccharides, viral glyco-
proteins, tenascin-C, fibronectin extra domain A and extra-cellular cold-inducible RNA-
binding protein (eCIRP) [13,128–132]. The latter is released during sepsis, tissue ischemia–
reperfusion injury, trauma and hemorrhage and acts as an endogenous DAMP [132,133].



Cells 2023, 12, 1865 7 of 25

TLR-4 can activate MyD88- and TIRAP, as well as TRIF-dependent pathways [134,135]
(Figure 1).
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Figure 1. TLR-4-mediated pathways. Abbreviations: AKT—protein kinase B, ATF2—activating
transcription factor 2, AP-1—activator protein 1, Bax/Bcl-2 ratio—regulator protein ratio known
to be responsible for apoptosis, GSK3ß—glycogen synthase kinase 3 beta, HO-1—heme oxyge-
nase 1, IKKα/β—IκB kinase alpha/beta, IKK ε—IκB kinase epsilon, IRAK—interleukin receptor
associated kinase, IRFs—interferon regulator factor, TAK—transforming growth factor-β-activated
kinase, TBK1—TANK binding kinase, TIR—toll interleukin receptor, TIRAP—TIR domain-containing
adaptor protein, TRAM—TRIF-related adaptor molecule, TRAF—tumor necrosis associated factor,
TRIF—TIR domain-containing adaptor protein inducing interferon, MAPK—mitogen-activated pro-
tein kinases, MyD88—myeloid differentiation primary response protein 88, NEMO—NF-kappa-B
essential modulator/inhibitor of nuclear factor kappa-B kinase subunit gamma, NF-κB—nuclear
factor k light chain enhancer of activated B cells, NRF2—nuclear factor erythroid-2-related fac-
tor 2, PKR—double-stranded RNA-dependent protein kinase, PI3K—phosphoinositide 3-kinase,
ROS—reactive oxygen species, SARM—selective androgen receptor modulators, SOD1—superoxide
dismutase 1.

These pathways, with cross-talks between them, result in the phosphorylation of
MAP kinases and activation of IKK alpha/beta, NEMO, IKKε and TBK1, which lead to
the phosphorylation and activation of transcription factors such as NF-κB, IRFs, activator
protein 1 (AP-1) and activating transcription factor 2 (ATF2) [54,134,136].
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Signaling through TIRAP, but also through MyD88, activates double-stranded RNA
(dsRNA)-activated protein kinase PKR, which is upstream of MAPK signaling and results
in NF-κB activation [135]. PKR has also been shown to be capable of PI3K/Akt pathway
activation during neo-vascularization [137]. In addition, the activated PKR signaling might
have a modulatory role, as it can also regulate NRF2 activation, a transcription factor
promoting the expression of anti-oxidant enzymes such as heme oxygenase 1 (HO-1) or
superoxide dismutase 1 (SOD-1) [138,139].

The adaptor TRAM has been described to bridge to TRIF and so both TRAM- and TRIF-
associated signaling leads to IRF3 activation via IKKε and TBK1 [54,140]. The fifth adaptor
protein, SARM, has been described to negatively regulate MyD88 and TRIF- mediated
TLR-4 signaling [52,141].

TLR-4 has also been considered to play a role in the induction of apoptosis and,
most prominently, fibrosis [142]. TLR-4 has been suggested to induce apoptosis via the
PI3K/AKT/GSK-3β signaling pathway [57].

Significant evidence exists for the participation of TLR-4 in coagulation by several
mechanisms [143]. Among these, TLR-4 can promote endothelial and platelet activation;
the latter is also mediated by the internalization of micro-particles [144,145].

Moreover, via NF-κB and AP-1 activation, TLR-4 mediates together with TLR-2 tissue
factor (TF) expression on endothelial cells [146]. In monocytes, TF expression mediated by
TLR-4 and TLR-6 has been described [147].

