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Abstract: Our recent studies show that the treatment of human ovarian tumor cells with NCX4040
results in significant depletions of cellular glutathione, the formation of reactive oxygen/nitrogen
species and cell death. NCX4040 is also cytotoxic to several human colorectal cancer (CRC) cells
in vitro and in vivo. Here, we examined the ferroptosis-dependent mechanism(s) of cytotoxicity of
NCX4040 in HT-29 and K-RAS mutant HCT 116 colon cell lines. Ferroptosis is characterized by the
accumulation of reactive oxygen species (ROS) within the cell, leading to an iron-dependent oxidative
stress-mediated cell death. However, its relevance in the mechanism of NCX4040 cytotoxicity in CRCs
is not known. We found that NCX4040 generates ROS in CRC cells without any depletion of cellular
GSH. Combinations of NCX4040 with erastin (ER) or RSL3 (RAS-selective lethal 3), known inducers
of ferroptosis, enhanced CRC death. In contrast, ferrostatin-1, an inhibitor of ferroptosis, significantly
inhibited NCX4040-induced cell death. Treatment of CRC cells with NCX4040 resulted in the in-
duction of lipid peroxidation in a dose- and time-dependent manner. NCX4040 treatment induced
several genes related to ferroptosis (e.g., CHAC1, GPX4 and NOX4) in both cell lines. Metabolomic
studies also indicated significant increases in both lipid and energy metabolism following the drug
treatment in HT-29 and HCT 116 cells. These observations strongly suggest that NCX4040 causes
the ferroptosis-mediated cell death of CRC cells. Furthermore, combinations of NCX4040 and ER
or RSL3 may contribute significantly to the treatment of CRC, including those that are difficult to
treat due to the presence of Ras mutations in the clinic. NCX4040-induced ferroptosis may also be a
dynamic form of cell death for the treatment of other cancers.

Keywords: ferroptosis; NCX4040; erastin; ferrostatin-1; RSL3; colon cancer

1. Introduction

Cancer is one of the leading causes of death worldwide. Although breast and lung
cancers are the most prevalent, colorectal cancer (CRC) represents third in morbidity
and second in mortality of the total reported cancer deaths [1,2]. The incidence of CRC
appears to be on the rise [3]. Current treatments for CRC include surgery, chemotherapy,
radiotherapy, immunotherapy and targeted therapy. Studies have shown that an early
diagnosis of CRC significantly improves the survival rate of patients. Unfortunately, CRC
is usually detected at the advanced stages, leaving chemotherapy the primary choice with
poor survival [4]. This failure appears to result from the development of chemotherapy
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resistance with undesirable drug side effects. Therefore, the development of newer drugs,
selectively effective against CRC, is urgently needed.

The non-steroidal nitric oxide donor NCX4040, originally synthesized as an anti-
carcinogenic compound, is highly cytotoxic to various tumors, including human CRC
and ovarian cells [5,6]. Because NCX4040 shows no significant toxicity in vivo [5], the
development of analogs of NCX4040 is highly desirable. Therefore, understanding the
precise molecular mechanisms of the cytotoxicity of NCX4040 is essential for the future
development of more selective and effective NCX4040 analogs. Studies suggest that
NCX4040 induces its cytotoxicity by releasing •NO following hydrolysis by tumor esterases,
depleting cellular glutathione and causing oxidative stress [7–9]. Our recent studies have
also shown a significant depletion of GSH and the formation of ROS by NCX4040 in human
ovarian tumor cells [6]. Furthermore, our studies indicate that NCX4040 treatment results
in the induction of both the CHAC1 and NOX4 genes in ovarian tumor cells [6]. Recently,
CHAC1 and NOX4, along with GPX4, have been suggested to be hallmarks of ferroptosis
in tumor cells [10].

Ferroptosis is a non-apoptotic iron-dependent form of cell death, resulting from the
formation of ROS/RNS in cells followed by the induction of cellular lipid peroxidation and
membrane damage [11,12]. Ferroptosis, therefore, results from oxidative damage caused by
the formation of ROS/RNS and the presence of ferrous iron and H2O2 (the Fenton reaction),
or lipid peroxidation mediated by iron-containing lipoxygenases [13–15]. Although free
ferrous iron is not accumulated in cells, it can be generated by proteins involved in cellular
iron metabolism, such as transferrin receptor 1, ferritin and ferroportin. The antioxidant
defenses involving glutathione peroxidase 4 (GPX4), which utilizes glutathione as the
cofactor, reduces hydroperoxide lipids, inhibiting ferroptosis-mediated cell death [16,17].

