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Abstract: Quiescence, the temporary and reversible arrest of cell growth, is a fundamental biolog-
ical process. However, the lack of standardization in terms of reporting the experimental details
of quiescent cells and populations can cause confusion and hinder knowledge transfer. We em-
ploy the systematic review methodology to comprehensively analyze the diversity of approaches
used to study the quiescent state, focusing on all published research addressing the budding yeast
Saccharomyces cerevisiae. We group research articles into those that consider all cells comprising the
stationary-phase (SP) population as quiescent and those that recognize heterogeneity within the SP by
distinguishing phenotypically distinct subpopulations. Furthermore, we investigate the chronological
age of the quiescent populations under study and the methods used to induce the quiescent state,
such as gradual starvation or abrupt environmental change. We also assess whether the strains
used in research are prototrophic or auxotrophic. By combining the above features, we identify
48 possible experimental setups that can be used to study quiescence, which can be misleading when
drawing general conclusions. We therefore summarize our review by proposing guidelines and
recommendations pertaining to the information included in research articles. We believe that more
rigorous reporting on the features of quiescent populations will facilitate knowledge transfer within
and between disciplines, thereby stimulating valuable scientific discussion.

Keywords: dormancy; quiescence; growth arrest; budding yeast; stationary phase; G0; cell cycle;
eukaryotic cell model

1. Introduction

Quiescence is a fundamental biological state of reversible growth arrest in which cells
reduce metabolic activity and halt growth, but remain capable of renewed division upon
stimulation. In both single-celled and multicellular organisms, quiescence plays a crucial
role in maintaining cellular integrity, tissue homeostasis, and overall organismal health [1].

In mammals, quiescence also plays a crucial role in regulating the balance between cell
proliferation and differentiation [2]. For example, during neural development, neuroblast
cells enter a state of developmental quiescence, which temporarily stops cell division and
ensures proper differentiation. Similarly, adaptive quiescence, such as that observed in T
cells, enables the immune system to maintain a pool of non-activated, yet responsive, T
cells that can quickly proliferate upon encountering a specific antigen [2]. Stem cells also
remain in a quiescent state until they are triggered to proliferate, either to replace damaged
cells or due to an oncogenic change, which can lead to the development of cancer [1].

For unicellular microbes, quiescence is the most common state in nature and it is crucial
for long-term survival under the prevailing unfavorable conditions. Indeed, proliferation
may be a relatively rare event in the life history of a microbe, as the nutrients that provide
the energy necessary for biomass accumulation and cell division are only temporarily
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available in the environment. Although the definition of quiescence, namely that quiescence
is a temporary and reversible growth-arrested state that cells can enter in response to
unfavorable environmental conditions [3], captures the essence of the quiescent state, it
is difficult to set the boundaries of when and under what circumstances a given cell or
population of cells is quiescent.

This systematic review encompasses research conducted specifically on the budding
yeast Saccharomyces cerevisiae, an excellent eukaryotic model organism frequently used
in a variety of fields within the natural sciences [4]. Importantly, fundamental biological
processes are conserved among eukaryotes, and the cellular organization of the yeast
cell is similar to that observed in higher organisms, including humans [5]. Many fun-
damental biological processes have been described for the first time in budding yeast,
including recent work on the mechanisms of apoptosis, for which the Nobel Prize was
awarded in 2016 [6]. Because S. cerevisiae can be used for such a broad range of research,
we believe that this systematic review provides a good overview of the current state of
quiescence research.

Although the terms “quiescent”, “stationary phase” and “G0” are often used inter-
changeably [7], we suggest separating them, following the proposition formulated almost
two decades ago [8]. This proposition is that the “stationary phase” is a part of the micro-
bial culture growth curve, which indicates that a given population has used all available
its resources and has reached maximum density for a given condition. It is important
to stress that not all non-proliferating cells present in the stationary phase are quiescent.
Senescent cells are unable to resume cell division and will die in the future. Additionally,
in the stationary-phase population, there are cells of varying age, as well as the dead ones;
therefore, such a population comprises cells in diverse physiological states rather than
quiescent cells only. “G0” refers to a cell that has exited the cell cycle, typically from the
G1 phase, and it does not indicate whether this arrest is reversible. The term “quiescent”
describes cells’ ability to survive and their capacity to re-enter the cell cycle. The other form
of growth arrest can be observed in diploid yeast strains that can sporulate via meiosis.
Although yeast spores and quiescent cells share common characteristics, with the most
important being their ability to resume growth, their underlying molecular mechanisms
are different [9]; therefore, research articles studying spores are excluded from this review.