The dual nature of TLRs on platelets is evident in TLR-4, which has been shown to
both augment and inhibit neutrophil responses such as platelet–neutrophil aggregates, neu-
trophil extra-cellular trap formation and bacterial trapping in septic patients [148]. When a
co-culture of neutrophils and platelets is subjected to TLR-4 agonists, CD62L (L-selectin)
expression, phagocytosis and IL-8 secretion are increased, while shedding of CD62L and
elastase secretion are decreased. Thus, platelet TLR-4 is responsible for neutrophil responses
to pathogens and lipopolysaccharides (LPS) [149]. The latter facilitate the aggregation of
platelets and neutrophils and the production of NETs [149]. TLR-4 signaling also mediates
platelet–monocyte interactions and is required for P-selectin-induced platelet–monocyte
aggregation [26,150]. In addition, TLR-4 induces caspase-1 activation and caspase-11 ex-
pression, leading to cellular pyroptosis [151]. Caspase-11-mediated inflammatory responses
occur partly via gasdermin D-induced pyroptosis in macrophages, a process involved in
the pathogenesis of atherosclerosis [152]. Hence, TLR-4 signaling promotes gasdermin
D-induced effects. The latter are mediated via the NF-kB pathway [153]. Gasdermin D
and caspase-1 signaling have furthermore been shown to be involved in TLR-4-induced
macrophage extra-cellular trap (MET) formation and METosis [133]. METosis is a process
wherein monocytes or macrophages release anti-microbial proteins and DNA which form
extra-cellular traps [133]. Akin to NETosis, METosis leads to the release of DNA, anti-
microbial proteins and histones from monocytes or macrophages, promoting extra-cellular
trap formation and being a highly potent activator of immuno-thrombosis [133,154] (see
Figure 2).

Tissue-type plasminogen activator (tPA) is a major activator of fibrinolysis; the anti-
inflammatory properties of enzymatically inactive (EI) tPA are TLR specific. EI tPA, reduces
the pro-inflammatory process in bone marrow-derived macrophages (BMDMs) as a result
of LPS activity by blocking BMDMs to some of the TLR specific agonists. This inhibits
the expression of TNFα and ILs [155]. A deregulated example of this function occurs in
diabetics who have wound healing disorders as a result of increased inflammatory activity,
in part due to TLRs [156].
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There is evidence that TLR-4 may be solely responsible for fibrinous cardiac remodel-
ing after ischemic events. Mouse models have shown that TLR-4 knock-out mice had no
evidence of fibrinous remodeling, even in the presence of fibrin modulators and agonists,
whereas wild-type mice experienced typical cardiac remodeling with fibrinous elements af-
ter permanent ligation of the left descending coronary artery (sham surgery). Furthermore,
knock-out TLR-4 mice had reduced left ventricular remodeling and increased preservation
in systolic function [157].

Human models have shown significant upregulation of TLR-4 on platelets in patients
after experiencing an acute myocardial infarction. Furthermore, in vitro experiments have
demonstrated that healthy and AMI platelets are activated in the presence of high doses of
the TLR-4 agonist LPS. Increased activation of TLR-4 is also associated with heart failure
following AMI [158].

TLR-4 likely plays a key role in the pathogenesis of Graves’ Disease and may contribute
to heart failure in these patients [114].

Similar to TLR-2, TLR-4 is upregulated in AAA patients when compared with healthy
patients (please see paragraph concerning TLR-2) [95].

During Dengue virus infection, the flavivirus non-structural protein 1 (NS1) mediates
TLR-4-associated cytokine production [159]. NS1, which is a secreted glycoprotein from
Dengue, Zika, West Nile, Japanese encephalitis and yellow fever viruses, is implicated in
viral replication, immune evasion and vascular leakage [160]. Herein, it contributes also
to Dengue hemorrhagic fever and shock [42]. The emergence of hyper-permeability, and
in turn tissue edema, is induced by the disruption of the glycocalyx components heparan
sulfate, sialic acid and syndecan 1 [160–162]. This is mediated via the upregulation of
the enzymes sialidases and heparanase contributing to glycocalyx degradation [161,163].
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However, pathomechanisms seem to be more distinct in Dengue virus infection than in
infection with other flaviviruses [163].

