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Abstract: The deletion of phenylalanine at position 508 (F508del) produces a misfolded CFTR protein
that is retained in the ER and degraded. The lack of normal CFTR channel activity is associated with
chronic infection and inflammation which are the primary causes of declining lung function in Cystic
Fibrosis (CF) patients. Moreover, LPS-dependent oxidative stress downregulates CFTR function in
airway epithelial cells. Olive leaf extract (OLE) is used in traditional medicine for its effects, including
anti-oxidant and anti-inflammatory ones. We found that OLE decreased the intracellular ROS levels
in a dose–response manner in CFBE cells. Moreover, OLE attenuates the inflammatory response to
LPS or IL-1β/TNFα stimulation, mimicking the infection and inflammatory status of CF patients, in
CFBE and primary nasal epithelial (HNE) cells. Furthermore, we demonstrated that OLE restored the
LPS-mediated decrease of TrikfaftaTM-dependent F508del-CFTR function in CFBE and HNE cultures.
These findings provide strong evidence of OLE to prevent redox imbalance and inflammation that
can cause chronic lung damage by enhancing the antioxidant activity and attenuating inflammation
in CF airway epithelial cells. Additionally, OLE might be used in combination with CFTR modulators
therapy to improve their efficacy in CF patients.

Keywords: olive leaf extract; CFTR; Cystic Fibrosis; antioxidant; anti-inflammatory; CFTR modulators

1. Introduction

Cystic fibrosis (CF) is a multi-system, lethal, autosomal recessive disorder caused by
defects in the gene encoding for the CF transmembrane conductance regulator (CFTR),
an ATP-gated channel for the efflux of chloride and bicarbonate anions mainly expressed
in the apical membrane of epithelial cells [1]. The absence or dysfunction of the CFTR
protein results in the failure of chloride secretion and sodium hyperabsorption at the apical
airway surface, leading to the dehydration of the airway surface, impaired mucociliary
clearance, and the accumulation of viscous mucus at the epithelial surface [2]. As a result,
CF patients are prone to contracting bacterial lung infections with opportunistic pathogens,
especially Pseudomonas aeruginosa [3]. Chronic pulmonary infection leads to an excessive
immune response, mainly mediated by activated leukocytes, which produce large amounts
of reactive oxygen species (ROS) [4,5].

More than 2000 mutations have been identified in CFTR, though not all have been
linked with CFTR dysfunction and CF (www.genet.sickkids.on.ca, accessed on 3 May 2023;
www.CFTR2.org, accessed on 3 May 2023). The most common mutation, the deletion
of phenylalanine at position 508, induces misfolding of the protein that is retained in
the ER and degraded by proteasomal pathways. CFTR correctors are pharmacological
compounds that rescue the CFTR to the cell surface [6]. Lumacaftor (or VX-809) has been
shown to rescue F508del-CFTR function to approximately 15% of normal channel activity

Cells 2023, 12, 1764. https://doi.org/10.3390/cells12131764 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells12131764
https://doi.org/10.3390/cells12131764
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0003-1770-4584
https://orcid.org/0000-0002-0740-7677
https://orcid.org/0000-0002-8890-0278
www.genet.sickkids.on.ca
www.CFTR2.org
https://doi.org/10.3390/cells12131764
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells12131764?type=check_update&version=2


Cells 2023, 12, 1764 2 of 14

in human bronchial epithelial cells treated in combination with the potentiator Ivacaftor
(VX-770) [7]. The combination Lumacaftor-Ivacaftor has been approved by the FDA as
Orkambi® for patients bearing F508del mutation, and then the related Tezacaftor (VX-661)-
Ivacaftor combination has been approved as Symdeko®. Recently, the FDA approved the
next-generation CFTR modulator (Trikafta®), which consists of the potentiator ivacaftor
and two correctors molecules, elexacaftor (VX-445) and tezacaftor, for patients carrying at
least one F508del allele [8].

