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Abstract: The proteasome is a multi-catalytic protease complex that is involved in protein quality
control via three proteolytic activities (i.e., caspase-, trypsin-, and chymotrypsin-like activities). Most
cellular proteins are selectively degraded by the proteasome via ubiquitination. Moreover, the
ubiquitin–proteasome system is a critical process for maintaining protein homeostasis. Here, we
briefly summarize the structure of the proteasome, its regulatory mechanisms, proteins that regulate
proteasome activity, and alterations to proteasome activity found in diverse diseases, chemoresistant
cells, and cancer stem cells. Finally, we describe potential therapeutic modalities that use the ubiquitin–
proteasome system.
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1. Introduction

Reactive oxygen species (ROS), by-products of aerobic metabolism, are mostly pro-
duced in the mitochondria [1]. Low concentrations of ROS are involved as signaling
molecules in various pathways, and high concentrations of ROS are removed by antioxi-
dant proteins before they damage cells [2,3]. Nevertheless, excessive production of ROS
causes imbalances between the production of free radicals, and their elimination and can
lead to misfolding of native proteins [4]. To prevent the accumulation of misfolded proteins,
cells have developed protein quality control machinery such as molecular chaperones [5].
Chaperone proteins facilitate the refolding of misfolded proteins; however, limitations
exist since some proteins cannot be refolded to their native state by chaperones; examples
include damaged or misfolded soluble proteins and obsolete proteins [6,7]. Moreover,
when dysregulation of protein homeostasis (proteostasis) continues, it causes diseases
such as cancer, amyotrophic lateral sclerosis, metabolic disorders, and spinal and bulbar
muscular atrophy [8–10]. Therefore, the timely removal of non-native proteins is essential
for cells to maintain protein homeostasis.

The main method of eliminating non-native proteins from cells is protein degradation
(proteolysis). There are two main pathways involved in proteolysis in cells: the ubiquitin–
proteasome system (UPS) and the autophagy–lysosome system [11]. Of these two, UPS
prevents the abnormal accumulation of proteins by directly breaking down more than 80%
of cellular proteins [12]. In contrast, the autophagy–lysosome system is involved in the
decomposition of proteins that cannot be degraded even by the proteasome, such as insoluble
or aggregated proteins, cellular organelles, etc. [13,14]. Thus, the proteasome is essentially
involved in protein quality control against the accumulation of aggregated proteins.
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Recently, various treatment methods such as proteolysis targeting chimera (PROTAC)
and molecular glues have been developed for targeted protein degradation (TPD). Preclin-
ical results from 2019 show distinct promise of this technique in the future [15]. In such
treatment methods, the UPS is mainly involved in selectively degrading target proteins.
Moreover, unlike existing treatments (i.e., small molecule inhibitors, siRNAs, and mono-
clonal antibodies, among others), this method is a new approach that can directly target
and remove disease-causing proteins [16]. Thus, the development of treatments using the
proteasome is expected to increase in the future. In this review, we briefly describe the
structure of the proteasome, the mechanistic basis of the UPS, and the regulatory proteins
involved in proteasome activity. Finally, we conclude by discussing the possibility of
various therapeutic modalities using the proteasome.

2. Ubiquitin

Ubiquitin (originally called “ubiquitous immunopoietic polypeptide”) was first dis-
covered by Gideon Goldstein in 1975 [17]. Five years after its discovery, Keith D. Wilkinson,
Michael K. Urban, and Arthur L. Haas confirmed that a small heat-stable polypeptide called
adenosine triphosphate (ATP)-dependent proteolysis factor1 (APF1) was actually ubiqui-
tin [18]. In 1977, Alfred Goldberg first demonstrated ATP-dependent protein degradation
in reticulocytes [19]. Three years later, Aaron Ciechanover, Avram Hershko, and Irwin A.
Rose suggested that the ATP-dependent covalent binding of ubiquitin was required for
targeting proteins for degradation; they were awarded the Nobel Prize in Chemistry in
2004 for the discovery of ubiquitin-mediated protein degradation. After that, extensive
research on ubiquitin was steadily conducted in the following decades [20–22].

2.1. Type and Function of Ubiquitin Chains

Ubiquitin is a small globular protein composed of 76 amino acid polypeptides
(8.6 kDa) [23]. As its name suggests, ubiquitin is ubiquitously present and is highly
conserved in a wide range of eukaryotes from yeast to humans [24]. Ubiquitination (also
referred to as ubiquitylation) is one of the most prevalent reversible post-translational
modifications. It involves the C-terminal glycine (Gly76) of ubiquitin forming an isopeptide
linkage with the internal lysine, serine, threonine, and cysteine of a target protein, followed
by the subsequent formation of a mono- or polyubiquitinated chain [25,26] (Figure 1).
Therefore, the complexity of the ubiquitin chain with respect to type and length constitutes
its ubiquitin code [27]. Ubiquitin N-terminal methionine (i.e., Met1/linear) and seven
internal lysine (K) residues (i.e., K6, K11, K27, K29, K33, K48, and K63) are involved in
the formation of eight different types of ubiquitin linkages [28]. Moreover, ubiquitin is
involved in diverse biological processes including protein trafficking, protein degradation,
DNA repair, NF-κB activation, endocytosis, and cell cycle progression, depending on the
linkage position [29–31].

2.1.1. Methionine 1

The sequential binding of ubiquitin to methionine 1 (Met1) of ubiquitin causes the
formation of linear polyubiquitination chains (i.e., Met1-linked or linear ubiquitin chains).
At the same time, the linear ubiquitin chain assembly complex (LUBAC), a ubiquitin ligase
complex consisting of SHARPIN, HOIP, and HOIL-1L, is involved in Met1/linear-linked
ubiquitin chain formation. LUBACs are known to stimulate the NF-κB activation pathway
via LUBAC-mediated linear polyubiquitin chains [32,33].

2.1.2. Lysine 6 (K6)

The tumor suppressor BRCA1 is implicated in both DNA repair and cell cycle regula-
tion. In addition, BRCA1 has E3 ubiquitin ligase activity due to the presence of a novel gene
(RING) finger domain located at its N-terminus. BRCA1 forms a heterodimeric complex
with its N-terminal binding partner BARD1. The E3 ubiquitin ligase activity of BRCA1 is
enhanced by BARD1, resulting in the auto-ubiquitination of BRCA1. The resulting ubiqui-
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tin chain is specifically formed at the K6 residue of ubiquitin. This K6-linked ubiquitination
is believed to be associated with DNA double-strand break repair [34].
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Figure 1. Schematic representation of the type and function of ubiquitin chains. Ubiquitin forms
an isopeptide bond with substrate side-chain lysine (K), serine (S), threonine (T), and cysteine (C)
residues through its C-terminal glycine residue 76 (G76). These chains, through mono-, multi-, and
polyubiquitination, participate in various cellular signaling pathways. The representative sites and
functions of the polyubiquitination chain are as follows (right).