Many viruses cause endoplasmic reticular stress when they use the cell machinery to
produce large amounts of viral proteins [164]. These stressed or dying cells release TLR-4
agonists, for example, high mobility group protein 1 (HBGP1). This causes an inflammatory
reaction, which can also be observed in obese individuals [165].

TLR-4 in neutrophils also has a key role in NET formation, for example, when rec-
ognizing respiratory syncytial virus (RSV) fusion protein [166]. In mice, TLR-4 has also
been involved in the reactivation of cytomegalovirus, which has been previously intra-
peritoneally injected (as a non-sterile infection/inflammatory model), from latency after
LPS stimulation [167]. Interestingly, TLR-4 has also had a role in long-term post-COVID-19
sequelae [168,169]. Herein, S100A8/A9, a calcium-binding protein, stimulates the TLR-
4/receptor for advance glycation end-products’ (RAGE) pathway and chronically activates
IL-1b, IL-6 and tumor necrosis factor (TNF)-alpha expression [168]. Neuro-inflammation
triggered by SARS-CoV-2 spike protein, which was injected intra-cerebroventricularly (non-
sterile infection model), which binds to TLR-4, has been discussed to mediate long-term
cognitive impairment after COVID-19 [169].

3.5. TLR-5

TLR-5-mediated signaling involves TIRs, MyD88, TIRAP, TRIF and possibly also
TRAM [88].

TLR-5 acts as a sensor for the immune system against bacteria by capturing flagellated
bacteria. Flagellin, a structural protein of the flagellum, stimulates inflammatory responses
and development of adaptive immunity in humans. Once the protein ligand on the
flagellum is bound by TLR-5, MyD88 and TRIF are recruited. This leads to NF-κB activation
and cytokine secretion and the inflammatory response is induced [170].

Xiao et al. showed that TLR-5 might be associated with decreased GD susceptibility in
female subjects in a Chinese Cantonese population. Gene polymorphisms related to TLR-5
in 332 GD patients compared with 351 healthy controls were associated with a decreased
risk of GD in women [171].

TLR-5 expression was significantly elevated in patients with severe COVID-19 [72].
However, TLR-5 has been discussed to confer beneficial effects during viral infections
such as influenza A and COVID-19 [80,172]. In influenza A infection, activation of the
TLR-5 pathway by flagellin has shown a decrease in viral RNA, possibly independent of
signaling via type I interferon and IL-22 [172]. Furthermore, TLR-5 seems to have a role
in the inhibition of hepatitis B virus [173]. The involvement of TLR-signaling pathways
in hepatitis B pathophysiology is supported by the results of a transgenic mouse model
with injections of an anti-CD40 agonist, CD40 alpha, which showed the inhibition of HBV
replication by induction of inflammatory cytokines [174].

On the other hand, recent results using non-sterile inflammatory models in mice sug-
gest that, during COVID-19, TLR-5 signaling might enhance SARS-CoV-2 infectivity [175].

3.6. TLR-6

TLR-6-mediated signaling involves TIRs, MyD88 and TIRAP [88,135].
TLR-6, along with TLR-4, seems to play a significant role in thrombosis in patients

with high levels of LDL. Increased LDL promotes inflammation through oxidative stress.
This causes the expression of the pro-coagulatory tissue factor (TF). [176] Owens et al.
designed an experiment using animal models, where adding simvastatin reduced the
expression of TF. It was further shown that deficiency in TLR-4 and TLR-6 reduced levels
of micro-particles in the plasma, reduced expression of TF and reduced coagulation and
inflammation in hyper-cholesterolemic mice and monkeys. Thus, the involvement of TLR-6
and -4 may be considered a major contributor to atherosclerosis [147].

The synergistic activation of TLR-2/6 and TLR-9 has been shown to protect mice
against non-sterile influenza virus infection in a non-sterile inflammation model in mice [177].
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3.7. TLR-7 and -8

Signaling through TLR-7 involves TIRs, MyD88, TRAM and also TIRAP [178,179].
Interestingly, TLR-7 and TLR-9 signaling can be modulated by SARM1, which induces via
this pathway apoptosis in neurons [180].