NCX4040 has been shown to induce apoptosis in a variety of tumor cells, resulting
from the formation of both ROS and RNS [6,7,18]. However, so far, ferroptosis has not been
investigated in the mechanism of NCX4040-dependent tumor cell death. As ferroptosis
emerges as a promising approach for cancer therapy [19,20], and CRC tumor cells undergo
facile ferroptosis [21], we examined the role of ferroptosis in the mechanism of NCX4040-
induced cell death in human HT-29 and HCT 116 CRC cells. Studies presented here
show that NCX4040 indeed induces ferroptosis in both HT-29 and HCT 116 tumor cells.
Furthermore, combinations of NCX4040 with ER or RSL3 may provide a better treatment
modality for the therapy of CRC in the clinic.

2. Methods and Materials

Materials: NCX4040 was purchased from Sigma Chemicals (St. Lois, MO, USA) and
was dissolved in DMSO. Erastin (2-[1-[4-[2-(4-Chlorophenoxy)acetyl]-1-piperazinyl]ethyl]-
3-(2-ethoxyphenyl)-4(3H)-quinazolinone), RSL3 and Ferrostatin-1 were purchased from
Cayman Chemicals (Ann Arbor, MI, USA) and were dissolved in DMSO. Stock solutions
were stored at −80 ◦C. Fresh drug solutions, prepared from the stock solutions, were used
in all experiments. Antibodies to GPX4, CHAC1, NOX4 and β-actin were purchased from
Abcam (Waltham, MA, USA).

2.1. Cell Culture

Authenticated human colon tumor cells, HT-29 cells and HCT 116 cells were obtained
from ATCC (Manassas, VA, USA) and were grown in Phenol Red-free RPMI 1640 media
supplemented with 10% fetal bovine serum and antibiotics. Tumor cells were routinely
used for 20–25 passages, after which the cells were discarded, and a new cell culture was
started from the frozen stock.
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2.2. Cytotoxicity Studies

The cytotoxicity studies were carried out with both a cell growth inhibition assay and
Trypan Exclusion methods. Briefly, 50,000–60,000 cells/well were seeded onto a 6-well plate
(in duplicate) and allowed to attach for 18 h. Various concentrations of drugs (NCX4040
or combinations of NCX4040), and minimally cytotoxic concentrations of ER, ferrostatin-1
(FeS) or RSL3 were added to cells (HT-29 or HCT 116) in fresh complete media (2 ML) and
were incubated for 24, 48 or 72 h. When used, ER, FeS or RSL3 were preincubated with cells
for 1–2 h before the addition of NCX4040. DMSO (0.01–0.1%) was included as the vehicle
control when used. Following trypsinization, surviving cells were collected and counted
in a cell counter (Beckman, Brea, CA, USA). For the trypan blue exclusion assay, 15 µL of
cell mixtures was combined with 15 µL of trypan blue and counted in a T20 automatic cell
counter (Bio-Rad, Hercules, CA, USA).

2.3. Flow Cytometric Analysis of Mitochondrial ROS

The analysis of mitochondrial ROS was determined by loading the cells with MitoSox
Red (5 uM final concentration; Life Technologies, Carlsbad, CA, USA) for 30 min at 37 ◦C
with a 7% CO2 atmosphere before the addition of the drug. Cells were examined at 2 h
intervals with the addition of Sytox Blue as a vital dye via flow cytometry. An LSRFortessa
flow cytometer (Benton Dickinson, San Jose, CA, USA), equipped with FACSDiVa software,
was used to analyze all samples. MitoSox and Sytox Blue were excited using a 561 nm and
405 nm laser and detected using a 610/20 nm and 450/50 nm filter, respectively. For each
sample, 10,000 cells were analyzed using FACSDiVa software.

2.4. Flow Cytometric Analysis for Intracellular Glutathione

Intracellular glutathione was determined as previously described [6]. Briefly, monochloro-
bimane dye (mBCl,10 µM final concentration; Life Technologies, Carlsbad, CA, USA) was
added to each sample for 15 min at 37 ◦C with a 5% CO2 atmosphere prior to examination.
Propidium iodide (PI) was added (final concentration of 5 ug/mL) to the samples before
flow cytometric analysis using an LSRFortessa flow cytometer (Benton Dickinson, San Jose,
CA, USA) equipped with FACSDiVa software. mBCl and PI were excited using a 405 nm
and 561 nm laser and detected using a 530/30 nm and 582/15 nm filter, respectively. For
each sample, 10,000 cells were analyzed using FACSDiVa software.