2.1.3. Lysine 11 (K11)

K11, together with K48, is involved in the proteasomal degradation of substrates. E3
ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), a key regulator of
the cell cycle, is known to regulate mitosis and G1 phase. Substrates (e.g., cyclins) are
bound to APC/C through the coactivator cell division cycle 20 (CDC20) or cadherin 1, and
K11-linked ubiquitination and subsequent degradation is facilitated via E2 UbcH10 and
Ube2S [35,36]. In another example, an E3 ubiquitin ligase neural precursor cell-expressed
developmentally downregulated gene 4 (NEDD4) has been found to induce the K11-linked
proteasomal degradation of Beclin1 [37].

2.1.4. Lysine 27 (K27)

Voltage-dependent anion channel 1 (VDAC1) is a target of the E3 ubiquitin ligase
Parkin and is involved in the autophagy of damaged mitochondria (“mitophagy”), during
which K27-linked ubiquitin chains are generated [38]. Upon cytokine stimulation, the
E3 ubiquitin ligase Itch is activated and induces the K27-linked polyubiquitination of
B-Raf. After activation, B-Raf then promotes tumorigenesis in melanoma cells by activating
MEK/ERK signaling [39]. Another example of a protein with K27-linked ubiquitin chains
is TIEG1, which is an essential transcription factor for TGF-b-induced regulatory T cell
(Treg) development. The proinflammatory cytokine IL6 activates the tyrosine (Tyr) kinase
Tyk2 to phosphorylate TIEG1 at Tyr179. Phosphorylated TIEG1 then undergoes K27-linked
polyubiquitination via the E3 ubiquitin ligase Itch. K27-linked polyubiquitination in turn
suppresses the nuclear translocation of TIEG1, suppresses Foxp3 expression and TGF-b-
induced Treg development, and increases Th17 cell development, thereby reducing tumor
growth [40]. In addition, K27 is involved in the innate immune response via various target
proteins (e.g., cGAS and STING) [41,42].

2.1.5. Lysine 29 (K29)

AMP-activated protein kinase (AMPK)-related kinases, such as AMPK-related kinase
NUAK family kinase1 (NUAK1) and microtubule-affinity-regulating kinase 4 (MARK4)
are ubiquitinated by K29-linked ubiquitin chains. The polyubiquitination of NUAK1
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and MARK4 was found to result in no alteration of its stability, but inhibited both its
phosphorylation and activity [43]. Finally, atrophin-1-interacting protein 4 has been
found to induce the polyubiquitination of deltex via K29-linked ubiquitin chains for
lysosomal degradation [44].

2.1.6. Lysine 33 (K33)

The E3 ubiquitin ligase Parkin is phosphorylated and activated by AMPK. Activated
Parkin then inhibits the pronecroptotic factor RIPK1−RIPK3 interaction by promoting
the polyubiquitination of RIPK3 via K33-linked ubiquitin chains (note that the protein
level of RIPK3 is not changed by Parkin). Through this pathway, the AMPK–Parkin axis
inhibits necroptosis [45].

2.1.7. Lysine 48 (K48)

K48-linked ubiquitin chains are the most intensively studied ubiquitin modification
related to proteasome-mediated protein degradation. Most proteins, including p53, HIF1α,
HIPK2, and ASK1, are ubiquitinated via the ubiquitin K48, and K48-linked ubiquitin chains
act as a degradation signal to induce the proteasomal degradation of proteins [46–50].
Table 1 summarizes the proteins degraded via the 20S proteasome and those degraded via
the ubiquitin-dependent or -independent 26S proteasome (Table 1).

Table 1. A list of substrate proteins degraded via 26S or 20S proteasome.

Proteasome Ubiquitin E3 Ligase Substrate Mediator Disease References

26S
dependent

MDM2
p53 RNF31 Cancer [46,51]

HIF1α Cancer [47]

Siah2

ASPP2 Cancer [52]
PHD3 Cancer [53]
HIPK2 Cancer [49]
CHK2 Cancer [54]

HDAC3 Neurodegenerative disease [55]
Cullin3 HIF1α RhoBTB3 Cancer [56]

ULK1 KLHL20 Cancer, Diabetes [57]
Roquin2 ASK1 Cancer [50]

VHL HIF1α Cancer [58]
KEAP1 IKKβ Cancer [59]
KPC1 p105 Cancer [60]
CHIP sGC Cardiovascular disease [61]

Smurf1 PIPKIγ Cancer [62]
CRL4 GRK2 Gβ2 Cardiovascular disease [63]

WWP1 KLF5 Cancer [64]
Itch Bid Cancer [65]

COP1 MTA1 Cancer [66]

independent ODC Antizyme1 Cancer [67]
TS Cancer [68]

20S independent

p53 Cancer [69]
p53 Isg15 Cancer [70]
p35 Neurodegenerative disease [71]
p21 14-3-3τ Cancer [72]
tau Neurodegenerative disease [73]

α-synuclein Neurodegenerative disease [74]
c-Myc Antizyme2 Cancer [75]
IκBα Cancer [76]

Aurora-A AURKAIP1
Antizyme1 Cancer [77,78]

p130 pp71 Cancer [79]
Rb MDM2 Cancer [80]
SE [81]
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2.1.8. Lysine 63 (K63)

The E3 ubiquitin ligase TRAF6 promotes the ubiquitination of hexokinase 2 (HK2), a
glycolytic enzyme that converts glucose to glucose-6-phosphate, at the K41 residue using
K63-linked ubiquitin chains. Under high autophagic flux, ubiquitinated HK2 is recog-
nized by the autophagy receptor SQSTM1, also known as p62, leading to the formation
of autophagosomes and the subsequent selective autophagic degradation, thereby sup-
pressing glycolysis. However, under conditions of low autophagic flux, the formation of
autophagosomes is impaired, resulting in the absence of HK2 degradation. These findings
demonstrate that autophagy modulates HK2-dependent glycolysis [82].

3. The Proteasome and Beyond

The proteasome participates in direct protein degradation as a high-molecular-weight
protease complex. The two major species of proteasome are the 26S proteasome
(2.5 MDa) and the 20S proteasome (700 kDa) [83]. The 26S proteasome consists of the
20S proteasome (also called 20S core particle, CP) and one or two 19S regulatory par-
ticles (RPs, also called PA700). The 20S proteasome is composed of two of outer hep-
tameric rings, each containing seven α-subunits (α1–α7), and two inner heptameric rings,
each containing seven β-subunits (β1–β7). These are then assembled as a β-ring barrel-
shaped structure (α7-β7-β7-α7). The α-rings serve as a “gate” for substrate entry, while
three subunits (i.e., β1, β2, and β5) of the β-rings hold distinct peptidase activities and
directly degrade proteins [84]. The 26S proteasome engages in ATP, ubiquitin-dependent
protein degradation, whereas the 20S proteasome engages in ATP, ubiquitin-independent
protein degradation [85]. In addition, the type and the number of regulatory particles that
interact with the 20S proteasome accounts for the diversity of proteasome complexes [86,87].