TLR-8 mediated signaling involves TIRs, MyD88 and TIRAP [181].
So far, only TLR-7 has been shown to have significant involvement in monocyte con-

version to dendritic cells to support the primary immune response against pathogens. This
occurs when TLR-7 induces cytokine production in monocytes and disposal of damaged
cells. Chronic TLR-7 stimulation causes monocytes to differentiate into macrophages [182].

Moreover, TLR-7 signaling in plasmacytoid dendritic cells (pDCs) involves the translo-
cation of IRF5 and IRF7 from the cytosol to the nucleus and might herein be involved in the
activation of pDCs [183].

Both TLRs 7 and 8 bind single-stranded RNA, thus initiating the immune response
against viruses [183,184]. Myocardial cells have been shown to express TLR-7 and -8 when
subjected to coxsackie B viruses [185]. This may explain the production mechanism of IL-6,
INF-β and TNFα in myocarditis patients and, in part, the chronic aspect of the disease [185],
while IL-6 promotes platelet production by acting upon megakaryocytes and hepatocytes
(increased release of thrombopoietin) [186]. Highly increased levels of IFN-β have been
correlated with thrombocytopenia [187]. Finally, TNFα is considered the causal molecule
for platelet hyper-reactivity and the formation of larger thrombi in older humans and aged
mouse models [188].

Platelets also play a vital role in the immune response to viruses such as influenza
virus type A. Platelets express TLR-7 on their cell surface. Once activated, TLR-7 causes
platelets to express alpha granules, P-selectin and CD40L, leading to a platelet-driven
pro-thrombotic effect. Driven by TLR-7, platelets can engulf the virus, causing the release
of complement factor C3, which stimulates the release of neutrophil DNA, thus promoting
the formation of platelet–neutrophil aggregates preceding NET formation [189].

TLR-7 has been reported to be involved in type I IFN induction by Middle East respi-
ratory syndrome (MERS) coronavirus (MERS-CoV) [190]. In SARS-CoV-2-infected patients,
a decrease in pDCs was observed, correlating with disease severity [191]. It is suggested
that SARS-CoV-2 dampens TLR-7 responses through interaction with neuropilin-1 [191].
In pDCs, TLR-7 induced pathways after viral RNA sensing trigger MyD88-IRAK4-TRAF6
signaling, leading to CXCL10 induction as well as IRF7 phosphorylation, translocation
mediating type I and III interferon expression [191].

Genetic polymorphisms of TLR-7 and -8 have been shown to predict susceptibility to
CHIKV [192]. However, in hepatitis C virus infection, TLR-7, together with TLR-3 signaling,
seems to constitute a protective immune response [193]. This hypothesis was corroborated
by a study showing that myocarditis (coxsackie B virus) patients with mutant TLR-3
phenotype had increased viral replication when compared with patients with a normal
TLR-3 phenotype, thus showing that genetic differences in TLR-3 together with PAR-2
modulation of INF- β effect the host’s vulnerability to viral cardiomyopathies [23,194].

Pro-coagulant pathways have been described after the recognition of HIV nucleic
acids by TLR-7 and -8 on neutrophils, leading to NET production [195].

TLR-7 has been shown to be involved in the pathogenesis of SLE in Japanese females,
when gene analysis was performed, compared with a healthy control [196], while TLR-8
has been positively correlated to SLE in a Danish population [123].

TLR-7 has been shown to be involved in the pathogenesis of GD [171], while TLR-8
seems to be involved in the pathogenesis of rheumatoid arthritis [197].

Similar to TLR-1, -2 and -3, TLR-7 mediates inflammation contributing to DM1 [84].