2.5. Lipid Peroxidation Assay

The assay for the peroxidation of cellular lipids was carried out by measuring the
formation of malondialdehyde (MDA) using 2-thiobarbituric acid as previously pub-
lished [22,23]. Briefly, about 2–3 × 106 cells (HT-29 or HCT 116) were incubated with
various concentrations of NCX4040 for 2–4 h at 37 ◦C. Following incubation, the reactions
were stopped by adding 2% trichloroacetic acid, and the mixtures were centrifuged (5 min
at 1000 g). Aliquots (1.0 mL) of the supernatant fractions were then reacted with 2.0 mL of
1% 2-thiobarbituric acid, and the chromophore was developed at 90 ◦C for 10 min. After
the samples were cooled, the absorbance at 532 nm was determined.

2.6. Real Time RT-PCR

The expression levels of selected transcripts were examined via a real-time polymerase
chain reaction (RT-PCR) using absolute SYBR green ROX Mix (ThermoFisher Scientific,
Rochester, NY, USA) as previously described [6]. Total RNA was isolated using Trizol
following treatment with NCX4040 (5 µM) for 4 and 24 h and was purified. Data were
analyzed using the ∆∆Ct method of relative quantification, in which cycle times were
normalized to β-actin (or GADPH) from the same sample. Primers for the selected genes
were designed using Primer Express 1.0 software and, in some cases, were synthesized
(Integrated DNA technologies, CA, USA) from the published literature or were purchased
from Origene (Gaithersburg, MD, USA). All real-time fluorescence detection was carried out
on an iCycler (Bio-Rad, Hercules, CA, USA). Experiments were carried out three different
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times, and the results are expressed as the mean ± SEM. Analyses were performed using
an unpaired Student’s t-test and considered significant when p ≤ 0.05.

2.7. Western Blot Assay

Western Blot analyses for various proteins were carried out following treatment with
NCX4040 (5 µM) for 4 and 24 h using standard methods. Samples (5–20 µg of total protein)
were electrophoresed under reducing conditions on 4–8% Tris-acetate gels (Novex, Life
Technologies, Carlsbad, CA, USA) for 50 min at 200 volts. After electrophoresis, proteins
were transferred onto nitrocellulose membranes and probed with anti-NOX4, CHAC1,
GPx4 and anti-β-actin antibodies. An Odyssey infrared imaging system (Li-Cor Biosciences,
Lincoln, NE, USA) was used to acquire images.

2.8. Metabolomics Studies

Cell culture extracts were analyzed using untargeted metabolomics, specifically ultra-
high performance liquid chromatography (UHPLC) and high-resolution tandem mass
spectrometry (HRMS/MS). MS data were acquired from samples (n = 1 injections) for
comparison and statistical analysis. MS/MS data, used in the annotation of untargeted
metabolomics features, were acquired from a pooled quality control sample analyzed mul-
tiple times via the AcquireX deep scan approach. Compound Discoverer 3.3.0.550 was used
to process raw files to provide a tabulated output of features (i.e., unique descriptors of m/z
and retention time) and corresponding annotations (MS/MS database matching). Outputs
were formatted and further processed using in-house R scripts (via Jupyter Notebooks) to
clean data prior to statistical analysis. Additional details are available in the Supplementary
Information. The data supporting the annotated chemicals displayed in the figures were
manually reviewed for MS, MS/MS and retention time matching (when available) (see
Supplementary Materials Table S1).

2.9. Statistical Analysis

The results are expressed as mean ± SEM of a minimum of 3 independent experiments
(n = 3). A one-way analysis of variance (ANOVA) was used for statistical analysis using
Graph Pad Prism (GraphPad Software, Inc., La Jolla, CA, USA). For multiple comparisons,
Tukey’s multiple comparisons test was utilized, considering statistical significance when
p < 0.05.

3. Results
3.1. Cytotoxicity Studies with NCX4040

Our previous studies have shown that NCX4040 is cytotoxic to human ovarian tumor
cells [6]. In this study, we found NCX4040 to be significantly cytotoxic to both human
colon HT-29 and HCT 116 cells (Figure 1A,B), and there were no significant differences in
cytotoxicity, as the IC50 values were very similar (Figure 1C).
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show that NCX4040 generates ROS in a dose-dependent manner in both cells. At higher 
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Figure 1. Cytotoxicity of NCX4040 in HT-29 (A) and HCT 116 (B) following 48 and 72 h drug
exposure, respectively. Plot of cytotoxicity curves of NCX4040 in HT-29 and HCT 116 showing similar
cytotoxicity (C). ** p-values < 0.005 compared to untreated control.