3.1. Assembly of the 20S Proteasome

For the 20S proteasome assembly, a proteasome-assembling chaperone 1 (PAC1)-PAC2
hetero-dimer and a PAC3-PAC4 hetero-dimer first create α-ring intermediates from the
α4, α5, α6, and α7 structures within α-subunits. PAC1-PAC2 and PAC3-PAC4 prevent
the off-pathway dimerization of α-subunits and the incorrect incorporation of the other
α-ring, thereby facilitating stable α-ring formation. Once the α1, α2, and α3 subunits are
assembled into an α-ring, the β-subunit starts to be incorporated. The β2 subunit then
associates with the α-ring, which is promoted by ubiquitin-mediated proteolysis 1 (UMP1),
and the subsequent binding of β3 dissociates the PAC3-PAC4 complex. Next, the remaining
β-subunits (but not β7) are incorporated to form the 15S intermediate complex. Subsequent
β7 incorporation into the 15S intermediate creates a complex, termed the ‘half-proteasome’,
that triggers its own dimerization. Moreover, UMP1 is required for proper maturation
of the 20S proteasome since it inhibits the premature dimerization of half-proteasomes.
Finally, the mature 20S proteasome degrades the assembly factors such as UMP1 and the
PAC1-PAC2 hetero-dimer (in yeast, PAC1-PAC2 is recycled for future assembly into new
20S proteasomes) (Figure 2) [88–90].

3.2. Assembly of the 19S RP

The 19S RP can be subdivided into the lid subcomplex (~370 kDa) and the base
subcomplex [91,92]. The lid subcomplex consists of nine regulatory particle non-ATPase
(Rpn) subunits (i.e., Rpn3, Rpn5, Rpn6, Rpn7, Rpn8, Rpn9, Rpn11, Rpn12, and Rpn15).
The base subcomplex consists of six regulatory particle ATPase (Rpt) subunits (i.e., Rpt1,
Rpt2, Rpt3, Rpt4, Rpt5, and Rpt6) as well as three non-ATPase subunits (i.e., Rpn1, Rpn2,
and Rpn13) [93]. Rpn10, which was thought to be a part of the base subcomplex, is
now considered to be a factor that stabilizes the lid–base interaction and recognizes the
ubiquitin chain [94,95].
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Figure 2. The assembly of the 20S proteasome and two parts of the 19S regulatory particle, the
lid and base subcomplexes. (A) Schematic diagram of the 20S proteasome. For synthesis of the
20S proteasome, the α-ring is formed first, followed by the formation of the β-subunit, thereby
forming the β ring. Of the β-subunits, the catalytically active subunits that directly degrade are
β1, β2, and β5. (B) Schematic diagram of the lid subcomplex. Rpn12 is an important subunit that
binds to LP2 (i.e., module1 + LP3) to form the lid subcomplex. This is involved in base binding via
Rpn10. (C) Schematic diagram of the base subcomplex. The basic subcomplex directly linked to 20S
proteasome is complexed by various chaperone proteins. The lid subcomplex and base subcomplex
are collectively referred to as 19S RPs.

The lid subcomplex assembly begins as two subcomplexes, module 1 (consisting of
Rpn5, Rpn6, Rpn8, Rpn9, and Rpn11) and lid particle 3 (LP3; consisting of Rpn3, Rpn7, and
Rpn15), which join to form lid intermediate LP2. Rpn12 is then incorporated into the LP2
intermediate to complete the lid subcomplex [92,96].

The base subcomplex assembly is preceded by the formation of intermediate com-
plexes. These include a heterohexameric ATPase ring that contains three modules, i.e.,
module1 (p27, Rpt4, and Rpt5), module2 (p28, Rpt3, Rpt6, and proteasomal ATPase-
associated factor1 (PAAF1)), and module3 (S5b, Rpt1, Rpt2, and Rpn1). This formation is
regulated by four RP assembling chaperones (RACs). These include p27, p28, S5b, and
PAAF1 [97]. Subsequent incorporation of the Rpn2-Rpn13 hetero-dimer causes the dis-
sociation of RACs. Moreover, the binding of the stabilizing factor Rpn10 to the lid and
base subcomplexes completes the proper assembly of the 19S RP (Figure 3). For regulatory
particles, in addition to 19S RP, various regulatory particles such as 11S RP (also called
proteasome activator 28, PA28, or REG), PA200 (also known as Blm10 in yeast), ATPases
associated with diver cellular activities (AAA+) ATPase forming ring-shaped complexes
(ARC), a homologue of 19S RP in eubacteria, and proteasome-activated nucleotidase (PAN),
a homologue of 19S RP in archaea, have been identified.

3.3. Assembly of the 26S Proteasome

The extracellular matrix 29 (Ecm29) proteins stabilize the 26S proteasome by tethering
the 20S proteasome and the 19S RP [88,98]. Furthermore, under oxidative stress conditions,
ECM29 accelerates the disassembly of the 26S proteasome [99]. Furthermore, heat shock
protein 90 (Hsp90) also contributes to the association of the 26S proteasome, both in vivo
and in vitro, in an ATP-dependent manner [100].
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form the 26S proteasome.

3.4. Steps Involved in Substrate Degradation via the 26S Proteasome
3.4.1. Ubiquitination

Aberrant proteins, including damaged proteins, misfolded proteins, over-expressed
protein substrates, and short-lived proteins, require ATP-dependent proteolysis to be
degraded by the 26S proteasome. (For some proteins, which are degraded by the 20S
proteasome via an ubiquitin-independent pathway, a sequential cascade for protein degra-
dation called ubiquitination is not required) [101] (Figure 4). Of the various types of
ubiquitin chain mentioned above, the K48-linked polyubiquitin chain, which is involved
in proteasomal degradation, is the most abundant and widely studied [102]. The pro-
cess of ubiquitination requires three different enzymes: E1 ubiquitin-activating enzymes
(of which there are 2), E2 ubiquitin conjugases (~40 in total), and E3 ubiquitin ligases
(over 600 in total) [103]. These are involved in the sequential ubiquitination process as
follows: Step 1: ubiquitin is activated when a thioester bond forms between the C-terminal
glycine (i.e., Gly76) of ubiquitin and the active site cysteine of the E1 ubiquitin-activating
enzyme in an ATP-dependent manner. Step 2: activated ubiquitin is transferred from the
E1 ubiquitin-activating enzyme to E2 ubiquitin conjugase, and a thioester bond forms
between the C-terminal glycine of ubiquitin and the active site cysteine of the E2 ubiquitin
conjugase. Step 3: when the ubiquitin–E2 complex and substrate bind to E3 ubiquitin
ligase, E3 ubiquitin ligase transfers ubiquitin to the substrate. Consequently, a covalent
peptide bond is formed between the C-terminal Gly of ubiquitin and a lysine residue in
the substrate protein. Step 4: in some cases, an E4 ubiquitin ligase, a polyubiquitin chain
elongation factor, is involved in polyubiquitin chain assembly [104–106].