3.8. TLR-9

TLR-9 is integral to inflammation and metabolism. The pathways induced by TLR-9
activation involve TIRs, MyD88 and TIRAP [198]. In addition, signaling through TRIF has
also been shown [199]; studies regarding TRAM are missing [88]. Together with TLR-7,
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TLR-9 can induce apoptosis via SARM1 [180]. As hitherto known, signaling through TLR-9
can result in NF-κB or IRF-7-dependent type I interferon (IFN) pathway activation [200].
Further, PI3Kγ has also had some critical roles in the modulation of immune responses
mediated by TLR-9 [60].

Similar to TLR-7 signaling, TLR-9-mediated signaling in pDCs involves translocation
of IRF5 and IRF7 from the cytosol to the nucleus [183].

It is known that, in humans, BAD-LAMP (LAMP5) dampens TLR-9-mediated type I
IFN production by control of TLR9 sorting in a different endosome subset [201].

TLR-9 is associated with the pathogenesis of non-alcoholic steatosis hepatis (NASH)
and is likely a driver for NASH-associated fibrosis, as it has been shown to be expressed in
13.3% of normal liver tissue, 53.3% in mildly fibrotic patients, 80% in cases of cirrhosis and
95% in hepato-cellular carcinoma patients. TLR-9 is activated by circulating mitochondrial
DNA, which is increased in obese individuals, metabolic dysfunction-associated fatty liver
disease and NASH [202].

Similar to TLRs 7 and 8, TLR-9 is involved not only in the pathogenesis of auto-
immune diseases such as SLE (shown in Asian and Danish cohorts) but also in rheumatoid
arthritis and multiple sclerosis [123,203,204].

In mice, TLR-9 is involved in non-sterile cytomegalovirus infection, as shown in a
model of non-sterile inflammation [205]. Furthermore, TLR-9 senses herpes simplex virus
type 1 and 2 and Epstein–Barr virus [206–209].

MyD88 activation and signaling through IRAK4 suppresses lytic reactivation of
Epstein–Barr virus and favors its latency in B-cells [210]. In peripheral T-cell lymphomas,
TLR-9 and programmed cell death-ligand 1 (PD-L1) expression are associated with poor
survival [211]. Hence, targeting of both TLR-9 and PD-L1 is suggested to induce a sustained
anti-tumor immunity [212].

TLR-9 deficient mice have been compared to wild-type mice with regard to their
capability of resolving venous thrombosis. The TLR-9-inhibited and -deficient mice were
less capable of resolving venous thrombosis after inferior vena cava ligation when compared
with wild-type mice. When wild-type mice were subjected to a TLR-9 stimulant, early
venous thrombosis resolution was accelerated [213].

3.9. TLR-10

TLR-10 mediated signaling involves MyD88 and possibly also TRIF [214].
TLR-10 seems to be the only human TLR that has an inhibitory function over the innate

immune system and inflammation. Its role in this modulatory function within the innate
immunity is largely unknown (except an inhibitory effect on TLR-2 responses [215]) and it is
assumed that the exact anti-inflammatory properties and the impact on the trained immune
response in humans as well as therapeutic options remain to be established [216]. Homo-
dimer TLR-10/10 and hetero-dimer TLR-10/2 have been shown to recruit MyD88 [216].
Different ligands are discussed for binding to TLR-10, among those HIV-gp41, in turn
promoting IL-8 production and NF-κB activation [217]. Moreover, TLR-10 is able to bind
dsRNA in an acidic environment [14]. After recruitment of MyD88, the initiated pathway
inhibits the production of interferon regulatory factor-7-dependent type I IFN [14]. In
addition, a cross-talk with TLR-3-initiated pathways has been described [14]. Furthermore,
Lee et al. have discussed TLR-10 as a relevant viral sensor of innate immunity [218].

4. Discussion

The synergistic patho-mechanisms of inflammation and in consequence disturbance
of the endothelial surface layer with altered vascular perfusion, (micro-)thrombosis and
tissue edema drive life-threatening complications of viral infections [10,219].

