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Abstract: Fibrosis is an unavoidable consequence of chronic inflammation. Extracellular matrix
deposition by fibroblasts, stimulated by multiple pathways, is the first step in the onset of chronic
liver disease, and its propagation promotes liver dysfunction. At the same time, chronic liver disease
is characterized by alterations in primary and secondary hemostasis but unlike previously thought,
these changes are not associated with an increased risk of bleeding complications. In recent years, the
role of coagulation imbalance has been postulated as one of the main mechanisms promoting hepatic
fibrogenesis. In this review, we aim to investigate the function of microvascular thrombosis in the
progression of liver disease and highlight the molecular and cellular networks linking hemostasis
to fibrosis in this context. We analyze the predictive and prognostic role of coagulation products as
biomarkers of liver decompensation (ascites, variceal hemorrhage, and hepatic encephalopathy) and
liver-related mortality. Finally, we evaluate the current evidence on the application of antiplatelet and
anticoagulant therapies for prophylaxis of hepatic decompensation or prevention of the progression
of liver fibrosis.

Keywords: ADAMTS-13; coagulation; fibrosis; hepatic stellate cells; liver cirrhosis; microthrombosis;
parenchymal extinction; platelets; von Willebrand factor

1. Introduction

Fibrosis is a frequent consequence of organ injury. The formation of an extracellular
matrix (ECM) depends on a complex cascade of cellular and molecular pathways, the
chronic activation of which results in a sustained fibrogenic process that leads to structural
changes and, ultimately, to dysfunction of the affected organ. Thus, fibrosis is a major
contributor to organ failure in human pathophysiology [1]. Fibrotic changes are linked to a
variety of diseases, suggesting common pathogenetic mechanisms. This “wound response”
is controlled by complex cell-specific processes in which distinct molecular pathways are
involved [1]. Hemostasis is becoming increasingly important among the many biochemical
mechanisms and cellular interactions involved in fibrogenesis.

The development of chronic disease following organ damage has been linked to an
imbalance between pro- and anti-coagulant factors. For example, microvascular endothelial
cells of the renal parenchyma contribute to the development of a prothrombotic environ-
ment in the presence of stressor triggers by increasing the synthesis of prohemostatic
factors and reducing the production of protective proteins. Activation of the endothelial
surface following the onset of thrombosis and activation of the coagulation cascade induces
transformation to a proinflammatory fibrogenic cellular phenotype, which worsens renal
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damage and causes fibrosis [2]. Additionally, in acute lung injury and fibrotic lung disease,
uncontrolled coagulation has been shown to contribute to the dysregulation of inflam-
matory and fibroproliferative responses [3]. According to pathophysiological evidence,
coagulation plays an essential role in many disorders, and fibrosis is often an adverse
outcome. Chronic liver disease is the paradigm of conditions in which fibrosis resulting
from an acute or chronic insult leads to organ dysfunction. In this review, we aim to
investigate the function of microvascular thrombosis in liver disease and to highlight the
molecular and cellular networks that link hemostasis to fibrosis in this setting.

2. From Microvascular Thrombosis to Hepatic Fibrosis

Studies on the consequences of acute murine hepatitis virus infection have provided
the first evidence that coagulation is an important factor in the pathogenesis of liver disease.
Indeed, numerous sinusoidal microthrombi directly related to hepatic parenchymal necrosis
were described in these animal models, and microvascular thrombosis was associated with
more severe hepatitis [4–6].

In 1995, examining histological specimens from the livers of patients with chronic
heart failure, Wanless et al. found a substantial correlation between sinusoidal fibrosis and
the occurrence of local thrombotic events, indicating that liver fibrosis may be the result
of microvascular thrombosis. More specifically, it has been proposed that disruption of
blood flow by sinusoidal microthrombi and sinusoidal fibrosis cause reactive hyperemia
and congestion, which activate fibroblasts and increase collagen deposition, worsening
blood flow, inducing extension of thrombosis, neoangiogenesis, and parenchymal necrosis.
The end result is the loss of hepatocytes and the formation of fibrous septa that completely
alter the architecture of the liver [7]. The replacement of liver parenchyma with fibrotic
tissue as a result of microvascular disruption has been called parenchymal extinction [8].
Inflammation is considered to be one of the main mechanisms inducing hepatic fibrogenesis
in response to parenchymal damage [9]; however, a preclinical model has shown that mild
inflammation at both histological and serological levels is associated with the development
of liver fibrosis due to chronic venous congestion [10]. According to this study, sinusoidal
thrombosis appears to be crucially involved in the direct potentiation of fibrogenesis in
congestive liver disease.

On the other hand, hemostasis has also been firmly linked to the inflammatory re-
sponse, and recently the concepts of immune-coagulation and thrombo-inflammation have
been proposed [11,12]. Several conditions, including ischemia-reperfusion syndrome and
infections, can lead to the formation of microvascular thrombosis, which triggers an inflam-
matory response [13]. As part of inflammatory processes, numerous cell types, including
immune cells and fibroblasts, participate in the coagulation process, enhancing inflamma-
tion and increasing ECM deposition in different organs [14]. In fact, hemostatic activation
could be both the cause and the consequence of the inflammatory process.

However, there are few examples of clinical models of hepatic microvascular throm-
bosis in the literature, probably because microvascular thrombosis is rapidly replaced
by fibrous tissue and is rarely detected on biopsy in patients with chronic liver disor-
ders [8]. Cases of systemic microvascular thrombotic disease in humans suddenly in-
creased following the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
pandemic, prompting multiple studies, including some on liver pathology. SARS-CoV-2
causes COVID-19, which is a systemic infectious disease in which endothelial cell dys-
function and microvascular thrombosis are likely to play a major role in the development
of multi-organ complications [15]. Although the airways and lungs are the main organs
affected by SARS-CoV-2, liver injury is a frequent condition in patients with the most severe
clinical forms [16,17]. Sinusoidal microthrombi were frequent in liver biopsy specimens
taken from COVID-19 patients and were related to more severe liver damage [18,19]. Mild
portal and lobular inflammation, confluent parenchymal necrosis, and fibrosis are other
histological findings [18]. Because there is no evidence of direct cytopathic virus damage,
the latter appears to be associated with the marked inflammatory activation produced



Cells 2023, 12, 1712 3 of 24

by the infection [20]; in fact, molecular analyses revealed that during severe COVID-19,
genes frequently linked to hepatic stellate cells (HSCs) activation and liver fibrosis, such
as interleukin 6 (IL6), interleukin 1 (IL1), tumor necrosis factor α (TNF-α), interleukin 10
(IL10), and interferon α (IFN-α), as well as vascular endothelial growth factor (VEGF) and
monocyte chemoattractant protein 1 (MCP-1), are overexpressed [21]. In addition, a higher
noninvasive fibrosis score appears to be correlated with a higher risk of developing severe
COVID-19 [22].

The fascinating link between sinusoidal thrombosis and the activation of molecular
pathways of liver fibrosis in humans is supported by the beneficial effects of anticoagulants
on the development of fibrosis [23,24]. In line with the direction set out by Wanless et al.
in 1995, developments in molecular medicine and the identification of new intra- and
intercellular networks have strengthened this connection.

