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(a—e) RNAi knockdown (KD) of the EPB41L5 orthologue Yurt (Yrt) in Drosophila melanogaster garland
cell nephrocytes using Pros-Gal4 and Dot-Gal4 to target pericardial nephrocytes. (b&c) ANF-RFP uptake
assay revealed impaired ANF-RFP (red) uptake in Yrt KD nephrocytes. Nephrocytes were labeled by
Hand-GFP (green); 10 biological replicates per genotype were analyzed. Knockdown of the slit
diaphragm (SD) component Kirre was analyzed as positive control. (d&e) Transmission electron
microscopy reveals apical translocation and reduced width of SDs as a consequence of Yrt KD (red
arrowheads indicate SDs; at least 200 slit membranes averaged from 3 different biological replicates
per genotype were measured). (f) Immunofluorescence analysis of EPB41L5 in human glomerular
disease (HTN — hypertensive nephropathy). The SD component Nephrin (NPHS1) was used as marker
for the basal podocyte compartment and to indicate regions of disrupted SD architecture. White
arrows indicate regions with increased or stable EPB41L5 localization and white arrowheads indicate
regions with reduced or lost EPB41L5 localization (maximum intensity projection of z—stack images are
shown). Scatter plots show individual animals analyzed; scatter plot dots show data used for statistical
analysis; error bars indicate mean and S.E.M.; **p < 0.01; ***p < 0.001.
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(a) Heatmap shows Z-scores for most significant regulated gene transcripts by knockout of EPB41L5
(log, fold change >1 or <-1 and adjusted. p-value <0.05). (b) Heatmap shows relative regulation of
proteins detected by SILAC based proteomics of EPB41L5 WT and KO podocytes. Only proteins with
assigned log, fold changes (FC) in both comparisons are shown. (c) Venn diagram analysis indicates
significant regulation of 69 genes on transcript and proteins level in EPB41L5 KO podocytes.
Significance in transcriptome analysis was defined as log; fold change >0.5 or <-0.5 and adjusted p-
value <0.05. Significance in proteome analysis was defined as log, fold change >0.5 or <-0.5 in both
sample pairs. (d) Correlation analysis of these proteins with transcriptome analysis demonstrate partial
and significant correlation of transcriptome and proteome datasets. Pearson correlation coefficient
was calculated as indicated. Scatter plot dots indicate individual transcripts/proteins.



Transcripts/proteins with correlating log, fold changes (FC) >0.5 or <-0.5 in both datasets are labeled
in red. (e) Heatmap shows log; fold changes (FC) for these 69 transcripts and proteins. (f-1) Heatmap
shows the 20 most up and 20 most down regulated proteins by proteomics analysis of EPB41L5 KO
podocytes. (f-2) Heatmap shows integrin adhesion complex transcripts/proteins that are significant
regulated by transcriptome analysis (adjusted p-value >0.05) and detected in whole cell proteome and
adhesome analysis of EPB41L5 KO podocytes (adhesome — proteome analysis of integrin
adhesion complexes was published before) [1]. (f-3) Heatmap shows matrisome transcripts/
proteins that are significant regulated by transcriptome analysis (adjusted p-value >0.05) and
detected in whole cell proteome analysis of EPB41L5 KO podocytes. Corresponding secretome
analysis is shown (secretome — proteome analysis of secreted proteins was published before) [2].
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(a) Overview images corresponding to main Figure 1. Immunofluorescence analysis of nuclear
translocation of YAP confirms reduced YAP levels in EPB41L5 KO podocytes. Rainbow color images



display the distribution of YAP fluorescence intensity. Cells were co-stained by Phalloidin (F-Actin) and
Hoechst (cell nucleus). White arrowheads indicate cell nuclei with low nuclear YAP intensity. (b)
Immunofluorescence analysis of nuclear translocation of YAP/TAZ reveals reduced YAP/TAZ levels in
EPB41L5 KO podocytes. Cells were cultured for 3 days to sub-confluence before staining for Phalloidin
(F-Actin) and Hoechst (cell nucleus). Violin blots indicate distribution of mean nuclear fluorescence
intensities (MFls) of individual cells of 2 experiments analyzed; cells of individual WT and KO cells lines
were pooled for analysis (over 800 cells per condition were analyzed). Bars indicate median and
quartiles; ****p < 0.0001. (c-g) Cell spreading analysis of EPB41L5 WT and KO podocytes shows
impaired cell spreading on collagen IV, vitronectin, laminin or fibronectin coated glass coverslips. Cells
were stained by Phalloidin (F-Actin) and Hoechst (cell nucleus). Scatter plot dots indicate mean cell size
of 3 or 4 experiments analyzed. Values of WT-1 & -2 and KO-1 & -2 were pooled for statistical analysis.
Error bars indicate mean and SEM; scatter plot dots show data used for statistical analysis; *p < 0.05;
**p < 0.01; ****p < 0.0001. (h) Representative immunofluorescence images of podocyte stained for
the IAC component PXN, F-Actin (Phalloidin) and of cell nuclei (Hoechst) demonstrates reduced
number and size of IACs in EPB41L5 KO podocytes, as previously reported 2.
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(a) Cell size is reduced in TEADi podocytes 24 hours after seeding. Scatter plot dots indicate mean cell
size of 3 experiments analyzed. (b) Heatmap shows Z-scores for most significant regulated gene
transcripts by TEADi expression (log; fold change >0.4 or <-0.4 and adjusted p-value <0.0001). (c&d)
Phalloidin (F-Actin) mean fluorescence intensity was measured in the whole cell and integrin adhesion
complex (IAC) compartment. Scatter plot dots indicate individual cells analyzed (3 experiments and 25
cells per experiment and genotype were analyzed). Error bars indicate mean and SEM; scatter plot
dots show data used for statistical analysis; **p < 0.01; ****p < 0.01.
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(a&b) Overview images corresponding to cell spreading analysis presented in main figure 4 (cells were

stained by Phalloidin (F-Actin) and Hoechst (cell nucleus)). (c) Analysis of cell size of fully spread cells
(24 hours) on collagen IV. ARHGAP29 KD cells exhibited reduced cell areas. Scatter plot dots indicate
mean cell size of 3 experiments analyzed. Error bars indicate mean and SEM; scatter plot dots show
data used for statistical analysis; **p < 0.01; ***p < 0.001; ****p < 0.0001. (d) Immunofluorescence
analysis of ARHGAP29 shRNA-2 corresponding to main figure 5. Immunofluorescence staining of the
IAC component Paxillin (PXN), F-Actin (Phalloidin) and of cell nuclei (Hoechst) was performed. (c-h)
Phalloidin (F-Actin) mean fluorescence intensity was measured in the whole cell and integrin adhesion
complex (IAC) compartment. Scatter plot dots indicate individual cells analyzed (3 experiments (e&f)
or 4 experiments (g&h) and 25 cells per experiment and genotype were analyzed). Error bars indicate
mean and SEM; scatter plot dots show data used for statistical analysis; n.s. — not significant; *p < 0.05,
**p < 0.01; ****p < 0.01.
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(a) Additional data to main Figure 6a&b. Quantification of ARHGAP29 expression (mean fluorescence
intensity - MFI) within the podocyte compartment. Scatter plot dots indicate pooled glomeruli of 5
patients with hypertensive nephropathy (HTN) classified as moderate damaged (dmg.) (49 glomeruli)
or not/very mild damaged (control group) (78 glomeruli). Analysis of one healthy kidney (20 glomeruli)
was included as reference. Error bars indicate mean and SEM; scatter plot dots show data used for
statistical analysis; n.s. — not significant; ****p < 0.0001.
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