The substrate specificity of E3 ubiquitin ligase is a significant feature involved in the
ubiquitination process. E3 ubiquitin ligases are subdivided into four groups, including:
(1) the RING-type E3 ubiquitin ligases; (2) the homology to E6-associated protein carboxyl
terminus (HECT)-type E3 ubiquitin ligases; (3) the RING-between-RING (RBR) E3 ubiquitin
ligases, also referred to as RING-HECT hybrids; and (4) the U-box-type E3 ubiquitin
ligases [107,108]. RING-type E3 ubiquitin ligases have a RING domain and a substrate-
binding domain (SBD). When ubiquitin-E2 ubiquitin conjugase binds to the RING domain
of E3 ubiquitin ligases, the ubiquitin on the E2 ubiquitin conjugase is directly transferred to
the substrate bound to the SBD, whereas ubiquitination via HECT type E3 ubiquitin ligases
requires an additional step in which the ubiquitin is first bound to a catalytic cysteine (Cys)
residue in the HECT domain within a HECT type E3 ubiquitin ligase. Here, the ubiquitin is
subsequently transferred to the substrate. RBR-type E3 ubiquitin ligases have two RING
domains. Once ubiquitin-E2 ubiquitin conjugase binds the RING1 domain, the ubiquitin
on the E2 ubiquitin conjugase on the RING1 domain is transferred to a catalytic cysteine of
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the RING2 domain and is then transferred again to the substrate. U-box type E3 ubiquitin
ligases were first identified in the yeast Saccharomyces cerevisiae (S. cerevisiae) [109,110].
These ligases have a conserved U-box domain that is similar to the RING domain. In these
ligases, E2 ubiquitin conjugase interacts with the U-box domain and subsequently promotes
the ubiquitination of the substrate. E4 ubiquitin ligase E4B, a mammalian homologue of
yeast UFD2, is a U-box-containing protein that has been found to promote the elongation of
polyubiquitin chains like E3 ubiquitin ligase [111,112].
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Figure 4. Schematic representation of the degradation process. The ubiquitin mediates the K48-linked
ubiquitination of substrates through a cascade involving E1, E2, and E3 enzymes. Ubiquitin chains
are recognized by the 19S regulatory particle and subsequently degraded by the 26S proteasome. The
ubiquitin molecules that participated in the degradation process are then recycled to participate in
substrate degradation again.

3.4.2. Recognition of Ubiquitin Chains

The ubiquitin chain is recognized by three ubiquitin receptors, Rpn1, Rpn10, and
Rpn13, each of which is a component of a proteasome subunit [113,114]. Rpn10 and Rpn13
are the major ubiquitin-binding subunits. In both cases, ubiquitin binds to Rpn10 and
Rpn13 via a specific ubiquitin-interacting motif also known as a LALAL motif domain and
a pleckstrin-like receptor for ubiquitin domain, respectively [94,115]. In addition, Rpn13 is
the subunit to which the deubiquitinating enzyme UCHL5 binds [116]. Moreover, Rpn1
binds to ubiquitin through its proteasome/cyclosome repeats [117]. Rpn1 is a ubiquitin
receptor and a subunit bound by the deubiquitinating enzyme USP14 [118,119].

3.4.3. Deubiquitination

Deubiquitinating enzymes (DUBs) are proteases that regulate the ubiquitin–proteasome
pathway. They do so by processing ubiquitin precursors into mature ubiquitin, upon which
the ubiquitin molecules are cleaved from ubiquitin-conjugated substrates. This process
is therefore termed deubiquitination, since DUBs prevent protein degradation by revers-
ing the ubiquitin process. While ubiquitinated substrates are degraded by proteasomes,
DUBs prevent the degradation of substrates by separating them from substrates to recycle
ubiquitin monomers for the subsequent degradation of other substrates. Human DUBs are
classified into two classes: cysteine proteases and metalloproteases [120]. Cysteine proteases
make up most DUB members in eukaryotic cells and can be divided into seven families:
(i) ubiquitin-specific proteases, (ii) ovarian tumor proteases, (iii) monocyte chemotactic
protein-induced proteases, (iv) ubiquitin C-terminal hydrolases proteases, (v) Machado–
Joseph domain proteases, (vi) motif interacting with Ub-containing novel DUB family, and
(vii) zinc finger (ZnF) with UFM1-specific peptidase domain protein. Interestingly, the
metalloproteases have an additional family: (viii) Jab1/Pab1/MPN domain-containing
metalloenzymes [121,122].
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The catalytic triad of cysteine proteases is mainly composed of conserved cysteine
(Cys, C), aspartate (Asp, D), and histidine (His, H) residues. These proteases hydrolyze the
isopeptide bond between ubiquitin and a substrate, or between ubiquitin moieties [123].
Two DUBs (i.e., USP14 and UCHL5) of the three proteasome-associated DUBs belong to
the cysteine protease family and therefore cleave the ubiquitin–ubiquitin interaction once
the proteasome binds to the substrate, thereby preventing degradation by the proteasome.
In contrast, Rpn11, a subunit consisting of the lid subcomplex of 26S proteasome, belongs
to the metalloprotease family, and is activated by the coordination between four conserved
residues (i.e., His, Asp, Glutamate, and serine) and zinc ions to catalyze isopeptide hydrol-
ysis [120,124,125]. Once the ubiquitin chain of the substrate is recognized by Rpn1, Rpn10,
and Rpn13, Rpn11—unlike USP14 and UCHL5—releases whole ubiquitin from a partially
unfolded substrate before it is degraded by the proteasome [126,127]. Finally, the substrate
is unfolded and translocated into the 20S proteasome.