3. Hepatic Stellate Cells and Protease Activated Receptor

In response to repeated injury, HSCs can differentiate into myofibroblasts, which
proliferate and produce ECM [25]. In addition, HSCs stimulate other cell types that
participate in the inflammatory response and fibrogenesis through the production of growth
factors and chemokines, playing a critical role in driving the initiation and progression of
the fibrogenic process [26]. As expected, microvascular sinusoidal thrombosis, which leads
to ischemic injury and inflammatory response, causes overexpression of VEGF, platelet-
derived growth factor (PDGF) and transforming growth factor beta (TGFβ) by hepatocytes
and HSCs, as well as increased synthesis of type I and type IV collagen by activated
HSCs [27]. However, a specific molecular mechanism has been proposed as responsible
for the apparent association between microvascular thrombosis and fibrogenesis. In 1998,
Marra et al. hypothesized that the protease-activated receptor (PAR) signaling pathway was
a major molecular pathway involved in HSCs activation and hepatic scarring [28]. PARs
are G-protein-coupled receptors with proteolytic activity that stimulate cellular responses
by interacting with coagulation factor Xa (FXa) and neutrophil elastase (PAR 1, 2), thrombin
(PAR 1, 3, 4), coagulation factor VIIa (PAR 1), and tryptase (PAR 2, 4), which cleave the
N-terminal of the receptor [28]. PARs are expressed by different types of cells involved
in the fine regulation of vascular homeostasis, and their signaling pathways are complex
because they can be linked to G proteins with different functions. Consequently, they
interact with a myriad of signaling transducers (e.g., extracellular signal-regulated kinase
[ERK] 1/2, Rho/Rho-kinase, c-Jun N-terminal kinase, inositol 1,4,5-trisphosphate [IP3],
phosphoinositide 3-kinases [PI3K], and Janus kinase/signal transducers and activators of
transcription [JAK-STAT]), resulting in pleiotropic effects [29–31]. PARs have been linked
to the progression of fibrosis in several organs, and because they have a high affinity for
factors in the coagulation cascade, they have been proposed as the main link between
hemostasis and pulmonary fibrosis [32,33] or renal fibrosis [2]. In addition, PAR 1 induces
cardiac fibroblast activation in response to thrombin or FXa and, by modulating the ERK1/2
pathway, leads to cardiac remodeling and fibrosis [29,34].

PARs are found in liver cells and are abundantly overexpressed in chronic liver disease,
as in the case of PAR 1 in the myofibroblast group of cirrhotic individuals [35]. A preclinical
rat liver stellate cell model revealed a progressive increase in PAR 1 and PAR 2 expression
during transformation to a myofibroblastic phenotype [36]. Increasing concentrations of
thrombin transform HSCs into myofibroblasts increases the production of α-smooth muscle
actin (α-SMA), pro-collagen, TGFβ-1, matrix metalloproteinase 2 (MMP-2), and other
cellular signals essential for wound healing [37,38]. Furthermore, when HSCs are treated
with a combination of FXa and thrombin, there is an increase in α-SMA, procollagen,
TGFβ-1, and significantly improved cell contraction compared with FXa or thrombin
alone [39].
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Preclinical studies have confirmed the importance of PARs in fibrogenesis, showing
how inhibition or lack of PAR 1 and PAR 2 reduces the evolution of liver fibrosis [38,40].

However, this evidence about coagulation factor-mediated HSCs activation by PAR
has been based mainly on in vitro research. Poole et al. recently studied the effect on the
liver of chronic exposure to carbon tetrachloride (CCl4) in vivo, using a mouse model with
PAR 1 deletion specific for HSCs. PAR 1 deletion was linked to decreased activation of
HSCs and collagen deposition but was not protective against acute liver damage after CCl4
exposure [41]. Thus, PAR 1 appears to play a role in the “healing process” that occurs
after liver injury rather than in its acute phase. Indeed, enoxaparin treatment significantly
reduced portal hypertension, hepatic fibrosis, HSCs activation, and desmin expression in
mice with CCl4-induced cirrhosis without having any effect on the acute injury. In addition,
molecular analysis revealed decreased hepatic fibrin deposition in enoxaparin-treated
rats, implying the role of intrahepatic microthrombosis as a primary mechanism of PAR
activation [23].

Regarding the etiology of liver fibrosis, thrombin-mediated HSC activation appears
to be closely related to the progression of nonalcoholic fatty liver disease (NAFLD) [42].
In addition, administration of a direct thrombin inhibitor to mice with NAFLD reduces
HSCs activation, α-SMA expression, and hepatic collagen type 1 mRNA levels [42]. While
thrombin has been shown to play a crucial role in the progression of NAFLD, a preclinical
investigation suggested that PAR 1, its receptor, is essential for the development of hepatic
steatosis in mice fed a Western diet [43]. Nault et al. studied the involvement of PAR 1
signaling in liver damage caused by the contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD). C57BL/6 mice exposed to TCDD acquire NAFLD-like features, such as steato-
sis, liver damage, inflammation, and fibrosis. Subchronic exposure to TCDD also causes
increased intrahepatic coagulation, as reflected by increased thrombin production and
deposition of fibrin and fibrinogen in the liver. As measured by serum alanine aminotrans-
ferase activity, PAR 1 deficiency had no effect on TCDD-induced hepatocellular damage
and hepatic lipid accumulation but nevertheless was linked to a significant reduction in
liver fibrosis and histologic evidence of inflammation [44].

Although the function of microvascular thrombosis in the evolution of a chronic
disease such as NAFLD seems well established, in contrast, the importance of PARs in the
progression of chronic viral hepatitis to fibrosis has been less studied. One study examined
the PAR 1 genotype in people with chronic HCV infection and found that a specific PAR 1
polymorphism (1426 C/T) was linked to histological evidence of increased liver fibrosis [45].
However, the role of PAR 1 in the progression of viral hepatitis-related liver fibrosis is
mainly unknown. The PAR signaling pathway of HSCs is currently believed to be the
main element explaining the direct association between microvascular thrombosis and
fibrogenesis in the liver parenchyma, although there may be variations depending on the
etiology of liver disease. It is also possible to hypothesize a different role of PAR 1 expressed
by different cell types; in fact, a number of non-parenchymal liver cells and other cells
that infiltrate the damaged liver, including sinusoidal endothelial cells, inflammatory cells
(monocytes, neutrophils, and lymphocytes), resident hepatic macrophages (Kupffer cells),
and bile duct epithelial cells may express PAR 1 [46–48]. Therefore, since microvascular
thrombosis may be a manifestation of a harmful hepatic stimulation, PAR 1 activation
of HSCs may be the primary cause of the abnormal response leading to fibrosis and its
progression. However, considering the wide variety of interactions that occur during
hepatic fibrogenesis, it may not be the only one and may indeed be part of a more complex
network of molecular and cellular pathways yet to be defined.
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4. The Role of Liver Sinusoidal Endothelial Cells and Neutrophil Extracellular Traps