It has been well established that dysfunction of the CFTR protein determines a redox
imbalance in epithelial cells with the consequent abnormal generation of reactive oxygen
species (ROS) [9,10] and a dysregulated inflammatory response, before any infections, by
providing a favorable environment for tissue damage and chronic infection [11]. After
bacterial colonization, there is an exaggerated activation of the host immune system with
the release of proteases, ROS and reactive nitrogen species (RNS), and proinflammatory
chemokines, mainly interleukin (IL)-8, by epithelial and inflammatory cells causing tissue
damage [12] and lung-function decline in patients affected by CF [13]. Despite recognition
of the impact of airway inflammation in the progression of lung disease, few therapies
with anti-inflammatory effects have been found beneficial to CF patients (i.e., Ibuprofen).
However, despite this, it was found to slow disease progression; the adoption of Ibuprofen
has been limited due to dosing issues and serious side effects associated with long-term
administration [14,15]. However, it has not yet elucidated the potential anti-inflammatory
and anti-oxidative activity of CFTR modulators in CF.

Olive leaves are widely used in natural medicine with beneficial effects on health
care due to their bioactive properties [16]. Indeed, Olive leaf extract (OLE) contains large
amounts of polyphenolic compounds that include the secoiridoids (namely oleuropein)
and flavonoids (~2% of olive leaf polyphenols) with antioxidant, anti-inflammatory and
antimicrobial properties [17]. It has been demonstrated that olive left biophenols are able
to scavenge ROS and reactive nitrogen species (RNS) [18,19] by activating transcription
factors such as the nuclear factor erythroid 2–related factor 2 (Nrf2). Upon oxidative stress,
the transcription factor Nrf2 translocates to the nucleus and binds to the antioxidant re-
sponsive element (ARE) in the promoter region of genes, encoding enzymes involved in the
antioxidant response, i.e., NAD(P)H quinone-oxidoreductase 1 (NQO1), heme-oxyganese-
1(HO-1), superoxide dismutase (SOD), glutamate-cysteine ligase (GCL). Moreover, Nrf2
also exhibits anti-inflammatory activity by inhibiting NF-kB signaling, thus inducing the
downregulation of pro-inflammatory cytokines (i.e., interleukin (IL)-1β, tumor necrosis
factor (TNF-α) gene expression) [20].

In the present study, we demonstrated for the first time that OLE exhibits both an-
tioxidant and anti-inflammatory properties in human bronchial epithelial cells affected
by CF (CFBE) at the basal level and stimulated by infection and inflammation stimuli.
Moreover, we further demonstrated the anti-inflammatory activity of OLE in primary nasal
epithelial cells from CF patients bearing the F508del mutation. Lastly, we demonstrated
that OLE restored Trikafta-mediated F508del-CFTR function in CFBE cells and primary
nasal epithelial cells stimulated by LPS from P. aeruginosa.

2. Materials and Methods
2.1. Cell Culture

CFBE41o- cells stably expressing F508del-CFTR (CFBE) were obtained from Dr. Gruen-
ert (University of California, San Francisco, CA, USA) and maintained in MEM (Euroclone,
Milan, Italy), supplemented with 10% FBS (Corning, New York, NY, USA), L-glutamine
(Euroclone), Penicillin/streptomycin (Euroclone) and 2 µg/mL puromycin (Sigma-Aldrich,
Milan, Italy) at 37 ◦C with 5% CO2, as previously described [21].

Primary nasal epithelial cells from CF patients homozygous for F508del mutation
were obtained from the Canadian Program for Individualized CF Therapy (CFIT) (https:
//lab.research.sickkids.ca/cfit, accessed on 3 May 2023). Nasal epithelial cells were cultured
as previously described [22].

https://lab.research.sickkids.ca/cfit
https://lab.research.sickkids.ca/cfit
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2.2. Olive Leaf Extract (OLE) Production

The olive leaf extract was produced according to Difonzo et al. [23]. The olive leaves
were dried at 120 ◦C for 8 min in a ventilated oven (Argolab, Carpi, Italy) and grounded
with a blender (Waring-Commercial, Torrington, CT, USA). Milli-Q water was used as
extraction solvent in a ratio 1/20 (w/v). The extraction process was ultrasound-assisted
(CEIA, Viciomaggio, Italy) and the extract was filtered through Whatman filter paper (GE
Healthcare, Milan, Italy), freeze-dried (BUCHI, Flawil, Switzerland, LyovaporTM L-200),
and stored at −20 ◦C.