Heterogeneity within stationary-phase yeast populations was first described in 2006.
The classic publication by Margaret Werner-Washburne’s group [10] described a method via
which to isolate two subpopulations from the stationary phase using density centrifugation:
the less dense upper fraction, called non-quiescent (NQ), and the denser lower fraction,
called quiescent (Q). In the same year, Yang et al. (2006) [11] identified five phenotypes in the
stationary phase based on nuclei morphology and the degree of chromatin condensation.

In a laboratory set-up, quiescence is usually triggered by gradual carbon starva-
tion; however, cells can enter the quiescent state in response to the limitation of other
key nutrients too. Importantly, depending on the limiting nutrient, the cellular response
may differ [12]. There are distinct genes that are needed for a cell to survive the starva-
tion of a particular nutrient and the resulting metabolic profiles of starved cells are also
different [12]. For example, respiration and functional mitochondria are crucial for survival
during glucose starvation, while vacuole and autophagic pathways are needed in nitrogen
starvation [12,13]. Additionally, the ability of cells to synthesize all compounds required
for growth (prototrophy) is crucial for surviving starvation [14,15]. Recently, Santos et al.
(2021) [15] conducted a high-throughput analysis and concluded that due to the complex
interplay between the strain genetic background (auxo/prototrophy), gene deletions, and
media composition, quiescence should be studied using prototrophic strains only. Taken to-
gether, there is no one universal quiescent state, but rather a combination of environmental
effects and cellular variations that lead to reversible growth arrest [16,17].

Growth arrest is associated with a variety of cellular rearrangements; however, the
presence or lack of those characteristics is not enough to predict cell fate, particularly
whether a given cell will or will not be able to resume growth under favorable conditions.
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Importantly, entry into quiescence is a gradual process that can take days to establish
and it is not common to all cells. The actin skeleton is transformed into spheroid actin
bodies, the mitochondrial network is condensed into multiple vesicles, and there is an
accumulation of storage materials, particularly trehalose [16–19]. Not only are organelles
rearranged, but the genome is also adjusted, including global chromosome condensation
and telomere clustering; meanwhile, proteins, enzymes, and mRNAs are condensed and
encapsulated into stress granules and P-bodies [17,20–22]. Note, however, that not only can
these characteristics vary from cell to cell (i.e., not all Q cells will share the same universal
characteristic), but they can also change over time [17]. In particular, the longer a cell
remains in the quiescent state, the more time it may need to re-enter the cell cycle [23]. In
addition, after a long period of time, quiescent cells can accumulate damages that commit
them to senescence and subsequently to apoptosis [17].

Quiescence provides protection from a variety of environmental stressors. For example,
quiescent cells have been shown to be more resistant to high temperatures [18], oxidative
stress [12], antibiotic treatment [24], and prolonged starvation [25].

The essence of the quiescent state, namely the ability to re-enter the cell cycle, makes
the study of quiescent cells extremely challenging. This is because some assumptions
and/or predictions about the fate of non-proliferating cells have to be made before such a
cell can prove its ability to resume growth. Unfortunately, given the diversity of scenarios,
it seems impossible to provide a more precise and rigorous definition of quiescence.

The aim of a systematic review is to provide a comprehensive and unbiased synthesis
of findings in the area of interest. We use the systematic review methodology to capture and
categorize the current state and diversity of all published research conducted on S. cerevisiae
quiescent cells. This involves searching both scientific databases and classified article texts
using pre-planned procedures (see Section 2 for details), which minimalizes the bias and
ensures that all relevant articles are taken into account. A systematic review focuses on
summarizing and synthesizing research, while a meta-analysis, which may follow, goes
a step further by quantitatively analyzing the effect sizes across studies. An analysis of
effect sizes is not performed in this review. Following the recommendations of Foo et al.
(2021) [26], we identified the objectives of the review (described below), then formulated
and tested search strings. We then performed an initial screening, which is a classification of
research articles based on the following: titles, abstracts, and keywords. Finally, we conducted
a full-text screening of the selected articles (see details in the Section 2).

We classified the selected articles according to the following information: (1) what
the authors mean by “quiescence”, i.e., whether the whole stationary-phase population is
treated as quiescent, or some subpopulations are distinguished within the stationary-phase
culture; (2) how old the studied populations/cells are; and (3) how quiescence is induced.
We also noted (4) the metabolic profile of a strain, in particular whether it is prototrophic or
auxotrophic, and its origin (laboratory or wild). We further recorded which (5) biological
aspects are studied in the analyzed research article in order to illustrate how broad the
implications of quiescence can be. Moreover, we analyzed how these features change over
the years. We combined the above features and identified the most and the least frequent
experimental set-ups. Finally, we propose a set of guidelines that, we believe, can improve
research clarity and facilitate knowledge transfer. We also discuss several directions that
the field of quiescent could pursue.