Another important cell type involved in the relationship between microvascular throm-
bosis and fibrosis progression is hepatic sinusoidal endothelial cells (LSECs). It is commonly
recognized that LSECs interact with other cells, such as neutrophils, lymphocytes, HSCs,
hepatocytes, and Kupffer cells, which is critical in the progression of nonalcoholic steato-
hepatitis (NASH) to fibrosis [49]. Healthy endothelial cells, on the other hand, express
molecules that inhibit platelet activation, coagulation, and thrombosis [50]. Expression
of pro- and anti-thrombotic elements changes when LSECs lose their antithrombotic phe-
notype due to endothelial dysfunction [51,52]. The expression of thrombomodulin, nitric
oxide, or prostaglandin I2 is attenuated in the presence of dysfunctional LSECs, which
also expose Von Willebrand factor (VWF), integrins, and other receptors that interact with
activated platelets and cause clot formation [53,54]. It has also been shown that hepatitis
viruses, including hepatitis B virus (HBV) and murine acute hepatitis virus 3, a member of
the Coronaviridae, can induce LSECs to overexpress Fgl2/fibroleukin prothrombinase, which
is crucial for the initiation and progression of fibrin deposition [55–57]. Recent histological
and molecular studies in a mouse model of congestive hepatopathy demonstrated that
LSECs exposed to mechanical stretch upregulate Notch-dependent transcription factors
through an integrin-dependent pathway and interaction with the mechanosensitive piezo-
calcium channel. As a result, LSECs increase the production of neutrophil chemoattractant
C-X-C motif ligand (CXCL) 1, attracting platelets and neutrophils into hepatic sinusoids and
leading to the formation of extracellular neutrophil traps (NETs). NETs are complexes con-
sisting of a backbone of extracellular DNA fibers bound to histones and granular proteins,
such as myeloperoxidase and neutrophil elastase, which are strongly linked to sinusoidal
thrombosis [58]. Interestingly, the progression of NASH has been linked to parenchymal
neutrophil infiltration and NET development in mice [59]. In addition, in biopsy samples of
the lungs, liver, and kidneys from patients with severe COVID-19, NETs have been linked
to microvascular thrombosis [60,61]. As previously shown, when LSECs are dysfunctional,
they lose their antithrombotic activity, promoting local thrombotic events and, consequently,
the progression of PAR 1-induced fibrosis. In addition, LSECs themselves overexpress PAR
1, which is activated by the coagulation cascade in response to injury, as was demonstrated
in a preclinical model of ischemia in mouse liver. In LSECs, PAR 1 activation blocks the
ERK1/2 pathway and promotes apoptotic signaling, exacerbating liver damage and caus-
ing inflammation and fibrosis [62]. Kruppel-like factor 2 (KFL2), a transcription factor, has
recently been recognized as a crucial regulator of endothelium homeostasis in response to
inflammatory stimuli, coagulation factors, and hemodynamic stresses such as laminar shear
stress [63–65]. In LSECs of cirrhotic mice, transcriptome analysis revealed downregulation
of Kruppel-like factor (KLF) 2 and 4. In addition, Marrone et al. showed that overexpres-
sion of KLF2 in LSECs and HSCs derived from cirrhotic rats reduces HSC activation and
enhances paracrine cross-talk between LSECs [66,67]. This is consistent with the decrease
in fibrosis and portal pressure associated with KFL2 overexpression in animal studies [68].
Interestingly, KLF2 is primarily activated by the extracellular signal-regulated kinase 5
(MEK5)-extracellular signal-regulated kinase 5 (ERK5) pathway [69], the overexpression of
which has recently been linked to suppression of PAR 1 signaling in cell types such as pneu-
mocytes and alveolar barrier endothelial cells [70]. Further research revealed the function
of the long noncoding RNA Airn in controlling KLF2. In fact, Airn interacts with subunit 2
of the Polycomb Enhancer Of Zeste 2 repressive complex to maintain the differentiation of
LSECs through the KLF2 pathway, preventing the capillarization of LSECs, maintaining the
quiescence of HSCs and attenuating the progression of fibrosis. Airn is highly expressed in
the liver and serum of patients with fibrosis and in mouse fibrotic livers [71].
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5. Platelets: Not Just Hemostatic Functions

Endothelial cells, neutrophils, macrophages, HSCs, and clotting factors interact with
platelets, which are an essential part of hemostasis [72,73], involved in the development of
microvascular thrombi, including hepatic sinusoids [74–76]. During the activation phase,
platelets can release mediators such as sphingosine-1-phosphate (S-1-P), which activate
rat HSCs in vitro but also different subtypes of PAR, including PAR 1 [77,78]. It has been
shown that both patients with chronic liver disease and mouse models of liver fibrosis
accumulate platelets and the platelet-derived chemokine CXCL4 near fibrotic regions [79].
In vitro, platelet-derived CXCL4 was able to stimulate HSCs proliferation and chemotaxis,
while its genetic deletion in mice significantly reduced liver damage and fibrosis [79]. It
has also been shown in two mouse models of biliary fibrosis that PDGF-B activates HSCs
causing liver fibrosis [80]. Notably, PDFG-B is one of the most effective mitogens for
HSCs [81]. In addition, platelets contain high levels of TGF-β1, which is closely associated
with the hepatic fibrogenic process [82].

In a mouse model of NAFLD, the expression of neurobeachin-like 2 (NBEAL2) by
platelets might play a role in the progression of NAFLD [83]. The NBEAL2 gene is essential
for preserving platelet α-granule integrity and is also critical for hemostasis and inflam-
mation [84]. Lower hepatic T-cell and neutrophil infiltration, reduced level of intrahepatic
macrophage activation and a slower rate of fibrosis progression were observed in NBEAL2
knockout mouse models of NAFLD [83]. In addition, the platelet adhesion receptor GPIb
might be involved in the late fibrogenic phase of NAFLD by interacting with Kupffer
cells [83]. Antiplatelet therapy has been associated with a reduction in NAFLD-related
fibrosis in several preclinical models, with encouraging results in humans as well [83,85–87].
On the other hand, administration of thrombopoietin in a rat model of cirrhosis caused by
dimethylnitrosamine provided positive results, reducing the progression of liver fibrosis,
while antiplatelet serum reduced this favorable effect [88]. Beyond the specific setting
of NAFLD, the role of platelets in the progression of liver fibrosis remains uncertain. In
fact, HSC activation can be limited or suppressed through the cAMP pathway, triggered
by direct contact with the ATP-enriched granules of adhesive platelets [89]. It has also
been reported that platelets could exert an antifibrotic effect by inhibiting HSCs through
the release of hepatocyte growth factor (HGF) and activation of Met signaling pathways,
resulting in reduced expression of type I collagen genes [90]. Because platelets interact
with cellular components, participating in hemostasis, inflammation, fibrogenesis, and
tissue regeneration and healing, their function may be ambiguous and dependent on more
complex interactions [91]. For example, PAR 4-mediated platelet activation might have a
protective effect on the progression of liver fibrosis, as was shown in a mouse model of
cholestatic liver injury [92]. In this study, PAR 4-deficient platelet-deficient mice developed
more pronounced liver damage, inflammation, and fibrosis following bile duct ligation
than wild-type mice. In addition, wild-type mice treated with a PAR 4 antagonist showed a
similar increase in liver injury and fibrosis, while treatment with PAR 1 antagonists resulted
in opposite effects [92]. However, unlike humans, mouse platelets lack PAR 1, limiting the
possibility of defining the role of PAR 1-dependent pathways in liver disease [93].

6. ADAMTS 13—Von Willebrand Factor, a Bridge between Coagulation and Fibrosis

Liver cirrhosis has long been considered an acquired bleeding condition because of
altered coagulation parameters. Indeed, there is a reduction in liver-related coagulation
factors, such as Factors II, V, VII, IX, and XI, but levels of vitamin K-dependent antico-
agulant proteins, protein C (PC), protein S, and antithrombin III are also reduced [94,95].
However, it is now recognized that the risk of bleeding is not a consequence of coagulation
imbalance but is related to portal hypertension, and that cirrhotic patients maintain a
perfect hemostatic balance in most cases [96]. In fact, studies by Tripodi et al. proved
that the thrombin generation assay remains preserved in these patients despite these al-
terations [97,98]. Increased levels of Factor VIII (FVIII) and VWF have also been observed
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in cirrhotic patients with portal hypertension, suggesting that a procoagulant milieu may
prevail [99,100].