The OLE was characterized for total phenol content and antioxidant activity by Folin–
Ciocalteu and ABTS assays (119 mg GAE/g and 687 µmol TE/g). The phenolic profile
was determined according to Difonzo et al. [24] and the oleuropein content (85 mg/g) was
determined by HPLC-DAD and external calibration curve with the relative standard.

2.3. Cytotoxicity MTT Assay

CFBE cells (1 × 104 cells/well) were seeded in a 96-well plate (Corning, New York,
NY, USA) and cultured in the completed medium for 2 days. Furthermore, 24 h prior
to the experiment, the cells were treated with Olive Leaf Extract (OLE) at 0.03, 0.06, 0.12
and 0.24 mg/mL concentrations. Cell viability was then evaluated with the MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assay by measurement of the
optical density at 595 nm, as previously described [25]. Untreated cells are considered as
100% and cells treated with 1% of Triton-X100 were used as a positive control.

2.4. ROS Measurment

CFBE cells (1 × 104 cells/well) were seeded in a 96-well plate and cultured for
48 h. Then, cells were treated with 1 µg/mL LPS derived from P. aeruginosa (Sigma-
Aldrich) or 30 ng/mL IL-1β + 30 ng/mL TNF-α +/− OLE at 0.03, 0.06 and 0.12 mg/mL
concentrations for 24 h. ROS were detected with 10 µM o5-(and 6)-chloromethyl 20,70-
dichlorodihydrofluorescein diacetate acetyl ester (H2DCFDA, Invitrogen, Waltham, MA,
USA) by measuring the fluorescence at 37 ◦C (excitation: 485 nm; emission: 535 nm), as
previously reported [25].

2.5. RNA Extraction and Quantification (qRT-PCR)

Cells were seeded at the density of 8 × 104 cells/cm2 for 24 h in a six-well plate. After
24 h, cells were then co-treated for 4 h at 37 ◦C with PBS, 1 µg/mL LPS derived from
P. aeruginosa (Sigma-Aldrich) or 30 ng/mL IL-1β + 30 ng/mL TNF-α +/− OLE at 0.03, 0.06
and 0.12 mg/mL concentrations. Then, CFBE and primary nasal epithelial cells were lysed,
and RNA was extracted according to the manufacturer’s protocol (Direct-zol RNA Kits,
Zymo Research, Tustin, CA, USA). The quality of total RNA was assessed by the ratios
OD260/OD280 and OD260/OD230 using Nano-drop 2000. Total RNA was converted to
cDNA with an iSCRIPT cDNA synthesis kit (Biorad, Hercules, CA, USA) and quantitative
real-time PCR was performed using Ssfast EvaGreen (Biorad, Hercules, CA, USA) and
normalized to GADPH. The primer sets used for amplification are provided in Table 1 [25].

2.6. CFTR Channel Function

CFTR-mediated membrane depolarization was measured as previously described [26,27].
Briefly, CFBE and primary nasal epithelial cells (3 × 104 cells/well) were seeded on 96-
well transwells. Cells were treated with 0.1% DMSO, 3 µM VX-661 + 3 µM VX-445 +/−
10 µg/mL LPS +/− 0.12 mg/mL OLE for 24 h at 37 ◦C. Cells were then loaded with blue
membrane potential dye and dissolved in a chloride-free buffer for 30 min at 37 ◦C [28].
The plate was read in a fluorescence plate reader (FilterMax F5, Molecular Devices) at 37 ◦C
and after reading the baseline fluorescence, CFTR was stimulated by 10 µM forskolin (FSK)
+ 1 µM VX-770 (Selleck Chemicals, Houston, TX, USA). CFTR-mediated depolarization of
the membrane was detected as an increase in fluorescence and repolarization or hyperpo-
larization as a decrease [29]. Lastly, the CFTR inhibitor (CFTRInh-172, 10 µM) was added
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to deactivate CFTR. The peak changes in fluorescence to CFTR agonists were normalized
relative to fluorescence immediately before agonist (FSK + VX-770) addition. The max
activation expressed as a % was calculated by the difference between the peak of maximal
CFTR activation and the last point of baseline [30].