3.4.4. Gate Opening and Translocation

The AAA+ enzymes are a superfamily of proteins and use the energy produced
when ATP is hydrolyzed to ADP to drive various cellular activities [128]. Ring-shaped
heterohexameric AAA+ complexes, which consist of the six ATPases (Rpt1, Rpt2, Rpt3, Rpt4,
Rpt5, and Rpt6), mechanistically unfold and translocate substrates into the 20S proteasome.
Rpt2, Rpt3, and Rpt5 also contain a conserved C-terminal hydrophobic-tyrosine-X (HbYX)
motif, which interacts with the lysine-pocket (K-pocket) of the α-ring of the 20S proteasome.
This triggers the gate opening of the α-ring pore of the 20S proteasome to convert it from a
closed to an open state after ATP binding. Six ATPases change their confirmation to adopt
a spiral staircase arrangement in an ATP-dependent manner, thereby permitting substrate
unfolding and translocation into the 20S proteasome [129,130].

3.4.5. Proteolysis

Unfolded substrates translocated into the proteolytic chamber via the α-ring are
then directly degraded by β-subunits. Of the seven β-subunits, the β3, β4, β6, and β7
subunits participate in the assembly of the structural complex of the 20S proteasome,
whereas β1, β2, and β5 display caspase-like (or peptidylglutamyl-peptide-hydrolyzing),
trypsin-like, and chymotrypsin-like activities, respectively [131]. β1 hydrolyzes the peptide
bond on the carboxyl side of acidic or hydrophobic amino acids. Moreover, β2 cleaves
the bond on the carboxyl side of basic or hydrophobic amino acids, and β5 cleaves the
bond on the carboxyl side of hydrophobic amino acids. The cylindrical particle of 20S
proteasomes contains two β-rings and is responsible for six substrate-degrading activities.
In addition, 20S proteasomes contain highly conserved threonine (Thr) residues on the
N-termini of all active β-subunits and is therefore called a Thr protease [132]. Moreover,
given the proteolytic activities within the cylindrical core particle, the isopeptide bonds of
the substrate are hydrolyzed, resulting in the generation of small peptides. Their average
length ranges between 3 and 23 amino acids [84,85,133].

3.5. Substrate Degradation via the 20S Proteasome

In mammalian cells, approximately 20% of the proteasomes are 26S proteasomes,
while the rest consist of 20S proteasomes, immunoproteasomes, thymoproteasomes, and
hybrid proteasomes [134]. Despite this distribution, around 80% of the total protein is
degraded by the 26S proteasome [12]. As mentioned before, the 26S proteasome recog-
nizes substrates linked to ubiquitin chains, which are typically associated with natively
folded proteins, for degradation. In contrast, the 20S proteasome is known for its role
in the default degradation of proteins that exhibit certain characteristics. These include
proteins containing intrinsically disordered regions (IDRs) or being intrinsically disordered
proteins (IDPs) [135]. Some proteins exist in a partially or fully unfolded state without
forming a defined structure. Proteins with such disordered regions, such as p21, p53, c-fos,
α-synuclein, tau, and others, are degraded by the ubiquitin-independent 20S protea-
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some [136]. Additionally, the 20S proteasome is involved in the degradation of oxidatively
damaged proteins [137]. Oxidative stress induces the dissociation of the 26S proteasome
into the 20S proteasome and the 19S RP, leading to the accumulation of structurally unstable
misfolded proteins. Misfolded proteins, exposing hydrophobic regions, tend to aggregate.
The 20S proteasome recognizes these hydrophobic regions and facilitates the degradation
of oxidized proteins [138]. However, it has recently been reported that ubiquitin-tagged
proteins can also be degraded through the 20S proteasome [139]. In addition, proteins
such as p53 and p21 have been shown to undergo degradation by both the 26S proteasome
and the 20S proteasome [140]. This indicates that the degradation mechanisms mediated
by the 26S proteasome and the 20S proteasome are not mutually exclusive but rather
complementary to each other [136].

3.6. Mixed Proteasome

The mixed proteasomes, also known as intermediate proteasomes, contain a combina-
tion of immune and constitutive proteolytic subunits: β1, β2, and β5i (also known as LMP7,
with chymotrypsin-like activity); β1i (also known as LMP2, with chymotrypsin-like or
branched-chain-amino-acid-preferring activity), β2, and β5i. These proteasome subtypes
expand the repertoire of antigens presented to CD8+ T cells [141]. In addition, proteasome
subtype β1i, β2i (also known as MECL-1, with trypsin-like activity), and β5, without β5i,
can be formed [142]. The high expression of proteasomes containing subunit β1i, but not
β5i, is associated with the development of immunological tolerance [143]. β1i is required
for the adaptation of rat ventricular cardiomyocytes to reach pressure overload [144]. Thus,
the functions of proteasomes containing immune subunits in combination with constitutive
ones are wider than the formation of antigenic epitopes.

3.7. Immunoproteasome

The immunoproteasome is an alternative form of the constitutive 20S proteasome that
was discovered in 1994 [145]. It has distinct catalytic subunits known as β1i, β2i, and β5i.
In contrast to the regular proteasome, the immunoproteasome contains these specialized
subunits, which confer unique enzymatic activities. The synthesis of these subunits, β1i,
β2i, and β5i, is induced by pro-inflammatory cytokines such as tumor necrosis factor-alpha
(TNF-α), interferon-gamma (IFN-γ), and oxidative stress. Consequently, the immunoprotea-
some is generated ahead of the constitutive 20S proteasome [86,146]. Immunoproteasomes
are known to be highly expressed in immune cells, such as antigen-presenting cells (APCs).
They play a crucial role in generating antigenic peptides by breaking down intracellular
antigens. These antigenic peptides are then transported into the endoplasmic reticulum
(ER), where they form complexes with newly synthesized major histocompatibility complex
(MHC) class I molecules. Subsequently, these complexes undergo processing in the Golgi
apparatus and are presented on the cell surface. Once presented on the cell surface, the
antigenic peptide–MHC complex can be recognized by the T cell receptors (TCRs) of CD8+
T cells, leading to the triggering of immune responses [147,148].

3.8. Thymoproteasome

The thymoproteasome, discovered in 2007, is closely related to the positive selection of
T cells [149]. It is exclusively expressed in cortical thymic epithelial cells (cTECs) within the
cortex and shares structural similarities with the immunoproteasome, containing unique
subunits called β1i, β2i, and β5t [150]. The maturation of T cells occurs as immature T cells,
formed in the bone marrow, which migrate to the thymus. The thymus can be divided
into the cortex and medulla, and it is in the cortex where the initial development of T cells
takes place through positive or negative selection, ultimately leading to the formation of
mature T cells. Within cTECs, self-antigens are degraded by the thymoproteasome into
self-peptides. These self-peptides, along with MHC class I molecules, are formed in the ER
and presented on the surface of cTECs after passing through the Golgi apparatus. The T
TCRs of T cells recognize these self-peptides, determining the outcome of positive selection.
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T cells with weak binding to self-peptides undergo positive selection, differentiating into
mature CD8+ T cells that participate in adaptive immune responses. On the other hand, T
cells with strong binding to self-peptides undergo negative selection, leading to apoptosis.
This process prevents the development of T cells that could potentially cause autoimmune
diseases [146,151].