These factors are produced and stored in the endothelial cells of portal and hepatic
veins but not in hepatic sinusoids [101]. However, in advanced stages of liver fibrosis,
endothelial cells of hepatic sinusoids acquire the phenotype of vascular endothelium due
to chronic inflammation and endotoxemia, which are the main contributors to portal hyper-
tension [102–106], and begin to produce FVIII and VWF. VWF is a multimeric glycoprotein
synthetized and released by vascular endothelial cells in the bloodstream in the form of
multimers, with the ability to bind platelets proportionally to their size, demonstrating
a pivotal role in hemostatic balance [107]. It is stored in Weibel–Palade bodies (WPBs)
and excreted upon stimulation. Some studies have shown a direct correlation between
circulating FVIII levels and the severity of portal hypertension as measured by hepatic
venous pressure gradient (HVPG) or the presence of ascites and the risk of variceal hem-
orrhage in patients with advanced liver disease [102–106]. In addition, the association
between FVIII alterations and liver fibrosis is well-known: in particular, FVIII and VWF
have been observed in capillaries and pericellular regions alongside necrotic sites in the
liver parenchyma, and inflammatory injury may promote the deposition of these factors
along with fibrosis [108]. A Disintegrin and Metalloproteinase with a Thrombospondin
Type 1 motif, member 13 (ADAMTS-13), is another factor influenced by chronic inflamma-
tion and advanced liver disease. It is a metalloproteinase that cuts the multimeric VWF
between Tyr1605 and Met1606 in its A2 domain. ADAMTS-13 is mainly produced in the
liver by HSCs [109–113], and finely regulates hemostatic balance by controlling the size of
VWF multimeters, thus their ability to aggregate platelets by forming microthrombi. In
chronic liver disease, HSCs that acquire a myofibroblastic phenotype lose the ability to
produce and store ADAMTS-13 [111,114–116].

Moreover, ADAMTS-13 is inversely correlated with the severity of liver dysfunction
in terms of antigen production and activity, whereas VWF antigen and activity increase, as
previously discussed, resulting in the release of high molecular weight VWF (HMWVWF)
multimers [117].

Therefore, ADAMTS-13 and VWF imbalance may have a pivotal role in the paradigm
of parenchymal extinction and liver fibrosis progression in chronic liver diseases [118,119];
indeed, the upregulation of VWF levels in the presence of chronic inflammation, vascular
damage, or endotoxemia [102,103] is not counterbalanced due to the deficiency of ADAMTS-
13, promoting the formation of platelet microthrombi and fibrin deposition in hepatic
sinusoids, with the loss of liver parenchyma and fibrogenesis [120,121].

This condition is similar to thrombotic thrombocytopenic purpura, a primary or
acquired clinical disorder induced by the loss of ADAMTS-13 activity or its deficiency that
lead to microthrombi formation in small vessels such as glomeruli, cerebral vessels, and
cutaneous capillaries [115,121–123].

The mechanisms leading to microvascular thrombosis in cirrhosis and the consequent
alterations in liver parenchyma are reported in Figure 1.
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and PAR 1, may also induce significant alterations in HSCs, leading to a myofibroblastic phenotype 
with expression of alpha-SMA, procollagen, and a poor ability to produce ADAMTS-13, the protein 
that cleaves the HMWVWF multimers in normal conditions. In liver disease, lower levels of other 
anticoagulants, such as PC, are also reported. As a result, there is an imbalance between procoag-
ulant factors such as FVIII and VWF and anticoagulant factors such as ADAMTS-13 and PC. 
HMWVWF multimers, not inhibited by ADAMTS-13, bind activated platelets forming micro-
thrombi. Microthrombi deposition prevalently occurs near the small branches of the hepatic ven-
ules, causing the destruction of hepatocytes in a process named “parenchymal extinction”, leading 
to the worsening of liver fibrosis. 

Figure 1. Main mechanisms leading to microvascular thrombosis and parenchymal extinction in liver
cirrhosis. In the presence of low-grade chronic inflammation, liver sinusoid endothelial cells acquire
vascular endothelial cells phenotype, upregulating the production and release of VWF in the form of
HMWVWF multimers and FVIII. Several mediators contribute to this process, such as interleukins
(IL6, IL8), chemokines (TNF), growth factors (PDGF, VEGF, and TGF beta), gut dysbiosis, and gut
microbiota-derived products (LPS). The same and other factors, such as NET and PAR 1, may also
induce significant alterations in HSCs, leading to a myofibroblastic phenotype with expression of
alpha-SMA, procollagen, and a poor ability to produce ADAMTS-13, the protein that cleaves the
HMWVWF multimers in normal conditions. In liver disease, lower levels of other anticoagulants, such
as PC, are also reported. As a result, there is an imbalance between procoagulant factors such as FVIII
and VWF and anticoagulant factors such as ADAMTS-13 and PC. HMWVWF multimers, not inhibited
by ADAMTS-13, bind activated platelets forming microthrombi. Microthrombi deposition prevalently
occurs near the small branches of the hepatic venules, causing the destruction of hepatocytes in a
process named “parenchymal extinction”, leading to the worsening of liver fibrosis.
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7. Hemostatic Balance in Liver Disease: Translational Implications
7.1. Correlation with Liver-Related Outcomes

Since the ADAMTS-13 to VWF ratio (ADAMTS-13/VWF) and FVIII to PC ratio
(FVIII/PC) are linked to alterations that occur during liver decompensation or are associ-
ated with complications related to portal hypertension, their role as predictive biomarkers
has been postulated in several studies.

Kalambosis et al. analyzed FVIII and PC serum levels as markers of coagulation
balance in 102 patients with liver cirrhosis and thrombocytopenia. Patients were stratified
according to Child–Pugh and Model for End-Stage Disease (MELD) scores. All events
related to liver decompensation, including portal vein thrombosis (PVT) or liver trans-
plantation or death, were recorded; during follow-up, 13.7% of patients developed PVT,
and those with reduced liver function showed lower levels of FII, V, VII, AT, and PC, but
higher levels of FVIII and VWF. FVIII/PC in this group was higher and, together with
VWF, was found to be significantly associated with liver disease severity on multivariate
analysis. In addition, levels of VWF, FVIII, and FVIII/PC were independently associated
with the development of ascites and variceal bleeding. Specifically, VWF levels above 213%
were predictive of new-onset ascites, whereas levels above 466% or FVIII/PC above 3.29%
predicted variceal bleeding during follow-up. These parameters were also associated with
the risk of death from liver-related causes (VWF levels cut-off 392% and FVIII/PC greater
than 2.92%) [124].