Table 1. Primer pairs used in real-time PCR analysis.

Gene Forward Primer (5′ → 3′) Reverse Primer (5′ → 3′)

IL-1β TTACAGTGGCAATGAGGATGAC TGTAGTGGTGGTCGGAGATTC

IL-6 CGGTACATCCTCGACGGC CTTGTTACATGTCTCCTTTCTCAGG

IL-8 GACCACACTGCGCCAACA GCTCTCTTCCATCAGAAAGTTACATAATTT

TNFα GGACCTCTCTCTAATCAGCCCTC TCGAGAAGATGATCTGACTGCC

Nrf2 CACATCCAGTCAGAAACCAGTGG GGAATGTCTGCGCCAAAAGCT

NF-kB p50 CTGGTGATCGTGGAACAGCC CAGAGCCTGCTGTCTTGTCC

NF-kB p65 ATGCGCTTCCGCTACAAGTG ACAATGGCCACTTGTCGGTG

HO-1 ATGGAGCGTCCGCAACCCGACAG TCACATGGCATAAAGCCCTACAG

NQO1 GAAGAGCACTGATCGTACTGGC GGGTCCTTCAGTTTACCTGTGAT

GAPDH CAAGAGCACAAGAGGAAGAGAG CTACATGGCAACTGTGAGGAG

2.7. Statistical Analysis

All the data are represented as mean ± SEM of at least three independent replicates.
GraphPad 8.0 software was used for all statistical analysis. The paired two-tailed t-test or
one-way ANOVA were conducted as appropriate with a significant level p < 0.05. Data
with multiple comparison were assessed using Turkey’s multiple comparison test with
α = 0.05.

3. Results
3.1. Effect of Olive Leaf Extract on the Cell Viability of CFBE Cells

We first employed the MTT assay to investigate the potential cytotoxicity of OLE
on CFBE cells. Cells were treated with increasing concentrations (0.03; 0.06; 0.12 and
0.24 mg/mL) of OLE for 24 h (Figure 1). While concentrations from 0.03 to 0.12 mg/mL do
not affect cell viability compared to untreated control, OLE at 0.24 mg/mL significantly
reduced the viability of CFBE; therefore, this concentration (0.24 mg/mL) was excluded for
further studies.
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Figure 1. Cytotoxicity of OLE. CFBE cells were treated with OLE for 24 h at the indicated concentra-
tions of 0.03, 0.06, 0.12 and 0.24 mg/mL. Control (CTRL) cells were untreated (100% of vitality) and
1% Triton X-100 was used as a positive control. Cells were then assayed for vitality by the MTT assay.
Data represent the mean ± SEM (n = 12). **** p < 0.0001.
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3.2. OLE Reduces Oxidative Stress (ROS) in CFBE Cells

To evaluate the antioxidant activity of OLE in CFBE cells, the ROS content was evalu-
ated by a ROS-sensitive fluorescent probe (H2DCFDA). A significant reduction of intracel-
lular levels of ROS was observed in untreated CFBE cells only at 0.12 mg/mL concentration
(Figure 2). As expected, the intracellular levels of ROS were increased after infection
(LPS-dependent) or inflammation (IL-1β/TNFα) stimuli (Figure 2). Interestingly, OLE at
0.12 mg/mL significantly reduced the ROS levels with all stimuli, similarly to the level
measured under basal condition (control cells). Therefore, these studies suggested that
OLE has antioxidant activity in CF bronchial cells.
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Figure 2. Treatment with OLE reduces ROS production in CFBE cells. ROS content was measured
using DCF fluorescence in CFBE cells stimulated by 1 µg/mL of LPS or 30 ng/mL IL-1b + 30 ng/mL
TNFα in the presence or absence of the OLE (0.03, 0.06 and 0.12 mg/mL). Data represent the
mean ± SEM (n = 4). ** p < 0.01; *** p < 0.001; **** p < 0.0001.