4. Proteasome Regulatory Proteins
4.1. Proteasome-Activating Proteins
4.1.1. 11S Regulatory Particle

The 11S RP was first identified in bovine and human red blood cells in 1992 [152,153].
Due to its molecular weight of approximately 28 kDa, it is also known as proteasome
activator 28 (PA28) or REG. In mammals, three homologous subunits of 11S RP (PA28α,
PA28β, and PA28γ) have been identified. Among them, PA28α (28.7 kDa) and PA28β
(27.1 kDa) subunits share about 47% sequence identity. PA28α and PA28β form heterohep-
tameric ring structures, predominantly in the form of α4β3 and α3β4 complexes [154,155].
They are primarily localized in the cytosol. On the other hand, PA28γ forms homohep-
tamers and is mainly localized in the nucleus [156]. 11S RP increases all three activities of
the 20S proteasome, but there is no difference in the degradation rate compared to when
only the 20S proteasome is present. Additionally, 11S RP facilitates the degradation of
small peptides, but it is unable to degrade large proteins and ubiquitin-conjugated pro-
teins [157,158]. Finally, 11S RP is induced by IFN-γ and binds to 20S proteasome in an
ATP-independent manner, resulting in the formation of either 11S-20S proteasome-11S or
11S-20S proteasome-19S hybrid proteasomes (Table 2) [159].

Table 2. A list of proteasome regulatory proteins.

Proteasome Regulation Family Protein

Activation 11S
PA200
NRF1

ZFAND5
Tankyrase

Inhibition CCRs 1 DJ-1
CCRs NQO1

PI31
c-Abl

Bassoon
CCRs CBR3
CCRs KRas
CCRs RhoA

1 CCRs: catalytic core regulators.

4.1.2. PA200

PA200, another proteasome activator, is primarily localized in the nucleus and has
a molecular weight of 200 kDa [160]. It binds to the 20S proteasome alone or in conjunc-
tion with the 19S RP, forming a hybrid proteasome complex (PA200-20S proteasome-19S
RP), thereby enhancing the peptidase activity of the 20S proteasome [161]. PA200 stimu-
lates the hydrolysis of small peptides and unstructured proteins, such as tau, in an ATP-
dependent manner [162]. Additionally, it is involved in DNA repair and the degradation of
acetylated histones [160,163].

4.1.3. Nuclear Respiratory Factor 1

Nuclear respiratory factor 1 (NRF1), also known as the endoplasmic reticulum mem-
brane protein, is retrotranslocated to the cytosol by p97 under normal conditions and is
degraded by the 26S proteasome via an ER-associated degradation pathway. However,
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when proteasome activity is impaired or insufficient, NRF1 is cleaved, releasing a soluble
100 kDa fragment (i.e., p110, an active form of NRF1) via aspartic protease DNA Damage
Inducible 1 Homolog 2 (DDI2) to the cytosol. p110 is then translocated to the nucleus,
where it dimerizes with the cofactor small musculoaponeurotic fibrosarcoma to induce
proteasome gene expression, thereby recovering proteasome activity [164,165].

4.1.4. Zinc Finger AN1-Type Containing 5

Zinc finger AN1-type containing 5 (ZFAND5) is a protein that has been found to in-
crease muscle atrophy. It directly binds to the 20S proteasome and stimulates
three peptidase activities of the 26S proteasome. In particular, the AN1 domain near
the C-terminus of ZFAND5 is essential for the stimulation of peptidase activity. ZFAND5
also enhances the hydrolysis of ubiquitinated dihydrofolate reductase (DHFR) by increas-
ing ATPase activity. As a result, ZFAND5 promotes total protein degradation via the ATP-
and ubiquitin-dependent 26S proteasome pathway [166].

4.1.5. Tankyrase

The 20S proteasome displays low activity when bound to a proteasome inhibitor of
31 kDa (PI31). In addition, ADP-ribotransferase tankyrase (TNKS) mediates ADP-ribosylation
of PI31, which then combines with the 19S RP assembly chaperones p27 and S5b (which was
previously bound to 19S RP), and the dissociated 19S RP then binds to the 20S proteasome,
thereby increasing 26S proteasomal activity [167].

4.2. Proteasome-Inhibiting Proteins
4.2.1. DJ-1

DJ-1, also known as Parkinson’s disease protein 7 (PARK7), is a multifunctional protein
associated with Parkinson’s disease, cancer, oxidative stress response, and mitophagy.
DJ-1 binds to the 20S proteasome and inhibits its activity. Through this mechanism, α-
synuclein and p53, substrates known to be degraded through the 20S proteasome, were
instead protected [168].

4.2.2. NAD(P)H:Quinone-Oxidoreductase 1

NQO1 is a flavin adenine dinucleotide (FAD)-dependent flavoprotein that catalyzes the
reduction of quinone to hydroquinone. NQO1, a superoxide reductase, possesses an innate
antioxidant activity and can directly scavenge superoxide. Furthermore, NQO1 inhibits
the degradation of p53, ornithine decarboxylase (ODC), and α-synuclein by binding to the
20Sproteasome, where it acts as a gate keeper [169,170]. Apo-NQO1, in its FAD-free form, is
unstable due to a structural change caused by a partially unfolded conformation; this makes
Apo-NQO1 susceptible to degradation by the 20S proteasome. Therefore, NQO1 and the 20S
proteasome mutually regulate their activities via a double negative feedback loop [171].

4.2.3. PI31

PI31 is a proline-rich protein whose carboxyl-terminal proline-rich domain plays a
role in inhibiting the activity of the 20S proteasome. PI31 competes with the proteasome
regulatory proteins 19S RP and 11S RP when binding to the 20S proteasome, thereby
blocking the activation of the 20S proteasome [172,173].

4.2.4. c-Abl

The non-receptor Tyr kinase c-Abl binds to the PSMA7 (i.e., at its α4 subunit) of the
20S proteasome and phosphorylates Tyr residue (Y106). PSMA7 phosphorylation at Y106
inhibits the ubiquitin-dependent proteasomal degradation of PSMA7 and increases its
expression. This in turn increases proteasome abundance. However, proteasome activity
remains suppressed, which contrasts with the cellular proteasome levels [174,175].
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4.2.5. Bassoon

The presynaptic cytomatrix protein BSN is localized to the active zone of the presy-
naptic terminal where it interacts with the PSMB4 (i.e., at its β7 subunit) of the 20S
proteasome. BSN suppresses proteasome assembly by binding to half-proteasomes at
two independent regions. The reduced activity of the proteasome then leads to the inhibi-
tion of ubiquitination-dependent and independent proteolysis. Consequently, BSN reduces
the degradation of presynaptic scaffolding proteins such as Rab3-interacting molecules
(RIMs) and mammalian homolog of Caenorhabditis elegans unc-13 (Munc13), thus causing
the accumulation of misfolded proteins [176].