Schneiner et al. reported that FVIII/PC levels correlated with liver disease severity
according to Child–Pugh and MELD scores, and with the presence of portal hypertension,
as assessed by the measurement of HVPG. FVIII/PC was significantly higher in the presence
of varices, ascites, or hepatic encephalopathy. Markers of inflammation, such as cytokines,
and those of liver fibrosis, were also associated with a higher FVIII/PC. FVIII/PC was not
associated with increased incidence of bleeding or thrombotic risk on multivariate analysis,
but showed a significant association with Child–Pugh and MELD scores, the presence of
esophageal varices, and HVPG, demonstrating its strength as a prognostic factor. Schneiner
et al. also demonstrated a predictive role of the FVIII/PC ratio in the development of acute
on chronic liver failure (ACLF) in patients with decompensated advanced chronic liver
disease (ACLD); moreover, FVIII/PC provided prognostic information independently of
the chronic liver failure (CLIF) score: patients were stratified according to a cut-off for ACLF
development (FVIII/PC > 4.46): patients who presented a baseline level of FVIII/PC > 4.46
presented a higher risk of ACLF development during follow-up [125]. ADAMTS-13/VWF
may be another predictor of decompensation or death in cirrhotic patients. In a recent study
including 86 patients diagnosed with liver cirrhosis, the lowest levels of ADAMTS-13/VWF
and the highest levels of FVIII/PC were found in patients developing decompensation
during follow-up. FVIII/PC > 2.6 and ADAMTS-13/VWF < 0.26 were correlated with the
risk of hepatic decompensation or death. During multivariate analysis, both indices were
independently predictive of disease severity and linked with portal hypertension, with
an accuracy comparable to Child–Pugh and MELD scores [126]. In patients with severe
alcoholic hepatitis with or without cirrhosis, a negative association between ADAMTS-13,
prothrombin time, and total serum bilirubin was observed, while VWF serum level was
directly associated with disease severity [119]. ADAMTS-13 was also reduced in patients
with decompensated liver cirrhosis and severe alcoholic hepatitis. Non-survivor patients
with multi-organ failure showed the highest VWF/ADAMTS-13, while surviving patients
improved ADAMTS-13 serum levels during follow-up, with a consensual reduction in
HMWVWF. Takaya et al. also reported in a cohort of 99 patients with chronic liver disease,
equally distributed according to the Child–Pugh score, that ADAMTS-13 activity and
antigen were lower in patients with more severe liver disease, and their alteration was
directly related to changes in albumin, prothrombin time, and platelet count [127]. Other
studies confirmed that HMWVWF levels were proportionally related to the severity of
Child–Pugh and MELD scores and associated with the severity of portal hypertension [128].
VWF also predicted transplant-free mortality in association with C-reactive protein, with
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significant differences in survival between groups: the 5-year mortality was 34%, 48%, and
72% in the low, intermediate, and high-risk group, respectively, while the probability of
liver transplantation increased dramatically at 5 years: 7%, 18%, and 20%. Nevertheless,
VWF ristocetinic cofactor (VWF:RCo) > 390% (67% sensitivity and 88% specificity) and
ADAMTS-13 activity ≤ 54% (71% sensitivity and 76% specificity) were able to predict
poor transplant-free survival [129]. The interaction between hepatic decompensation,
coagulation factors alteration, and endotoxemia has also been studied in acute liver failure
(ALF). These patients show high endotoxin levels and HMWVWF multimers, as well as
low plasma levels of ADAMTS-13 on admission [130]. In a retrospective study including
101 patients divided into a group of 34 subjects with ACLF (cohort named “post ACLF”)
and a group of 67 patients without ACLF, 13 of whom developed ACLF during follow-
up (cohort named “pre-ACLF”), levels of ADAMTS-13 activity and VWF antigen were
assessed at baseline and at the onset of ACLF. In the post-ACLF group, 21 patients died;
ADAMTS-13 plasma levels at baseline were higher in survivors than in non-survivors
and decreased progressively from patients without ACLF to those with ACLF to patients
who resolved ACLF, while VWF antigen showed an opposite trend. During multivariate
analysis, ADAMTS-13/VWF remained an independent prognostic factor for ACLF onset in
patients with a previous episode of acute on chronic liver decompensation [131].

In another study, VWF and ADAMTS-13 serum levels were assessed at admission and
daily for one week in a cohort of 676 patients with drug-induced acute liver injury. Among
them, 483 survived without liver transplantation 21 days after enrollment; patients who
developed ALF had three-fold higher HMWVWF multimers than controls, while ADAMTS-
13 activity was four-fold lower. Patients with severe hepatic encephalopathy, systemic
inflammatory response syndrome, or acute kidney injury had the lowest levels of ADAMTS-
13 combined with the highest levels of VWF. No difference in thrombin generation was
documented. Interestingly, in patients with bleeding complications, ADAMTS-13/VWF
was reduced compared with other patients. Furthermore, low ADAMTS-13 activity was
associated with more severe hepatic encephalopathy, a high risk of liver transplantation,
and death from hepatic causes [132].

Taken together, these data confirm that changes in coagulation parameters reflect
the risk of liver disease progression and decompensation without any influence on the
hemostatic balance. The main studies showing the role of these molecules as potential
biomarkers of liver disease progression are reported in Table 1.

Table 1. Studies reporting the relationship between ADAMTS-13, VWF, FVIII, and PC and liver-
related outcomes.

Study Design Clinical Setting Marker Outcome

Kalambosis et al. [124] Observational Liver cirrhosis with
thrombocytopenia FVIII/PC and VWF Ag

↑ liver-related death (VWF Ag
cut-off 321% FVIII/PC

cut-off 2.36%)
↑ variceal bleeding (VWF Ag

cut-off 466% FVIII/PC
cut-off 3.29%)

↑ new-onset ascites (VWF Ag
cut-off 213% FVIII/PC

cut-off 1.99%)
↑ portal vein thrombosis

Schneiner et al. [125] Observational Liver cirrhosis with
portal hypertension FVIII/PC

↑MELD score
↑ HVPG

↑ ACLF (FVIII/PC cut-off > 4.46)

Ponziani et al. [126] Observational Liver cirrhosis ↓ ADAMTS-13/VWF and
↑ FVIII/PC

↑ decompensation rate and risk of
liver-related death (FVIII/PC

cut-off > 2.6 ADAMTS-13/VWF
cut-off < 0.26)
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Table 1. Cont.

Study Design Clinical Setting Marker Outcome

Matsuyama et al. [119] Observational Alcoholic hepatitis ↓ ADAMTS-13 activity and
↑ VWF Ag

↑ risk of severe alcoholic hepatitis
↓ survival

Takaya et al. [127] Observational ACLF ↓ VWF Ag,
↑ ADAMTS-13 activity

↑ survival (VWF/ADAMTS-13
cut-off < 9)

Driever et al. [132] Observational Drug-induced acute
liver injury

↑ VWF Ag,
↓ ADAMTS-13 activity

↑ hepatic encephalopathy
↑ bleeding complications
↑ acute kidney injury

predictors of the need for liver
transplantation

Table 1 abbreviations (in order of appearance): FVIII: factor VIII, PC protein C, vWF Ag: von Willebrand Factor
Antigen, MELD Model End Stage Liver Disease; HVPG Hepatic Venous Pressure Gradient, ACLF acute on chronic
liver failure, ADAMTS-13, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13.
↓ reduced, ↑ increased.

7.2. The Gut–Liver Axis Is Associated with Alteration of Hemostatic Factors

Because liver cirrhosis evolution is strongly influenced by gut dysbiosis and bacterial
translocation, low-grade chronic inflammation, and endotoxemia, several authors evalu-
ated the association between markers of intestinal health and coagulation parameters [133].
Takaya et al. found an association between endotoxin levels and the presence of HMWVWF
multimers [130]; in addition, VWF and FVIII/PC correlated with lipopolysaccharide-
binding protein (LBP) and IL 6 plasma concentration. A multivariate analysis excluded
the influence of portal hypertension on these alterations, clarifying the direct effect of
endotoxemia in this process. In addition, VWF serum levels independently predicted
variceal hemorrhage, paracentesis requirement, and risk of spontaneous bacterial peri-
tonitis and other bacterial infections, but did not correlate with the occurrence of hepatic
encephalopathy [128].