3.3. Anti-Inflammatory Activity of OLE

To further investigate the anti-inflammatory activity of OLE in CF, we measured the
mRNA expression levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8 and TNFα) by
RT-PCR. We first tested the effect of OLE on CFBE cells at basal condition. The mRNA
expression levels of IL-1β, IL-6, IL-8 and TNFα decreased in a OLE dose-dependent
manner (Figure 3A). Then, we tested the effect of OLE in CFBE cells co-treated with
LPS from P. aeruginosa or IL-1β/TNFα for 4 h to mimic the infection or inflammatory
milieu of CF airways. Interestingly, OLE significantly reduced the mRNA levels of pro-
inflammatory cytokines under infection/inflammation stimuli (Figure 3B,C). These data
strongly suggested that OLE inhibits the expression levels of cytokines associated with CF
airways inflammation in a CF cell line.

We recently demonstrated that LPS treatment significantly reduced F508del-CFTR
function, rescued by the triple combination VX-445 + VX-661 + VX-770 (Trikafta®) [25].
Therefore, we further investigated the effect of OLE on F508del-CFTR function rescued
by Trikafta® under LPS treatment. As shown in Figure 4A,B, OLE restored the Trikafta®-
mediated F508del-CFTR activity in CFBE cells stimulated with LPS to that of non-LPS
treated. Moreover, OLE treatment did not exhibit correction activity on F508del-CFTR
function. In Figure 4C,D, we demonstrated that LPS treatment significantly reduced the
VX-661 + VX-445-mediated F508del-CFTR, which was rescued by OLE treatment.
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to control untreated cells. Data represent the mean ± SEM (n = 3). * p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001.

Together, these findings prompted us to validate the multi-task activity of OLE in a
more relevant cell model used as a preclinical tool for personalized medicine in CF. There-
fore, we generated primary nasal epithelial cultures from three CF patients homozygous for
the F508del mutation. As shown in Figure 5A, LPS treatment increased the mRNA expres-
sion of pro-inflammatory cytokines (IL-1β, IL-6, IL-8 and TNFα). However, OLE treatment
significantly reduced the pro-inflammatory cytokines mRNA levels to the basal level.
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level. 

We next studied the effect of OLE on Trikafta® efficacy to rescue F508del-CFTR under 
LPS treatment. In Figure 5B,C, we showed that OLE restored Trikafta®-mediated rescue 
of the F508del-CFTR function treated with LPS in primary nasal epithelial cells from three 
CF patients. 

Figure 4. OLE treatment restored Trikafta-mediated F508del-CFTR function in CFBE cells stimulated
by LPS. (A) Representative traces of F508del-CFTR function using membrane depolarized assay.
F508del-CFTR CFBE cells were treated with 0.1% DMSO, 0.12 mg/mL OLE, 3 µM VX-661 + 3 µM
VX-445, 3 µM VX-661 + 3 µM VX-445 + 0.12 mg/mL OLE +/− 1 µg/mL of LPS for 24 h. (B) Bar
graphs show the mean (±SEM) of maximal activation of CFTR after stimulation by 10 µM forskolin
(FSK) + 1 µM VX-770 (n = 6). (C) Immunoblots of steady-state expression F508del-CFTR in CFBE
cells following the indicated treatments. (D) Bars represent the mean (±SEM) of the ratio C/C + B
(n = 3). * p < 0.05; ** p < 0.01; **** p < 0.0001.

We next studied the effect of OLE on Trikafta® efficacy to rescue F508del-CFTR under
LPS treatment. In Figure 5B,C, we showed that OLE restored Trikafta®-mediated rescue of
the F508del-CFTR function treated with LPS in primary nasal epithelial cells from three
CF patients.