TLRs are a key factor in regulating NET formation, as the activation of TLRs on
neutrophils triggers NET release and herein the binding, immobilization and inactivation
of viruses [220]. Similarly, TLR- 4-induced METosis leads to the release of nuclear and
mitochondrial DNA and histones [133]. The released histones are recognized as DAMP
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and activate platelets via TLR-2 and -4, leading to thrombin generation [67,221] (see also
Figure 1). Moreover, signaling through TLR-2 increases vWF release from alpha granules
in megakaryocytes/platelets [222,223] and also from Weibel–Palade bodies in endothelial
cells [224]. As recently reviewed, these mechanisms are central to SARS-CoV-2 patho-
physiology [10] but can also be observed in other viral infections [220,225,226]. One can
assume that viral infections leading to (micro-) thrombotic complications are characterized
by a TLR-vWF-NETosis axis, which in itself drives the processes of immuno-thrombosis
impairing (micro-)vascular integrity. The disturbance of the latter is an underlying cause
of Virchow’s triad impairment and drives tissue hypoxia, leading to organ failure [10]. In
this context, rheological changes due to infection and inflammation should also be con-
sidered [227]. When exposed to oxidative inflammation, red blood cell membrane fluidity
decreases, impairing systemic micro-circulation and, therefore, tissue perfusion [228]. The
latter could be shown in different cardiovascular diseases [229–232], where a chronic inflam-
matory oxidative stress burden co-exists [233–235]. Limitation of oxidative injury might be
given by PKR activation, which is known to enhance NRF2-mediated gene expression of
anti-oxidant proteins such as SOD-1 and HO-1 [138,139].

This could be a negative feedback loop that limits inflammatory processes mediated
by TLRs. However, the exact mechanisms should be studied in different conditions of
inflammation, e.g., atherosclerosis or ischemia–reperfusion injury and inhibiting concepts
such as cellular conditioning or HO-1 induction [236–239].

It should also be noted that pathways of immuno-thrombosis induced by TLR sig-
naling contribute to changes in the vascular wall, including atherosclerosis and aneurysm
development and progress [240,241].

Anemia as a result of inflammatory processes has been previously recognized and
widely discussed [242]. Though a result of multiple causes, anemia can also be driven
by chronic TLR-7 and TLR-9 signaling, initiating the differentiation of inflammatory
hemophagocytes [243]. The latter are also responsible for thrombo-cytopenia [243]. More-
over, infection with SARS-CoV-2 leads to elevated RBC calcium levels, resulting in higher
RBC fragility [244]. In hospitalized COVID-19 patients, anemia is linked to decreased
survival [245].

Anemia leads to alterations of platelet function with enhanced monocyte–platelet ag-
gregate formation and P-selectin expression, as observed in patients with DAPT consisting
of either aspirin and clopidogrel or aspirin and prasugrel/ticagrelor, respectively [246].
Furthermore, the highest risk of ischemic events has been reported in anemic patients with
high on-treatment residual platelet reactivity (HRPR); however, the highest risk of bleeding
has been reported in anemic patients without HRPR [247].

Therapeutic possibilities influencing TLR pathways are challenging, since they are
limited by side effects through pleiotropic functions. In discussion as potential benefits are
TLR agonists, such as TLR-3 agonist poly(I:C), which has been shown to confer anti-viral
effects in animals [248]. TLR-9 agonism by oligonucleotides enhances cytokine production
and modulates viral response [248]. However, it should be noted that the models of TLR
agonism represent a “sterile” inflammatory, which might not depict all processes involved
after pathogen-induced signaling.

On the other hand, TLR-7/9 antagonists such as chloroquine, hydroxy-chloroquine
and quinacrine have been widely used for the treatment of immune-mediated inflammatory
disorders (herein, SLE, rheumatoid arthritis, and Sjögren’s syndrome) [249].

The activation of TLR-7 has been suggested to modulate hepatitis B, herpes simplex
and human papillomavirus infections [13]. In SARS-CoV-2 infection, TLR-2/6 agonism
by INNA-051 has shown promising results in reducing viral RNA levels in a non-sterile
infection/inflammation model in ferrets [250]; mouse models have shown that activation
of TLRs 2 and 7 induces pro-coagulatory transcription factor expression in (non-sterile)
sepsis-induced coagulopathy, making it a possible therapeutic goal in the future [251].
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Table 1. Diseases linked to toll-like receptors. Table showing an overview of diseases discussed in
the manuscript and the TLRs involved in their pathogenesis.