Carnevale et al. confirmed the relationship between circulating lipopolysaccharides
(LPS) and alterations in FVIII and VWF in patients with chronic liver disease. LPS serum
levels also correlated with Escherichia coli circulating DNA, suggesting a modulating ef-
fect of microbiota-derived LPS on endothelial cells releasing VWF and FVIII. The same
group developed human endothelial cell cultures to be exposed to a range of increasing
concentrations of LPS derived from the serum of cirrhotic patients, ultimately obtaining
FVIII and VWF secretion from WPBs [134]. Thus, this study confirmed that low-grade
endotoxemia induced by the translocation of bacteria from the intestinal lumen to the
portal and systemic circulation is able to alter the balance of coagulation factors. Our group
further evaluated changes in ADAMTS-13/VWF in patients with advanced chronic liver
disease in relation to markers of endotoxemia such as LPS, confirming the strong associa-
tion between decreased ADAMTS-13/VWF, chronic low-grade inflammation, and risk of
liver failure. In fact, ADAMTS-13/VWF was significantly lower in patients who developed
complications (ascites, variceal hemorrhage, and hepatocellular carcinoma) than in those
who did not, while LPS showed an opposite trend. In addition, the analysis of the gut mi-
crobiota composition of these patients showed a depletion of Akkermansia in stool samples,
associated with a specific metabolic profile; the loss of Akkermansia may increase intestinal
permeability exacerbating gut-derived inflammation, with the consequent modulation of
ADAMTS-13/VWF and development of chronic liver disease complications [135]. Other
studies reported an inverse correlation between ADAMTS-13 activity and endotoxemia,
as opposed to VWF, which shows a direct correlation, resulting in an imbalance between
ADAMTS-13 and VWF, as previously described [132]. Ishikawa et al. also observed that the
increase in VWF/ADAMTS-13 in patients with severe alcoholic hepatitis was associated
with increased production of inflammatory cytokines, such as TNF-α, IL6, IL8, and plasma
endotoxin, the latter being inversely correlated with ADAMTS-13 activity [136]. Finally, in
a previously mentioned study by Reuken et al., patients with overt systemic inflammation
and bacterial translocation had higher levels of VWF, which correlated with leukocytes
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blood count, C Reactive Protein (CRP) and LBP serum concentrations, as well as acute
kidney injury during follow-up, also being predictive of liver-related death and 2-year
transplant-free survival [129].

8. Therapeutic Perspectives

The strict association between coagulation imbalance and liver disease progression
pushed us to analyze the impact of anticoagulants and antiplatelet agents on fibrogenesis.
Human studies in this field are scant, and data from animal models are encouraging
although preliminary; the main data are reported in Table 2 and discussed in the following
paragraphs.

8.1. Low Molecular Weight Heparin

Because parenchymal extinction induced by microthrombosis is a major factor in liver
fibrogenesis, preclinical studies aimed to evaluate whether anticoagulants and antiplatelet
drugs can prevent the progression of liver damage. In a preclinical model of rats with
CCl4-induced liver damage, administration of low molecular weight heparin (LWMH)
induced a significant improvement in the severity of fibrosis, and after hepatectomy, the
treated group showed a reduction in total serum bilirubin [137]. In addition, enhanced liver
regeneration was observed in a group of CCl4-treated rats after treatment with deltaparin,
the effects of which were attributed to the stimulation of HGF and inhibition of HSCs [138].
In a mice model of damage caused by bile duct ligation, enoxaparin administration led to
an improvement in cytonecrosis indices, and, on histological analysis, liver necrosis and
fibrosis were significantly reduced in treated rats compared with controls [139]. Another
study aimed to evaluate the long-term effects of enoxaparin administration on liver fibrosis
and hemodynamic changes in two rat models of cirrhosis (CCl4-induced and thioacetamide
[TAA]-induced). After one week of enoxaparin injection, portal pressure was reduced in
association with a decrease in hepatic vascular resistance, superoxide, and nitrotyrosine
concentration; this was coupled with a 26% reduction in fibrosis area, in line with decreased
expression of α-SMA, platelet-derived growth factor receptor beta (PDGFR beta), and
procollagen I by HSCs. Long-term administration of enoxaparin was associated with a
marked reduction in hepatic venule resistance, portal pressure, and liver tissue fibrosis
than in untreated controls, with a reduction in microthrombi formation. Furthermore,
enoxaparin administration did not cause alterations in liver enzymes in these rats [23]. A
metanalysis analyzed 16 studies reporting on the role of anticoagulants used in animal
models of chronic liver diseases, confirming a significant improvement in fibrosis depo-
sition according to changes in METAVIR fibrosis score in cytonecrosis and inflammatory
parameters and liver function [140]. The only study on the administration of prophylac-
tic enoxaparin in patients with cirrhosis was performed in a cohort of Child–Pugh B-C
patients. It was a double-blinded prospective case–control trial including only patients
without episodes of hepatic decompensation in the previous 3 months, without evidence of
PVT or splenomesenteric thrombosis, and without increased bleeding or thrombotic risk
factors. Enoxaparin 4000 UI/die was administered in the treatment group for 48 weeks; the
primary endpoint was 2-year prevention of PVT or mesenteric vein thrombosis, whereas the
occurrence of liver decompensation, overall survival, and transplant-free survival were the
secondary endpoints. Seventy patients were enrolled, and thirty-four received enoxaparin.
After 2 years of follow-up, no patients in the enoxaparin group developed PVT, compared
to 27.7% in the control group. Treatment was associated with lower rates of hepatic decom-
pensation with no increased risk of variceal bleeding. Liver function tests were significantly
improved in the enoxaparin group at 48 weeks of follow-up, and higher survival was re-
ported compared to controls. Interestingly a reduction in inflammatory markers related to
endotoxemia was described. The authors hypothesized a beneficial effect of enoxaparin in
preventing intestinal microthrombosis and inflammation, drivers of bacterial translocation
in liver cirrhosis [141–143]. A few studies did not confirm the beneficial effects of LMWH
on liver fibrogenesis. For instance, Fortea et al. [144] demonstrated that enoxaparin did
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not improve hepatic outcomes in three rat models of cirrhosis induced by chemicals and
cholestasis. The administration of enoxaparin at prophylactic and anticoagulant doses after
an acute liver injury did not show any beneficial effect on fibrosis and cirrhosis progression.
One important aspect to consider is the timing of enoxaparin administration in relation
to the stage of cirrhosis. In most cases, enoxaparin was administered when cirrhosis was
already in an advanced stage. This could have influenced the outcomes, as the effective-
ness of enoxaparin might differ depending on the stage of the disease. It is possible that
earlier administration before the acute injury occurred, could have yielded different results.
Nonetheless, the role of enoxaparin in the context of microvascular thrombosis is more
ambiguous in rats, as their platelets lack PAR 1. These results could suggest the existence
of a therapeutic window in which anticoagulants may prevent liver fibrosis progression.