To investigate the mechanism of action of OLE in airway epithelial cells, we studied the
expression by RT-PCR of Nrf2, HO-1, NQO1 and NF-kB in both CFBE and primary nasal
epithelial cells after treatment with LPS in the presence or absence of OLE. Interestingly,
OLE significantly increased Nrf2, HO-1 and NQO1 and reduced the nuclear NF-kB dimers
(p50/p65) mRNA expression levels (Figure 6).
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Figure 5. OLE treatment reduces the pro-inflammatory cytokines and restored Trikafta-mediated
F508del-CFTR function in CF primary nasal epithelial cells stimulated by LPS. (A) Primary nasal
epithelial cells from 4 CF patients (F508del/F508del) were treated with 1 µg/mL of LPS +/− OLE
at 0.12 mg/mL for 4 h. IL-1β, IL-6, IL-8 and TNFα were quantified by qRT-PCR and normalized to
GADPH as housekeeping gene and then to control untreated cells. Data represent the mean ± SEM
(n = 8). * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 (B) Representative traces of F508del-CFTR
function in primary nasal epithelial cells from 3 CF patients homozygous for F508del mutation, using
membrane depolarized assay. Cells were treated with 0.1% DMSO, 3 µM VX-661 + 3 µM VX-445,
3 µM VX-661 + 3 µM VX-445 + 1 µg/mL of LPS +/− 0.12 mg/mL OLE for 24 h. (C) Bar graphs show
the mean (±SEM) of maximal activation of CFTR after stimulation by 10 µM forskolin (FSK) + 1 µM
VX-770 (n = 6). ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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Figure 6. OLE treatment upregulates Nrf2/HO-1/NQO1 and down-regulates NF-kB signaling in
CFBE and primary nasal epithelial cells stimulated by LPS. F508del-CFTR CFBE and primary nasal
epithelial cells from 3 CF patients homozygous for F508del mutation were treated with 1 µg/mL of
LPS +/− OLE at 0.12 mg/mL for 4 h. Nrf2, HO-1, NQO1, NF-kB p50 and NF-kB p65 were quantified
by qRT-PCR and normalized to GADPH as housekeeping gene and then to control untreated cells.
Data represent the mean± SEM (n = 4 for CFBE and n = 6 for primary nasal epithelial cells). * p < 0.05;
** p < 0.01; *** p < 0.001; **** p < 0.0001.

4. Discussion

Our study provides novel data on the positive effect of olive leaf extract on the human
airway epithelial cells from Cystic Fibrosis patients. We found that OLE reduced ROS
production and suppressed the induction of pro-inflammatory cytokines by regulating
Nrf2 and NF-kB pathways.

OLE provides multiple beneficial effects for its multi-target activities, such as: antioxi-
dation, anti-inflammation, anti-hypertensive, hypoglycemic, cardioprotection, autophagy
inducing, anti-cancerous and anti-amyloid aggregation [31–39]. Therefore, olive leaf con-
sumption has been associated with various health benefits, including protection against
neurodegenerative diseases (i.e., Multiple Sclerosis, Alzheimer and Parkinson), metabolic
syndromes (i.e., Obesity, hyperglycemia, diabetes mellitus), cardiovascular diseases (Arte-
rial hypertension and atherosclerosis) and inflammatory bowel diseases (i.e., Ulcerative
colitis) in preclinical models and in humans [40–45].

OLE has been marketed as a natural supplement for multiple health benefits, due to the
different compounds that bring about its anti-oxidant and anti-inflammatory activity (i.e.,
Oleuropein) [46]. It has been demonstrated that Oleuropein reduced the pro-inflammatory
cytokines (IL-1β, IL-6 and IL-8) under LPS-stimulated conditions by downregulating
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the arachidonic acid and NF-kB pathways [47–50]. Moreover, it has been demonstrated
that OLE exhibits its antioxidant activity by decreasing the ROS content of about 40%
in human bronchial epithelial NCl-H292 cells [51]. Our aim was to determine the anti-
inflammatory effects of OLE in CF airways cells. We found a significant inhibition of
pro-inflammatory cytokine gene expression in CFBE cells at a basal condition (Figure 3A).
We then tested the anti-inflammatory activity of OLE under infection or inflammatory
condition to mimic in vivo conditions. Therefore, we used two different stimuli such as
LPS from P. aeruginosa to mimic the CF lung infection [52] and IL-1β/TNFα to mimic the
inflammatory milieu [53]. We found that OLE reduced the pro-inflammatory cytokines
gene expression even under infection/inflammation stimuli conditions. Interestingly, the
anti-inflammatory properties of OLE was confirmed in primary CF nasal epithelial cultures
under LPS treatment (Figure 5A). Moreover, we found that OLE reduced the NF-kB mRNA
levels of both nuclear dimers (p50 and p60) in both CFBE and primary nasal epithelial
cells under LPS stimulation. Since previous in vitro and in vivo studies demonstrated that
the anti-inflammatory activity of OLE is via the regulation of NF-kB, due to the presence
of phenolic compounds in the extract [54,55], OLE may reduce the pro-inflammatory
cytokines in CFBE and primary nasal epithelial cells due the presence of flavonoids and
phenolic secoiridoids identified in the OLE, which is well known their anti-inflammatory
activities [56–58].