3.2. Measurements of Mitochondrial ROS

Because NCX4040 generates ROS in various tumor cells, which leads to tumor cell
death, we investigated whether NCX4040 also forms ROS in these colon cancer cells.
We used Mitosox for the detection of mitochondrial ROS as previously described [6].
Although the use of Mitosox has remained controversial [24], we [6] as well as others [7,25]
have utilized Mitosox successfully to detect ROS in cells. Our results (Figure 2) clearly
show that NCX4040 generates ROS in a dose-dependent manner in both cells. At higher
concentrations of NCX4040 (e.g., 10 µM), more ROS were detected in HCT 116 cells than in
HT-29 cells.
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Figure 2. Dose-dependent ROS formation as detected by Mitosox from NCX4040 in HT-29 and HCT116 cells
following a 4 h treatment. * and ***, p-values < 0.05 and 0.001, respectively, compared to untreated control.

3.3. Lipid Peroxidation in HT-29 and HCT 116 Cells

Examination for the peroxidation of HT-29 and HCT cellular lipids indicated that
MDA formation increased in both cells over the controls in the presence of NCX4040 in
time- and dose-dependent manners. Although increases in MDA formation were small,
these increases were statistically significant (Figure 3).
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3.4. RT-PCR Studies
3.4.1. NCX4040 Induces Oxidative Stress Genes in HT-29 and HCT 116 Cells

Our previous studies have shown that NCX4040 treatment results in modulations
of various genes related to oxidative stress, inflammation and DNA responses in human
ovarian tumor cells [6,26]. Therefore, we evaluated oxidative-stress-related genes in HT-29
and HCT 116 cells following NCX4040 treatment. Studies show that oxidative stress genes
are significantly modulated by NCX4040 (Figure 4A,B). NCX4040 treatment resulted in
a rapid (4 h) induction of the HMOX1/OX1 gene (6-fold) in HT-29 cells and more than
12-fold in HCT116 cells. The HMOX1/OX1 gene remained elevated at 24 h in HCT 116 cells
(3-fold); however, it decreased to the control values in HT-29 cells. The HMOX1/OX1 gene
is considered to be an important biomarker of oxidative stress and is induced by a number
of free-radical-producing drugs and chemicals [27,28]. Ferroptosis markers, GPX4, NOX4
and CHAC1 were also significantly induced by NCX4040 in both cell lines at 24 h. However,
CHAC1, which causes the cleavage of glutathione, resulting in the depletion of GSH [29],
was rapidly induced (2–3-fold) in both HT-29 and HCT 116 cells at 4 h and remained
elevated in both cells at 24 h, with 5–6 fold in HT-29 and 35–40-fold in HCT 116 cells. SOD2,
which catalyzes the decomposition of superoxide radical anion (O2

•-) formed from NOX4,
was induced by NCX4040 only in HCT 116 cells. Furthermore, OGG1, which is responsible
for the repair of oxidative damage in DNA caused by ROS, was elevated in both HT-29 and
HCT 116 cells at 24 h (Figure 4).
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3.4.2. NCX4040 Induces Inflammatory Response Genes in HT-29 and HCT 116 Cells

The NCX4040 treatment of HT-29 and HCT 116 colon cells also induced various
inflammatory response genes (Figure 5A,B), as we found previously in ovarian tumor
cells [6]. NCX4040 significantly induced VEGF in HCT 116 cells at both 4 and 24 h, whereas
it was only induced in HT-29 cells at 24 h. COX2 was significantly induced in HCT116 cells,
whereas NCX4040 had only a small effect in HT29 cells. It is also interesting that NCX4040
significantly decreased the expression of NF-kB in HT-29 at 4 h, whereas it had no effect in
HCT 116 cells (Figure 5A).
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3.5. Ferrostatin-1 Inhibits NCX4040 Cytotoxicity in HT-29 and HCT 116 Cells

Our RT-PCR results indicate the significant modulation of GPX4, NOX4 and CHAC1
genes by NCX4040 in HT-29 and HCT 116 cells. Because these genes are indicators of
ferroptosis, we examined the effects of Ferrostatin-1 (FES) on the cytotoxicity of NCX4040 in
both HT-29 and HCT 116 cells. FES is a known inhibitor of ferroptosis in tumor cells [30–32].
The results shown in Figure 6A,B indicate that FES (2 µM, minimally cytotoxic dose)
significantly inhibited the cytotoxicity of NCX4040 in both HT-29 and HCT 116 cells,
suggesting that NCX4040 induces ferroptosis in these CRC tumor cells. Furthermore, FES
was more effective in inhibiting NCX4040-induced cytotoxicity in HCT 116 cells than in
HT-29 cells (Figure 6B; compare 10−5 M induced cell killing).
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3.6. Erastin Enhances NCX4040 Cytotoxicity in HT-29 and HCT 116 Cells