8.2. Direct Oral Anticoagulants

There are very few studies on the use of direct oral anticoagulants (DOACs) in liver
cirrhosis. In preclinical models of TAA-injured rats, administration of dabigatran, an anti-
Xa factor, reduced collagen and fibrin deposition in the liver [145]. Another study reported
that rats treated with CCl4 and rivaroxaban, another anti-Xa agent, showed significant
preservation of biochemical parameters, including inflammatory and fibrosis markers [146].
Male rats were randomized into three groups: CCl4 fibrotic rats that received or did
not receive rivaroxaban 5 mg/kg, and a control group; rivaroxaban treatment reduced
fibrosis markers, tissue factor, fibrin, and α-SMA levels in liver tissue, suggesting a role in
attenuating CCL4-induced liver damage.

Similar results were obtained in a recent study on CCl4 and TAA rat models of cirrho-
sis [147]. Animals treated with rivaroxaban 20 mg/kg/day achieved a significant reduction
in portal pressure and vascular resistances but no change in systemic hemodynamics.
Reduction in portal pressure and hepatic vascular resistances as well as of the expression
of profibrotic factors α-SMA, collagen type I alpha 1 chain (COL1A1), PDGF beta, tissue
inhibitor metallopeptidase 1/2 (TIMP1/2), and TGFβ were observed, with improved in-
traparenchymal fibrin and collagen deposition. These results confirm the close interaction
between microthrombosis and hepatic fibrosis, also supported by the reduction of VWF
in the CCl4-treated group. In contrast to enoxaparin, cirrhotic rats receiving rivaroxaban
show a greater response to acetylcholine stimulation, suggesting improved endothelial
function and, in addition, rivaroxaban induced an anti-inflammatory phenotype in HSCs,
reducing their activation [24].

8.3. Antiplatelet Agents

The antifibrotic properties of aspirin can be attributed to its antithrombotic activity,
which may counterbalance platelet hyperaggregability induced by chronic low-grade in-
flammation. In addition, aspirin has anti-inflammatory properties that stabilize endothelial
cells integrity, reduce the release of inflammatory chemokines and interleukins, and via
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), inhibits the pro-
duction of TGF-beta, which is a promoter of fibrogenesis [148]. In a preclinical model of
TAA-induced cirrhosis, aspirin-treated rats showed a reduction in mortality compared to
controls, associated with a significant improvement in the degree of fibrosis [137]. After hep-
atectomy, liver regeneration was enhanced and fibrosis reduced, although the mechanism
is unclear. In another animal model, administration of low or high doses of aspirin partially
prevented acute and chronic TAA-induced liver damage, with a reduction of transaminases
and total bilirubin serum levels. After 8 weeks, significant differences in terms of hepatic
fibrin and collagen deposition were recorded in the control group compared to the aspirin-
treated group (p < 0.05) [24]. Sitia et al. showed that mice infected with HBV and treated
with antiplatelet drugs (aspirin or clopidogrel) had mild signs of chronic hepatitis with
poor collagen deposition; none of the mice developed cirrhosis, and a significantly lower
percentage of advanced fibrosis was found in the antiplatelet-treated group [85]. At liver
histology, treated mice had no platelet aggregates in the vessels outside the necroinflam-
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matory areas. Similar results were obtained in a preclinical model of NAFLD treated with
aspirin, ticlopidine, or cilostazol, with a reduction in inflammatory cells and inhibition
of procollagen proteins compared with controls, with improvement in hepatic steatosis,
inflammation, and fibrosis [149]. Comparing anti-factor Xa and anti-PYP12 clopidogrel,
the antiplatelet drug was more effective in preventing inflammation and fibrosis in a pre-
clinical model of CCL4 liver injury, with a marked reduction in TGFbeta and α-SMA [147].
No studies in human subjects have directly evaluated the effect of antiplatelet drugs on
fibrosis, but indirect data can provide some evidence. In a retrospective study including
180 patients with recurrent chronic HCV infection after liver transplantation, aspirin intake
emerged as an independent protective factor against the development of fibrosis 1 year
after surgery [150]. In a larger prospective study of patients with chronic hepatitis C or B,
including 50,275 adults, 14,205 patients were taking aspirin; a lower incidence of hepato-
cellular carcinoma in association with lower liver-related mortality was demonstrated in
this subgroup [151].

8.4. Statins

Statins have pleiotropic effects and affect liver fibrosis in several ways. In human
cohorts of cirrhotic patients, retrospective studies show that patients taking statins have
a lower likelihood of hepatic decompensation during follow-up [152]. A study including
human subjects with HCV-related cirrhosis reported that liver fibrosis progressed during
follow-up in only 10% of patients treated with statins compared with 29% of controls,
and the association remained significant after correction for other parameters [152–154].
Previous investigations reported that statins could reduce portal hypertension, as assessed
by HVPG, in cirrhotic patients, although specific histologic data are lacking [155]. What is
known about the effects of statins administration on hepatic function has been obtained
from preclinical models; a decrease in the expression of NF-kB resulting in reduced reactive
oxygen species and proinflammatory cytokines release was observed, with a protective
effect on the endothelium by reinforcing the integrity of hepatic sinusoids [156,157].

Simvastatin also improved portal hypertension in rat models of ACLF, decreasing
LPS-induced HSCs activation and improving survival [158]. Nevertheless, simvastatin
prevents liver damage and microthrombi formation induced by the administration of
LPS 5 mg/kg in animals; simvastatin also reduces intrasinusoidal fibrin deposition and
preserves sinusoidal thrombomodulin expression [159]. Table 2 briefly summarizes the
main knowledge on anticoagulants, antiplatelet drugs, and liver fibrogenesis.

Table 2. Studies reporting the effect of anticoagulants, antiplatelet agents and statins on liver fibrosis
progression.

Study Model Drug Results

Assy et al., 2007 [137] TAA-induced liver damage in rats Enoxaparin
↓ liver fibrosis severity (METAVIR

score), ↓ total serum bilirubin,
↑ liver regeneration

Abe et al., 2006 [138] CCl4-induced liver damage in rats Dalteparin

↓ liver fibrosis progression,
↑ hepatocyte growth factor (HGF),

inhibition of HSCs, ↑ liver
regeneration

Abdel-Salam et al., 2005 [139] Bile duct ligation in mice Enoxaparin ↓ liver necrosis
↓ fibrosis

Cerini et al., 2016 [23] CCl4- and TAA-induced cirrhosis
in rats Enoxaparin

↓ hepatic venule resistance, ↓ portal
pressure, ↓ hepatic fibrin deposition,
↓ HSCs activation, ↓ liver fibrosis

Villa et al., 2012 [141] Patients with cirrhosis
(Child–Pugh B-C)

Enoxaparin (4000 UI qd)
for 48 weeks

No patients in the treatment group
developed PVT, ↓ decompensation,
↑ liver function, ↑ survival,
↓ inflammatory markers
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Table 2. Cont.