It has been demonstrated that OLE acts as an Nrf2 inducer, which correlates with the
increased expression of HMOX-1 and SOD, and decreased iNOS expression and subsequent
NO production [59]. Nrf2 is a regulator of cellular resistance to oxidant stress by increas-
ing the expression of antioxidant response element-dependent genes encoding enzymes
involving in the antioxidant response (i.e., Glutathione-S-transferasi (GST), Superoxide
Dismutase (SOD), NAD(P)H quinone-oxidoreductase 1 (NQO1) and heme-oxygenase-1
(HMOX-1)) [60]. Interestingly, it is well demonstrated that activation of Nrf2, in addition to
attenuate oxidative stress, suppress NF-kB, iNOS (produce reactive NO species with pro-
inflammatory effects) and pro-inflammatory cytokines [61,62]. We demonstrated that OLE
by up-regulating the Nrf2/HO-1/NQO1 signaling (Figure 6), may boost the antioxidant
defenses and protect against oxidative stress in both CFBE and primary nasal epithelial
cells from CF patients.

All together, we assumed that the observed antioxidant and anti-inflammatory effect
of OLE might be mediated via its ability to up-regulate Nrf2 pathway. Indeed, OLE induced
the up-regulation of Nrf2 expression with the consequent induction of HO-1 and NQO1
and attenuate the oxidative stress. Moreover, OLE reduced the expression of NF-kB and
pro-inflammatory cytokines.

It has previously been demonstrated that infection with P. aeruginosa bacteria reduce
the functional expression of WT-CFTR or Orkambi®-rescued F508del-CFTR in CFBE and
primary epithelial cells [63–65]. This observation may explain why Orkambi® has a modest
effect in clinical trials [66]. Thus, it is likely that the reduction we observed in F508del-CFTR
function expression rescued by Trikafta® in CFBE and primary nasal epithelial cells treated
with LPS were due to the P. aeruginosa infection (Figures 4 and 5). These data indicate that
P. aeruginosa exoproducts may affect CFTR synthesis, degradation and trafficking to the
cell membrane [64]. However, the mechanism whereby F508del-CFTR rescue is affected
by P. aeruginosa is still unknown. Interestingly, we also found that OLE restores Trikafta®

rescue of F508del-CFTR function in the CFBE cell line and primary nasal cells treated with
LPS (Figures 4 and 5). Since it has been demonstrated that oxidative stress in CF airways has
a direct deleterious effect on CFTR function and amplification of lung inflammation [67,68],
we speculate that OLE restored Trikafta®-mediated F508del-CFTR function under LPS
treatment through its antioxidant activity. On the other hand, the combination of OLE and
CFTR modulators did not have a synergistic effect (data not shown).

The present study is the first to show that OLE exhibits anti-oxidative and anti-
inflammatory properties in the CF bronchial cell line and CF primary nasal epithelial
cells. Moreover, OLE is an effective and economic natural herb that seems to improve the
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efficacy of CFTR modulators therapies under infection stimuli, which could provide a clear
benefit to CF patients with P. aeruginosa colonization. Together, these data suggest OLE as a
potential therapeutic approach for treating a harshly inflamed CF lung. However, further
investigations are warranted to explore the clinical application of OLE.
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