5. Proteasome Activity in Diseases
5.1. Neurodegenerative Disease

A change of proteasomal activity was one of age-related dysfunction [177]. Especially,
accumulation of misfolded proteins via alternative proteasome activity was induced in
several neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and Huntington’s
disease [178]. Proteasome activity was decreased in these diseases and leaded to the
aggregation of β-amyloid, tau tangles, lewy bodies, and poly-glutamine inclusions [179].
Therefore, neurodegenerative disease observed neuronal loss and dysfunction [178].

5.2. Muscle Atrophy and Cachexia

Enhanced proteasome activity changes in the life time of a protein [180]. Muscle
atrophy was observed to decrease protein synthesis; however, it was observed to increase
protein degradation [178]. Cancer cachexia is also a muscle-loss-related disease [181].
Increased proteasome activity was induced in muscle protein wasting and inflammation
was induced in muscle atrophy and cancer cachexia [182].

5.3. Chemoresistant Cells

A cisplatin-resistant neuroblastoma cell line has been found to show higher protea-
some activity than a parental cell line [183]. Cisplatin-chemoresistant neuroblastoma cells
have been found to show high expression levels of SHFM1 (i.e., 26S proteasome complex
subunit SEM1) and PSMD14 (i.e., 26S proteasome non-ATPase regulatory subunit 14) using
transcriptomic profiling [184]. In addition, the irreversible proteasome inhibitor TIR-199
effectively reduced the cell viability of bortezomib-related chemoresistance. This was
found to suppress tumor growth in blood cancers such as multiple myeloma and mantle
cell lymphoma [185].

5.4. Cancer Stem Cells

Cancer stem cells (CSCs) are characteristic of chemoresistance and tumor recur-
rence [186,187]. Many studies have shown that many cancer cells show high protea-
somal activity. However, other studies of CSCs have reported that proteasomal activity
is low [188,189]. Differences in proteasome activity have also been found among various
cancers, including lung, prostate, and pancreas [189–191]. Moreover, the existence of CSCs
has caused some solid tumors to show low proteasome activity [188]. This is notable, since
low proteasome activity cells (LPACs) show increased resistance to chemotherapy and
radiotherapy [187,188,192].

6. Therapeutic Modalities Targeting Proteasomes

In recent years, therapeutic modalities using TPD via the proteasome have been
proposed (Table 3). These include novel strategies such as PROTAC, SNIPERs, molecular
glues, and hydrophobic taggings (HyTs), and have been designed for the selective targeting
of proteins associated with cancer, neurodegenerative disease, autoimmune disease, and
metabolic disorders (Figure 5) [193,194].
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Table 3. Comparison of different various targeted degradation modalities.

Protac Sniper Molecular Glue Hydrophobic Tagging

Degradation system Ubiquitin–proteasome
Active site in POIs Not required

Linker Yes Yes No Yes
Molecular weight 700–1000 Da 700–1000 Da <500 Da <500 Da

Feature bivalent Bivalent monovalent monovalent

Advantages Entire elimination of pathogenic proteins
High selectivity

Low doses
Recycle

Disadvantages Low tissue penetration
Limited of E3 ligases
Lack of clinical data

Hook effect
Essential of target ubiquitination

Targets AR 1 AR IKZF2 2 AR
ER 3 BRD4 4 ALK 5

BRD4 Tau
BTK 6 SRC-1 7

Tau Akt3 8

1 AR: androgen receptor, 2 IKZF2: IKAROS family zinc finger 2, 3 ER: estrogen receptor, 4 BRD4: bromodomain
containing 4, 5 ALK: anaplastic lymphoma kinase, 6 BTK: Bruton’s tyrosine kinase, 7 SRC-1: steroid receptor
coactivator 1, 8 Akt3: v-akt murine thymoma viral oncogene homolog 3.
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PROTAC. They induce molecular proximity between a POI and E3 ubiquitin ligase, resulting in the
sequential attachment of ubiquitin to the POI, which triggers its ubiquitination and degradation.
(C) Hydrophobic tagging combines POIs to mimic hydrophobic and partially disordered forms
of POIs. Recognition of chaperones at these sites then leads to chaperone-mediated proteasomal
degradation.

Therefore, a TPD-using proteasome may offer the potential to target undruggable pro-
teins and overcome disadvantages associated with conventional small molecule inhibitor-,
antibody-, or gene-based therapies (i.e., those involving small molecule inhibitors, mono-
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clonal antibodies, or RNAi), which include: broad or smooth active sites of target proteins,
low tissue penetration, high molecular weight, and low oral bioavailability (Table 4). These
novel therapeutic modalities are currently under active research and are being subjected to
clinical trials [15,195,196].

Table 4. Comparison of different various therapeutic modalities.

PROTAC SMI 1 Antibody siRNA

Molecular weight ~1 kDa <0.5 kDa >150 kDa 5–15 kDa
Targeting intracellular proteins Yes Yes No Yes

Active site of target proteins No required Required Required No required
Elimination of target proteins Yes No No Yes

Tissue penetration Low High Low Low
Oral administration Yes Yes No No

Selectivity High Low High High
Doses Low High High Low

Stability High High Low Low
1 SMI: small molecular inhibitor.

6.1. Proteolysis-Targeting Chimera

Two decades ago, various pharmaceutical companies developed a modality called
PROTAC technology. Currently, it is being developed as a protein degradation tool targeting
various diseases. PROTAC involves a hetero-bifunctional small molecule in which a ligand
of a POI and a ligand for E3 ubiquitin ligase-binding are typically linked by a linker. When
POI and E3 ubiquitin ligase bind to each ligand, a ternary complex is formed. The POI
is then ubiquitinated by the E3 ubiquitin ligase, thereby causing the POI to be directly
degraded by the proteasome [15].

The first version of PROTAC was developed in 2001. In this system, which used a
peptide-based PROTAC, the POI ligand was linked to the angiogenesis inhibitor ovalicin,
which forms a covalent bond with methionine aminopeptidase2 (METAP2). As the E3
ligase-binding ligand, the IκBα peptide (DRHDSGLDSM) was used to target the E3
ubiquitin ligase, β-transducin repeat-containing E3 ubiquitin–protein ligase (β-TRCP).
However, this peptide-based PROTAC showed problems related to low cell permeability,
lipophilicity, and stability [197]. To solve these problems, small molecule-based, nucleotide-
based, antibody-based, nanoparticle-based, and peptide-based PROTACs are currently
being developed [198–200].