Erastin (ER) is a well-known inducer of ferroptosis in tumor cells and has been
utilized extensively to decipher the mechanism of ferroptosis [33–35]. We used various
concentrations of ER to examine its effects on NCX4040 cytotoxicity in CRC cells. Our
results, shown in Figure 7A,B, clearly indicate that ER was effective in enhancing NCX4040-
mediating CRC cell death. Again, HCT 116 cells were more sensitive to the ER-dependent
enhancement of NCX4040 cytotoxicity (Figure 7B).
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3.7. RSL3 Enhances NCX4040 Cytotoxicity in HT-29 and HCT 116 Cells

RSL3 (RAS-selective lethal 3) is a ferroptosis-triggering agent that has been utilized
extensively to induce ferroptosis in various tumor cells [17,36,37]. Therefore, the effects
of RSL3 on NCX4040 cytotoxicity were investigated, and we found that it significantly
enhanced NCX4040 cytotoxicity in both cells (Figure 8A,B). Again, HCT 116 cells were
found to be more sensitive to RSL3-induced NCX4040-mediated cytotoxicity.
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and HCT 116 (B) tumor cells following 24 h drug exposures. RSL3 was pre-incubated with cells for
1–2 h before adding NCX4040. * and $, p-values < 0.05 compared to the control and 10−6 M NCX4040.
$$, p-values < 0.005 compared to 10−5 M NCX4040.

3.8. Metabolomic Studies in HT-29 and HCT 116 Cells

In order to further understand the mechanisms of NCX4040-induced ferroptosis in
CRC cells, we used untargeted metabolomics and examined the effects of NCX4040 on
cellular glutathione levels, lipid metabolism and differential energy metabolism in HT-29
and HCT 116 cells.

3.8.1. NCX4040 Increases Glutathione in HT-29 and HCT 116 Cells

Our metabolomic studies show significant increases in glutathione (GSH) following
the NCX4040 treatment of CRC cells (Figure 9). GSH levels were elevated at 24 h in both
cells (Figure 9). The ratio of GSH to glutathione disulfide (GSSG), the oxidized form,
remained similarly indicative of the cellular ability to maintain redox potential. Further,
taurine, a reported antioxidant and anti-inflammatory mediator, was increased after 24 h
(Figure 9C), indicating NCX4040-induced oxidative stress in CRC cells.



Cells 2023, 12, 1626 11 of 19Cells 2023, 12, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 9. Effects of NCX4040 on GSH, GSH/GSSG and taurine in HT-29 and HCT 116 cells. Box plots 
display the (A) peak area of feature 373 (m/z 308.091 at 0.67 min) annotated by MS/MS as glutathi-
one, the (B) computed peak area ratio of glutathione (GSH) to glutathione disulfide (GSSG), and the 
(C) peak area of feature 525 (m/z 124.0075 at 0.49 min) annotated by MS/MS as taurine. Boxes indi-
cate first and third quartiles, and whiskers indicate 1.5 times the inter-quartile range. The median is 
displayed. Individual data points are indicated. 

3.8.2. NCX4040 Enhances Lipid Metabolism in HT-29 and HCT116 Cells 
Lipid metabolism is a complex biochemical process that is involved in the regulation 

of cell survival and death, including ferroptosis [38]. Metabolomic studies indicated that 
NCX4040 treatment significantly increased lipid metabolism in these CRC cells (Figure 
10). Acylcarnitines were observed to be statistically different between the control and 24 
h samples in both cells. The acyl chain composition is reflective of energy metabolism pat-
terns, including fatty acid oxidation, which may result in the formation of lipid radicals 
during beta oxidation, leading to increased cells death via ferroptosis. 

The short-chain acylcarnitines (Figure 10A–C) increased after 24 h in HT-29 and HCT 
116 cells. Increased levels suggest that energy production from glucose, amino acids or 
fatty acid degradation is increased after treatment. The dicarboxylic acid conjugate, suc-
cinyl-carnitine (Figure 10D), reflects the selective patterns observed in carnitines. In con-
trast, the long-chain acylcarnitines (Figure 10E–H) decreased in the 24 h samples. The ob-
served decrease may reflect alterations in fatty acid metabolism, as the mitochondria are 
the primary location of synthesis and metabolism of long-chain acylcarnitines. 

Metabolomics also indicated differences in arachidonic acid (AA) metabolism in 
these cells (Figure 11). AA is involved in prostaglandin synthesis and is also an important 
ingredient for ferroptosis [39]. 

Figure 9. Effects of NCX4040 on GSH, GSH/GSSG and taurine in HT-29 and HCT 116 cells. Box
plots display the (A) peak area of feature 373 (m/z 308.091 at 0.67 min) annotated by MS/MS as
glutathione, the (B) computed peak area ratio of glutathione (GSH) to glutathione disulfide (GSSG),
and the (C) peak area of feature 525 (m/z 124.0075 at 0.49 min) annotated by MS/MS as taurine.
Boxes indicate first and third quartiles, and whiskers indicate 1.5 times the inter-quartile range. The
median is displayed. Individual data points are indicated.