2. Methods
2.1. Literature Search

The systematic review was performed following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [27]. We searched three
databases (Scopus, Web of Science and PubMed) for records published up to the end of
2022 (Figure 1A, see search strings in the Supplementary Materials). The deduplicated
records were uploaded to Rayyan (https://www.rayyan.ai/ accessed on 1 December 2021)
for the initial screening based on titles, abstracts and keywords. The screening was carried

https://www.rayyan.ai/
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out independently by three scientists. The records were classified according to the decision
tree (Supplementary Materials). Specifically, we excluded articles that were not written in
English, those that did not use S. cerevisiae, and all publications types other than original
research articles. We excluded articles in which “stationary phase” was not the subject of
the research (e.g., the stationary phase was used only to refer to the age of a population).
The full texts of the 402 included records were then acquired using Zotero reference man-
ager (https://www.zotero.org/ accessed on 1 December 2021). Three scientists performed
the full-text analysis, each analyzing ~130 articles. At this stage, 205 articles were ex-
cluded, and the reasons for their exclusion are provided in the Supplementary File. Finally,
197 articles were included and analyzed within this systematic review. The database
and literature search procedures are summarized in a PRISMA diagram (Figure 1A,B).
The selected articles were screened for the following features: (1) meaning of quiescence,
(2) age of studied populations, (3) method used to induce quiescence, (4) metabolic profile
and origin of used strains, and (5) biological aspects studied within the given article (see de-
tails in Tables S1–S5). In all cases (except for metabolic profile), the categories distinguished
within a feature were non-exclusive, i.e., a single research article could be classified into
more than one category within a single feature.
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2.2. Data Analysis and Visualisation

The data analysis and visualizations were conducted in R 4.1.2 [28] using the following
packages: dplyr [29], readxl [30], ggplot2 [31] and easyalluvial [32]. Schemes were prepared
in Inkscape [33].

The word cloud figure was generated using the R package wordcloud2 [34]. The com-
bined text of the title and the abstract of all 197 articles included in this review were used.
The word cloud was restricted to words occurring 20 or more times, and the biologically
irrelevant words were manually removed. This left 133 words to generate the word cloud.

3. Results
3.1. Literature Search

The Web of Science, Scopus and PubMed databases were searched three times. The
first search was performed using the keywords quiescence, stationary and G0. However, later,
we decided to extend the search for additional keywords: dormancy and growth arrest. The
third search was performed to update the records for the research articles published until
the end of 2022 (Figure 1, see the details in the Supplementary Materials).

More than 6.5 thousand unique records were uploaded for initial screening
based on their titles, abstracts, and keywords, out of which 402 were classified for full-
text screening. Finally, 197 articles were selected for further analysis (Figure 1B). The
original research articles included in this systematic review (chronological order) are as
follows: [10–13,15,18–23,25,35–218]. The most frequently used terms in the titles and ab-
stracts of the included research articles are represented in the word cloud (Figure 2).
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3.2. The Meaning of “Quiescence”

We analyzed whether, within a given publication, the whole stationary-phase pop-
ulation is treated as quiescent (whole_pop), or whether some phenotypically distinct sub-
populations are distinguished (subpop), (Figure 3, Table S1). Research on non-purified
whole stationary-phase cultures prevails; however, in recent years, authors have more
frequently considered the phenotypic variability of cells within the stationary-phase pop-
ulation. Among all the articles analyzed, 28% take into account the heterogeneity of SP,
while from 2015, this percentage increases to 42%, and in the last 3 years (from 2020),
subpopulations are distinguished in 46% of the articles. Out of the research articles that
consider SP heterogeneity, 86% use the density gradient fractionation procedure proposed
by the Werner-Washburne group [10].
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Figure 3. An overview of the approaches used to define quiescent populations over the years. Blue
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3.3. The Age of Studied Quiescent Populations or Cells

Within this review, we classify the chronological age of the population into 6 categories
(Table S2). The majority of research focusing on quiescence is carried out on 2–7-day-old
populations (61% of articles) (Figure 4). Interestingly, in older populations (age categories
more than 4 days of growth), a similar number of articles treat the whole SP population as
quiescent and distinguish subpopulations in the SP. Additionally, we could not assign the
age of the population in 45 articles. These include studies in which the age was not clearly
specified and theoretical (modelling) studies that were based on already existing datasets.
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corresponds to articles in which some subpopulations are distinguished within the stationary-phase
culture (subpop).