PROTAC therapies require the consideration of several points prior to development.
Currently, most PROTACs bind to the E3 ubiquitin ligase component cereblon (CRBN)
using immunomodulatory drugs (IMiDs) such as thalidomide, pomalidomide (Pom),
and lenalidomide, which are used as E3 ubiquitin ligase binders. When CRBN binds to
IMiDs, it induces POI ubiquitination by forming a complex (CRL4CRBN) with Cullin4-
RING E3 ubiquitin ligase (CRL4), an E3 ubiquitin ligase that uses CRBN as a substrate
receptor [201,202]. However, since some cells or tissues show diverse CRBN expression,
new PROTAC methods are being developed that replace CRBN with other E3 ubiquitin
ligases such as tumor suppressor von Hippel–Lindau, mouse double minute 2 (MDM2), and
inhibitors of apoptosis (IAP) [15,203–205]. Moreover, when considering the ligand for the E3
ubiquitin ligase, it must be capable of high target binding specificity. Otherwise, PROTAC
can generate off-target effects that affect proteins other than the POI. The POI ligand must
also show a low binding affinity for the POI, since degradation via the proteasome does not
occur unless the ubiquitinated POI is cleaved from PROTAC [206,207]. Furthermore, the
appropriate concentration of PROTAC is also very important. PROTAC at an appropriate
concentration induces the degradation of POI by forming a ternary complex structure
such as POI-PROTAC-E3 ligase. However, a high concentration of PROTAC can form a
binary complex as POI-PROTAC or E3 ligase-PROTAC. This phenomenon is called the
“hook effect”, and results in a reduction in PROTAC activity [200]. In addition, the size of
the PROTAC must also be considered. Finally, it is important to develop new PROTAC
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strategies, including the in-cell click-formed proteolysis-targeting chimera, which increases
cell permeability by reducing molecular weight [208].

In 2019, Arvinas, Inc. conducted a Phase I trial using a PROTAC (ARV-110,
NCT03888612) targeting an androgen receptor and a PROTAC (ARV-471, NCT04072952)
targeting an estrogen receptor. They effectively inhibited metastatic castration-resistant
prostate cancer and breast cancer, respectively, and are currently in Phase II trials. This
result confirmed that PROTAC has potential as a therapeutic target. In addition, other
multinational companies (e.g., Accutar Biotech, Kymera, Nurix Therapeutics, and C4 Thera-
peutics Inc., among others) are conducting or are planning clinical trials for various diseases
using various PROTAC protocols [15].

In addition, specific non-genetic IAP-based protein eraser is another degrader molecule
that works in a manner similar to that of PROTACs. This molecule features a link between
a POI ligand and an antagonist (i.e., an LCL161 derivative) capable of recruiting the IAP in
the presence of E3 ubiquitin ligases [209,210].

6.2. Molecular Glues

Molecular glues stabilize protein–protein interactions between proteins in homo- or
hetero-dimer forms [211]. The most common molecular glues are small molecule degraders
that mediate proximity-induced TPD. The simultaneous binding of E3 ubiquitin ligase and
POI to molecular glues induces dimerization between E3 ubiquitin ligase and the POI. As
a result, a ternary complex comprising molecular glue, E3 ubiquitin ligase, and the POI
is formed, thereby leading to subsequent ubiquitination and proteasome-mediated degra-
dation of the POI. The first molecular glues were serendipitously discovered. However,
new molecular glues are currently under development via structure-based design, scalable
chemical profiling, or microarray-based high-throughput screening. The most widely used
molecular glues are the CRBN ligand thalidomide and its analogs, such as lenalidomide
and Pom, and DCAF15 ligand sulfonamides. Both molecular glues and PROTAC induce
the proteasomal degradation of a target protein; however, unlike PROTAC, molecular glues
do not require a linker and binding pocket and have a lower molecular weight (i.e., ranging
from 300 to 600 Da) than PROTAC (i.e., ranging from 700 to 1000 Da) [212].

6.3. Hydrophobic Tagging

Intracellular unfolded or misfolded proteins expose structurally modified hydrophobic
amino acid residues or patches on their surface. These hydrophobic regions of partially
denatured proteins can be recognized by the highly conserved and ubiquitous heat shock
protein 70 (HSP70) chaperone. Subsequently, the co-chaperone E3 ligase C-terminus of
Hsp70 interacting protein (CHIP) is recruited to induce the ubiquitination of the misfolded
protein. As a result, misfolded proteins with exposed hydrophobic regions undergo quality
control and degradation via the proteasome. Hydrophobic tagging (HyT) technology is
a bifunctional molecule that induces the proteasomal degradation of POIs by mimicking
misfolded proteins. HyT consists of a structure in which a hydrophobic moiety—e.g., an
adamantyl group or Boc3Arg—and a selective ligand for a specific POI are connected by a
short linker. Boc3Arg has been shown to degrade POIs by binding to the 20S proteasome
involved in ATP and ubiquitin-independent degradation. However, the applications of
this method are limited because it is known to inhibit Mammalian Target of Rapamycin
Complex 1 signaling [213].

7. Conclusions and Future Perspectives

In this review, we summarized the basic mechanisms of proteasome-mediated degra-
dation, its substrates, and various modalities of targeted degradation mediated by the
proteasome. Decades of research on ubiquitin and proteasome have significantly broad-
ened our understanding of the degradation mechanism and have been instrumental in
elucidating signaling processes resulting from substrate degradation. Furthermore, the
ongoing development of targeted degradation modalities and proteasome inhibitors is
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expected to position them as major therapeutic strategies and promising new therapeutic
targets in the future.

For easier comprehension, we divided the degradation processes into those mediated
by the 26S proteasome and the 20S proteasome. However, it is important to note that these
two processes are not mutually exclusive; they are complementary to each other [140]. The
26S proteasome is not solely responsible for degrading ubiquitinated proteins, and the
20S proteasome does not exclusively target IDPs or oxidized proteins. Some studies have
shown that certain proteins, such as ODC, can be degraded by the 26S proteasome without
undergoing ubiquitination [67,214]. Additionally, ubiquitin-tagged proteins can also be
degraded by the 20S proteasome [139]. Therefore, ubiquitin-dependent degradation via the
26S proteasome is widely recognized as the most common catalytic mechanism. However,
simultaneous research on degradation through the 20S proteasome is also expected to
continue steadily increasing.

Furthermore, the discovery of novel proteasome regulatory proteins is expected to
greatly contribute to our understanding of the proteasome-mediated degradation process.
Moreover, with the increasing research on degradation signaling pathways such as degron
recognition and ubiquitin-like protein conjugation, there is a growing need for broad
interest and extensive research in the field of the proteasome [26,215,216].
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