3.8.2. NCX4040 Enhances Lipid Metabolism in HT-29 and HCT116 Cells

Lipid metabolism is a complex biochemical process that is involved in the regulation
of cell survival and death, including ferroptosis [38]. Metabolomic studies indicated that
NCX4040 treatment significantly increased lipid metabolism in these CRC cells (Figure 10).
Acylcarnitines were observed to be statistically different between the control and 24 h
samples in both cells. The acyl chain composition is reflective of energy metabolism
patterns, including fatty acid oxidation, which may result in the formation of lipid radicals
during beta oxidation, leading to increased cells death via ferroptosis.

The short-chain acylcarnitines (Figure 10A–C) increased after 24 h in HT-29 and HCT
116 cells. Increased levels suggest that energy production from glucose, amino acids
or fatty acid degradation is increased after treatment. The dicarboxylic acid conjugate,
succinyl-carnitine (Figure 10D), reflects the selective patterns observed in carnitines. In
contrast, the long-chain acylcarnitines (Figure 10E–H) decreased in the 24 h samples. The
observed decrease may reflect alterations in fatty acid metabolism, as the mitochondria are
the primary location of synthesis and metabolism of long-chain acylcarnitines.

Metabolomics also indicated differences in arachidonic acid (AA) metabolism in these
cells (Figure 11). AA is involved in prostaglandin synthesis and is also an important
ingredient for ferroptosis [39].
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3.8.3. NCX4040 Enhances Energy Metabolism in HT-29 and HCT 116 Cells

Metabolomic studies also show significant increases in ATP and cellular respiration
co-factors, NAD+ and FAD+ (Figure 12), in both cells at 24 h. This observation suggests
increases in energy production related to cell survival. The observed increase in energy
production may reflect increased DNA/RNA repair of oxidative damage induced by
NCX404, as supported by the observed increase in GTP, a building block of RNA and DNA
(Figure 12).
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4. Discussion

Ferroptosis is induced via iron-dependent lipid peroxidation following the cellular
formation of ROS [11,12]. Although the mechanism of ferroptosis is under active investiga-
tion, it is different from those of other cell death processes, such as necrosis, autophagy, and
apoptosis. The cellular death resulting from ferroptosis has been shown to arise from the
inhibition of glutathione peroxidase 4 (GPX4) and the accumulation of intracellular lipid
hydroperoxides (LOOH), resulting in damage to cellular membranes (lipid peroxidation)
in the presence of iron [11,12,16]. The damaging species is the reactive •OH, formed from
the reaction of H2O2 with Fe2+ (the Fenton reaction). Several small molecules, e.g., ER and
RSL3, have been reported to induce ferroptosis in tumor cells [33,34,36,37]. Several path-
ways have now been reported for ER-induced ferroptosis, including the inhibition of the
system XC

– (glutamate/cystine antiporter) [35], the inhibition of the mitochondria-bound
voltage-dependent anion channel (VDAC) [33] and the modulation of the tumor suppres-
sor p53 gene [40,41]. System XC

– is a transmembrane cystine–glutamate antiporter that
specifically imports extracellular L-cystine into cells in exchange for glutamate. Cystine,
the disulfide form of cysteine, is imported into the cell by system XC

– and is reduced to
cysteine, which is the key intermediate for the synthesis of glutathione (GSH), an important
cellular antioxidant. Thus, the inhibition of the system XC

– by ER results in the depletion
of the cellular GSH, leading to oxidative stress and ferroptosis-mediated cell death [12,42].
RSL3 is a potent ferroptosis-triggering agent that inhibits GPX4, thereby promoting ferrop-
tosis, including in CRC cells [36]. RSL3 can kill RAS mutant cancer cells and activate the
iron-dependent, nonapoptotic cell death of RAS mutant cancer cells [43]. Increases in GPX4
in tumor cells have been shown to inhibit ferroptosis [16,44].

However, ferroptosis has not been investigated in the treatment of CRC in the clinic.
Therefore, the exploitation of ferroptosis for killing CRC cells in response to NCX4040 needs
elucidation for therapy. Herein, we investigated the role of ferroptosis in the mechanism
of NCX4040-dependent cell death in HT-29 and HCT 116, Ras mutated (codon 13) colon
tumor cells. We utilized various inducers and inhibitors of ferroptosis to decipher the
mechanisms of cell death. Our study shows that NCX4040 was equally cytotoxic to both
CRC cells. Previous studies have shown that NCX4040 induces the significant depletion
of cellular GSH and generates ROS formation in tumor cells [6,7]. In this study, we found
that NCX4040 also generated ROS in HT-29 and HCT 116 cells in both a time- and dose-
dependent manner. Fewer ROS were formed and detected at 2 h than at 4 h of drug
treatment (not shown). Our studies also show that NCX4040 significantly increased lipid
peroxidation in both HT-29 and HCT 116 cells in a time- and dose-dependent manner.
These observations suggest that NCX4040-generated ROS must have reacted with cellular
lipids to form lipid peroxides in these tumor cells.