Study Model Drug Results

Lee et al., 2018 [145] TAA-induced liver damage in rats Dabigatran ↓ collagen and fibrin deposition in
the liver

Mahmoud et al., 2019 [146] CCl4-induced liver damage in rats Rivaroxaban ↓ inflammatory and fibrosis
markers, ↓ liver fibrosis

Assy et al., 2007 [137] TAA-induced liver damage in rats Aspirin
↓ liver fibrosis severity (METAVIR

score), ↓ total serum bilirubin,
↑ liver regeneration

Sitia et al., 2012 [85] Mice infected with HBV Antiplatelet drugs (aspirin or
clopidogrel)

↓ intrahepatic inflammatory cells,
↓ liver fibrosis severity, ↓ HCC risk

Fujita et al., 2008 [149] Murine model of NAFLD Aspirin, ticlopidine, or
cilostazol

↓ inflammatory cells, ↓ procollagen
proteins, ↓ hepatic steatosis,
↓ inflammation, ↓ fibrosis

Poujol-Robert et al., 2016 [150]
Retrospective study in patients

with recurrent HCV infection after
liver transplantation

Low-dose Aspirin ↓ fibrosis progression

Table 2 abbreviations (in order of appearance): TAA: Thioacetamide, METAVIR: meta-analysis of histological data
in viral hepatitis, CCl4: carbon tetrachloride, HGF: hepatocyte growth factor, HSC: hepatic stellate cells, qd: every
day, PVT: portal vein thrombosis, HBV: hepatitis B virus, HCC: hepatocellular carcinoma, NAFLD: non-alcoholic
fatty liver disease. ↓ reduced, ↑ increased.

9. Discussion

Liver fibrosis progression depends on complex cellular and molecular pathways. The
high morbidity and mortality associated with chronic liver disease make it mandatory to
understand the mechanisms underlying fibrogenesis. Hemostasis plays a primary role in
liver fibrosis, both as a consequence of inflammatory response and following sinusoidal
blood flow alterations. In this process, HSCs, LSECs, and platelets play pivotal roles.
Some molecular pathways may explain the complex interconnections among these cell
types in response to sinusoidal thrombosis. In particular, PARs signaling appears to be
crucial in the cross-talk that leads from microvascular thrombosis to liver fibrosis. NETs
could be the initial promoters of fibrogenesis following hepatic sinusoidal mechanical
stretch. In addition, the role of coagulation factors alteration and its strict association with
endotoxemia and, more in general, with the gut–liver axis derangement underscores not
only their potential as prognostic markers for disease severity and complications but also
as a promising field to be further investigated for both pre-emptive or therapeutic purposes.
Indeed, it is crucial to note that the precise relationship between all the pieces of this puzzle
still remains to be fully elucidated, with further research needed to validate their use for risk
stratification and prognostic purposes. Expanding histological evidence, including different
demographic groups and patients with various etiologies of liver disease, to be correlated
with gut microbiota profiles, would provide a more comprehensive understanding of
the role of sinusoidal thrombosis in hepatic fibrosis. In addition, exploring the specific
mechanisms through which PARs interacting with HSCs, endothelial cells, and immune
cells contribute to thrombosis and fibrogenesis in the liver could shed light on their intricate
signaling pathways in response to sinusoidal thrombosis. Additionally, another important
goal will be to identify new markers associated with microvascular thrombosis that could
predict liver fibrosis progression. The promising results from preclinical and clinical studies
on the use of anticoagulants, antiplatelet agents, and other pharmacological interventions
to halt liver injury and fibrosis development highlight an unexpected potential. Yet, it is
essential to validate these findings in large-scale, well-designed clinical trials to ensure
their safety and efficacy in human subjects with advanced chronic liver disease.

10. Conclusions

In conclusion, the relationship between coagulation, inflammation, and fibrosis in the
context of liver disease requires a comprehensive understanding of the intricate molecular
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and cellular pathways involved. Indeed, hepatic sinusoidal thrombosis has been associated
with the development of liver fibrosis and cirrhosis. At the molecular level, the activation
of PARs in HSCs and LSECs may contribute to this process. Additionally, immune cells
such as neutrophils and the formation of NETs may also play a role. The involvement of
platelets in this complex relationship remains ambiguous and requires further investigation
to fully understand their contribution. Coagulation factors, including FVIII and other
molecules involved in hemostasis, such as VWF, have been implicated in the progression
of liver fibrosis, while factors such as ADAMTS13 have shown potential in reducing
fibrogenesis. Gut dysbiosis, which is characterized by a tendency toward procoagulant
phenotypes, may have a significant impact on the development and progression of fibrosis.
These pieces of evidence, although mainly derived from preclinical models, suggest that
anticoagulant and antiplatelet therapies could potentially improve or halt the progression
of liver fibrosis. Further research is warranted to unravel the underlying mechanisms
and explore potential therapeutic strategies. By deepening knowledge of the molecular
pathways of coagulation, inflammation, and fibrosis, novel therapeutic targets and reliable
biomarkers can be identified, with the aim to develop effective interventions and improve
the management of liver cirrhosis as a chronic disease, ultimately leading to improved
patient outcomes.
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Abbreviations

Acute liver failure (ALF), acute on chronic liver failure (ACLF), A Disintegrin and Metallo-
proteinase with a Thrombospondin Type 1 motif, member 13 (ADAMTS-13), ADAMTS-13 to VWF
ratio (ADAMTS-13/VWF), advanced chronic liver disease (ACLD), C Reactive Protein (CRP), car-
bon tetrachloride (CCl4) chemoattractant Chronic Liver Failure (CLIF) score, collagen type i alpha
1 chain (COL1A1), C-X-C motif ligand 1 (CXCL1), direct oral anticoagulants (DOACs), extracel-
lular matrix (ECM) extracellular neutrophil traps (NETs) extracellular signal-regulated kinase 5
(MEK5)-extracellular signal-regulated kinase 5 (ERK5) pathway, Factor VIII (FVIII), FVIII to Protein
C ratio (FVIII/PC) factor Xa (FXa), hepatic sinusoidal endothelial cells (LSECs), hepatic stellate cells
(HSCs) Hepatic Venous Pressure Gradient (HVPG), hepatitis B virus (HBV), hepatocyte growth
factor (HGF), high molecular weight Von Willebrand Factor Multimers (HMWVWFM), interferon α

(IFN-α), interleukin 1,6,10 (IL1, IL6, IL10), Kruppel-like factor 2 (KFL2), lipopolysaccharides (LPS),
lipopolysaccharide binding protein (LBP), low molecular weight heparin (LWMH), matrix metal-
loproteinase 2 (MMP-2), Model for End Stage Disease (MELD), monocyte chemoattractant protein
1 (MCP-1), neurobeachin-like 2 (NBEAL2), neutrophil elastase (PAR 1, 2), nonalcoholic fatty liver
disease (NAFLD) nonalcoholic steatohepatitis (NASH), nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-kB), platelet-derived growth factor (PDGF), platelet derived growth factor
receptor beta (PDGFR beta), portal vein thrombosis (PVT) protease-activated receptor (PAR), protein
C (PC), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), α-smooth muscle actin α-
SMA),sphingosine-1-phosphate (S-1-P), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), tissue inhibitor
metallopeptidase 1/2 (TIMP1/2), transforming growth factor beta (TGFβ), tumor necrosis factor α
(TNF-α), vascular endothelial growth factor (VEGF), Von Willebrand factor (VWF), VWF ristocetinic
cofactor (VWF:RCo), Weibel–Palade bodies (WPBs), VWF: von Willebrand factor; FVIII: factor VIII;
IL: interleukin; TNF: tumor necrosis factor; PDGF: platelet derived growth factor; VEGF: vascular
endothelial growth factor; TGF beta: transforming growth factor beta; LPS: lipopolysaccharide;
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HSCs: hepatic stellate cells; NET: neutrophils extracellular traps; PAR: protease-activated receptor;
alpha-SMA: alpha smooth muscle actin; ADAMTS-13: a disintegrin and metalloproteinase with a
thrombospondin type 1 motif member 13; PC: protein C.
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