Diseases TLRs Involved References

Auto-immune

Graves’ Disease 1, 2, 5, 7, 8 [114,171]
Multiple Sclerosis 9 [204]

Rheumatoid Arthritis 2, 8, 9 [48,91,197,203]
Systemic Lupus Erythematosus 3, 7, 8, 9 [123,196]

Cardiovascular

Abdominal Aortic Aneurysm 2, 4 [95,98,99,104–106,108]
Acute Myocardial Infarction 1, 2, 4 [83,157,158]

Atherosclerosis 1, 2, 4, 6 [104,152,240]
Vasculitis 4, 5 [80]

Infectious

Chikungunya Virus 1, 2, 3, 7, 8 [15,192]
Cytomegalovirus 2, 4, 7, 9 [109,167,205]

Coronavirus Disease 2019 2, 4, 5, 6, 7, 8 [42,72,74,75,168,169,175,250]
Dengue Virus 4 [159,160]

Epstein Barr Virus 2, 7, 9 [13,209]
Herpes Simplex Virus 1 and 2 9 [207,208]

Hepatitis B 2, 5, 7 [13,112,173]
Hepatitis C 2, 3, 4, 7 [13,111,193]

Human Immunodeficiency Virus 7, 8, 10 [110,195,217]
Influenza 2, 5, 6, 7, 9, 10 [22,172,177,179,189,218]

Middle Eastern Respiratory Syndrome 3, 7 [16,190]
Respiratory Syncytial Virus 4 [166]

West Nile Virus 3 [126]
Varicella Zoster 2 [13]

Metabolic

Diabetes Mellitus Type 1 1, 2, 3, 4, 7, 9 [82,84]
Diabetes Mellitus Type 2 1, 2, 4 [81,82,113]

Non-Alcoholic Steatosis Hepatis 9 [202]

In general, our review is intended to raise awareness regarding thrombo-inflammatory
pathways mediated by TLR responses. This should give opportunities for hypothesis
generation in future research. Although we have used as data source the NCBI database
PubMed and the herein indexed publications with a broad strategy on used MESH terms,
a limitation to our review is its narrative character, which also mirrors the opinion of
the authors.

Moreover, we attempted to describe human TLR receptors and signaling pathways;
however, knowledge is often limited by the availability of animal-based models.

5. Conclusions

Pathways induced by TLR signaling are complex and can promote beneficial effects
such as viral elimination with side effects harming tissue homeostasis [10]. TLR pathways
can result in a burst of immuno-thrombosis, resulting in NET and MET production, pro-
moting a pro-inflammatory and pro-thrombotic response destabilizing the equilibrium of
vascular and platelet function [148,150]. Moreover, TLR pathways may play an important
role in virus reactivation and associated long-term pro-inflammatory responses [167,169].

Patients’ comorbidities and the multi-level effects of viral infections including inflammation-
driven pro-thrombotic effects pose therapeutical challenges and the potential for adverse
drug interactions without a clear clinical benefit. Further studies to elucidate the cross-talks
in TLR signaling with a focus on viral long-term sequelae are warranted.
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Pathogen entry causes sensing by TLRs, which in turn activate platelets leading to
platelet–leukocyte aggregation [26]. TLR signaling mediates neutrophil and macrophage
activation and promotes neutrophil extra-cellular trap (NET) as well as macrophage extra-
cellular trap (MET) formation [37,133,150]. NETosis and METosis cause the release of DNA
and histones, which, as DAMPs, drive further pro-inflammatory and pro-coagulatory
responses via TLRs [133,154]. Immuno-thrombotic processes lead to alterations based
on Virchow’s triad, of which endothelial injury with glycocalyx degradation is crucial in
patho-physiological processes [10].
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