It should be noted that both the formation of ROS and increases in lipid peroxidation
were independent of cellular GSH, as we found no significant depletion of GSH in HT-
29 and HCT 116 cells by our mCBI flow cytometric detection method. In contrast, the
metabolomic studies clearly indicate that the treatment of CRC cells with NCX4040 resulted
in increases in GSH following the 24 h drug treatment (Figure 11). We found that treatment
with ER also failed to deplete GSH in these cells. These observations suggest that neither
NCX4040 nor ER inhibits the Xc-anti-transporter in HT-29 and HCT 116 cells, indicating
that other biochemical and metabolic changes besides the cellular depletion of GSH are
responsible for the induction of ferroptosis by NCX4040 in CRC cells.

The examination of the effects of ER on the cytotoxicity of NCX4040 in HT-29 and
HCT116 cells shows that ER was highly effective in enhancing NCX4040-dependent cell
death in both CRC cells. More interestingly, we found that HCT 116 cells were more
sensitive to combinations of NCX4040 and ER (Figure 7). Similarly, RSL3 also significantly
enhanced NCX4040-mediated cell death in both HT-29 and HCT 116 cells. Again, HCT 116
cells were more sensitive to RSL3-NCX4040 combinations than HT-29 cells (Figure-8). In
contrast, FES, a strong inhibitor of ferroptosis, significantly inhibited NCX4040-induced
cell death in both HT-29 and HCT 116 tumor cells (Figure 6). Again, we found that FES
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was more effective in inhibiting NCX4040-dependent cell killing in HCT 116 cells. These
observations, e.g., the inhibition of NCX4040-dependent killing by FES and the enhanced
or synergistic killing of HT-29 and HCT 116 cells by ER-NCX4040 and RSL3-NCX4040
combinations, clearly suggest that NCX4040 induces ferroptosis in HT-29 and HCT 116 cells.
Furthermore, HCT 116 cells were more sensitive to ferroptosis-dependent cell death than
HT-29 cells. Although the reason for this is not clear, this may be due to the fact HCT116
cells contain a KRAS-mutation, and KRAS-mutant cells are more sensitive to both ER- and
RSL3-induced ferroptosis [45]. Furthermore, HCT 116 cells contain WTp53, whereas HT-29
cells contain mutantp53. Ferroptosis has been suggested to require WTp53 activity [41]. In
addition, recent reports suggest the degree of FAM193A expression is a widespread enabler
of p53 activity in cell death [46], which may relate to the differential ferroptosis sensitivity
of HT-29 and HCT 116.

Although the mechanisms of NCX4040-induced ferroptosis are not completely clear,
some reasonable conclusions can be drawn from our studies. First, NCX4040-induced
ferroptosis-mediated tumor cell death is ROS-dependent, as there was a significant increase
in ROS formation in both HT-29 and HCT 116 cells. The formation of ROS in these cells is
also confirmed by our RT-PCR studies, showing significant increases in HMOX1/OX1, a
hallmark of oxidative stress in cells. Furthermore, both SOD2 and NOX4 were induced,
indicating that the superoxide anion radical (O2

−•) is formed in these cells. Our studies also
show that lipid peroxides are generated in these cells, as lipid peroxidation was enhanced
in the presence of NCX4040. Lipid peroxidation has been suggested to trigger ferroptosis.
Lipid peroxides/lipid hydroperoxides (L-OOH) are known to cause damage to the cellular
plasma membrane due to the accelerated oxidation of the membrane lipids. Furthermore,
increases in the concentrations of lipid peroxides can induce damage to nucleic acids and
proteins from toxic aldehydes formed from the oxidation of lipids, causing additional
toxicity and inducing cell death by ferroptosis [15].

Our studies show that the combined treatment of NCX4040 and RSL3 increased the
death of both HT-29 and HCT 116 CRC cells, due to the accumulation of cytotoxic lipid
peroxidation products. RSL3, an inhibitor of GPX4 [16,17,36], enhanced cell death, which
further confirms that lipid peroxides are responsible for cell death in HT-29 and HCT 116
cells. Our study also shows that GPX4 transcripts were significantly enhanced in both
HT-29 and HCT 116 cells. GPX4 utilized GSH as a cofactor to eliminate hydroperoxides, and
our metabolomic studies show that cellular GSH was increased by NCX4040 in these cells.

It should be noted that the CHAC1 gene (and proteins) was significantly enhanced
in both cells, albeit significantly more in HCT 116 cells. CHAC1, in addition to NOX4 and
GPX4, is considered to be a hallmark of ferroptosis and has been reported to be involved in
tumor cell death via the induction of ferroptosis [12,47–49]. Although CHAC1 is known to
hydrolyze glutathione, leading to the depletion of GSH in tumor cells, our study does not
show the depletion of GSH in either cell line. However, CHAC1 is also known to induce ER
stress via the ATF4-CHOP-CHAC1 pathway, leading to ferroptosis [10,48].

Protein levels of ferroptosis-associated CHAC1, GPX4 and NOX4 genes were evaluated
using the Western blot methods. The CHAC1 protein was induced following NCX4040
treatment in both cell lines, with significantly more in HCT 116 cells. Similarly, GPX4
proteins levels were also induced by NCX4040; however, protein levels of NOX4 remained
unchanged in both HT-29 and HCT 116 cells. Although protein expressions did show
increases following treatment with NCX4040, there was no accord between transcript
expressions with protein expressions. This may be due to differences in the stability/half-
life of transcripts compared to proteins. It is possible that the half-lives of proteins are
shorter due to a rapid degradation or turnover. Furthermore, it is also possible that these
proteins are S-nitrosylated by •NO/•NO-derived species formed from NCX4040 in cells,
resulting in post-translational modifications, including the decreased stability of proteins
as reported by us as well as others [50–52].

Our studies also show that various inflammatory response genes, e.g., COX2, VEGF
and NF-kB, were also modulated by NCX4040 in these CRC cells. These observations
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are consistent with our findings with NCX4040 in human ovarian cells [6]. Although
the exact roles of these genes in NCX4040-induced ferroptosis is not known at this time,
several studies indicate that the COX2 and VEGF genes are involved in the process of
ferroptosis [53–56]. COX2 has been found to be increased during ferroptosis and has
been suggested to be a biomarker, as inhibitors of the COX2 enzyme failed to modulate
ferroptosis [57].

Finally, the inhibition of the mitochondria-bound voltage-dependent anion channel
(VDAC) has been suggested to play an important role in the mechanism of ferroptosis. The
impairment of mitochondrial functions can increase the sensitivity of anticancer drugs to
cancer cells. The VDAC is an ion channel located in the outer mitochondrial membrane,
where it mediates and controls molecular and ion exchange between the mitochondria
and the cytoplasm. The permeability of the VDAC can be altered by drugs, causing
mitochondrial metabolic dysfunction, ROS production, and oxidative stress-mediated
death. Yagoda et al. [33] reported that ER changes the permeability of the mitochondrial
outer membrane and that the VDAC is the target of ER. ER was shown to reverse tubulin’s
inhibition of the VDAC in vitro and in vivo, allowing the VDAC to open [33]. Opening
of the VDAC leads to various biological effects, including an increase in mitochondrial
metabolism (the increase in ∆ψ), a decrease in glycolysis (anti-Warburg effect) and an
increase in ROS production and oxidative stress [58]. The anti-Warburg action can lead to
damage to cancer cells and decreases in cell proliferation. In addition, ER can hyperpolarize
mitochondria in cancer cells, which is followed by rapid depolarization, resulting in
mitochondrial dysfunction. •NO, delivered via NO-donors, has been reported to directly
inhibit VDAC functions [59]. Although the effects of NCX4040 on VDAC were not examined
here, it is very likely that •NO formed from NCX4040 inhibits/interferes with the VDAC
functions of CRC cells, generating ROS (as observed here) without affecting cellular GSH
status. Increased/synergistic CRC cell death via the combination of NCX4040 and ER may
result from this combined effect of both agents on VDAC.

5. Conclusions

Studies presented here show that NCX4040 induces the formation of ROS in HT-29
and HCT 116 colon cancer cells without significantly affecting cellular GSH. The NCX4040
treatment of these tumor cells resulted in increases in lipid peroxidation. Combinations
of ferroptosis inducers erastin and RSL3 significantly enhanced NCX4040 cytotoxicity,
whereas ferrostatin-1, an inhibitor of ferroptosis, significantly inhibited NCX4040 cytotox-
icity in CRC cells. Our studies also show that the treatment of HT-29 and HCT 116 cells
resulted in significant modulations of CHAC1, GPX4, NOX4 and COX2 genes, biomarkers
of ferroptosis. These events, taken together, strongly suggest that NCX4040 induces ferrop-
tosis in CRC cells. Combinations of erastin or RSL3 with NCX4040 may provide a better
treatment modality for CRC in the clinic.
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