3.4. Starvation Induction

In most research articles, to obtain quiescent cells, populations were kept in a growth
medium for a certain period of time (chronological age, gradual_starvation, 86% of articles,
Figure 5, Table S3). However, we also distinguished articles in which cells were arrested
by transfer from rich to starvation medium or by the addition of growth-arresting factors
(e.g., rapamycin or alpha-factor, referred to as abrupt_starvation, in 24% of articles). We did
not recognize any pronounced patterns or interdependences between the populations’ age,
the method of starvation induction, and the definition of quiescence applied in a given
research set-up (Figure 5).
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Figure 5. The visualization of dependencies between features of studied quiescent populations. The
first column (age) corresponds to the categories within the feature age of studied populations or cells
(Figure 4). The second column (starv_induction) corresponds to the method by which starvation
was induced, the third column (whole_subpop), as well as the colors, correspond to the meaning of
quiescence adopted within a given research article.

3.5. The Metabolic Profile and Origin of Studied Strains

We report whether prototrophic or auxotrophic strains were used within a given research
article (Figure 6, Table S4). The majority of research has been carried out using auxotrophic
strains only (63% of articles). The use of prototrophic strains was rare before the 2010s
(22%) and between 2020–2023, it increased to 31% (Figure 6). Interestingly, research con-
ducted using prototrophic strains more frequently distinguishes the subpopulations in
the stationary-phase cultures (χ2 = 11.97, df = 2, p = 0.0025). We also noted whether the
origin of the strain was lab (laboratory) or non-lab (including wild and industrial strains).
Currently, research on quiescence seems to be limited to laboratory strains. We recognized
only five research articles in which non-laboratory strains were studied, all of which were
fermentative strains used in the production of alcoholic beverages.
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Figure 6. Usage of prototrophic (brown), auxotrophic (purple) and both prototrophic and auxotrophic
(orange) strains of S. cerevisiae over time and the total frequency of each metabolic profile. On
the frequency plot, blue corresponds to articles in which the whole stationary-phase population
(whole_pop) is treated as quiescent, while green corresponds to articles in which some subpopulations
are distinguished within the stationary-phase culture (subpop).
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3.6. Biological Aspects

We identified 10 categories of BIOLOGICAL ASPECTS that were studied in the analyzed
research articles (Figure 7). Details of all the categories can be found in the Supplementary
Materials (Table S6). Note that the categories are not exclusive, i.e., several biological
aspects can be studied within a single research article.

Cells 2023, 12, x FOR PEER REVIEW 11 of 25 
 

 

 
Figure 7. Number of articles and frequency of the biological aspects studied within the research 
articles included in this systematic review. Blue corresponds to articles in which the whole station-
ary-phase population (whole_pop) is treated as quiescent, while green corresponds to articles in 
which some subpopulations are distinguished within the stationary-phase culture (subpop). 

3.7. Experimental Set-Up  
Using the categorization proposed within this review, the number of possible exper-

imental set-ups could be as high as 48 (age (6 categories) × metabolic profile (2 categories) × 
quiescence meaning (2 categories) × starvation induction (2 categories)) (Figure 8). We identi-
fied the most frequent combination, which is an auxotrophic population gradually starved 
for 49–96 h (2–3 days) and analyzed as a whole population (without distinguishing sub-
populations). This combination occurred in 35 research articles. Two other frequent com-
binations involve a auxotrophic population gradually starved for 4–7 days and analyzed 
as a whole population (25 articles) or with the identification of subpopulations (24 arti-
cles). The most frequent experimental set-up with prototrophic strain(s) occurred 18 
times, in which populations were gradually starved for 4–7 days and analyzed with the 
identification of subpopulations. Eight combinations do not occur in any article.  
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articles included in this systematic review. Blue corresponds to articles in which the whole stationary-
phase population (whole_pop) is treated as quiescent, while green corresponds to articles in which
some subpopulations are distinguished within the stationary-phase culture (subpop).

Within all 197 research articles analyzed, the most frequently studied category was
gene expression (100 articles), which includes RNA-based investigations as well as the
mechanism and regulation of protein synthesis. The transcriptomic profiles of proliferating
and quiescent cells differ significantly. Moreover, transcription in quiescent cells can
be further influenced by various factors, such as environmental signals and the genetic
background. Consequently, the analysis of gene expression patterns appears to be a
significant aspect of numerous research articles. The cell signalling category (93 articles),
which gathers research on various signalling pathways, was also very common. There
are two ecological categories: life span (91 articles), which focuses on aspects related to
chronological ageing, and growth phenotypes (98 articles), which includes research articles
that have studied various population features, such as cells’ survival rate or their ability to
grow in response to stressors. Quiescence entry in the context of the cell cycle was studied
in 82 articles, and genome stability was the least frequent aspect, studied in 41 articles.
Microscopic investigations of cell morphology were conducted by the authors of 72 articles.
Studies related to metabolism (altogether 83 articles) fall into three categories: those related
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to carbon metabolism (54 articles), amino acids and nutrients (16 articles), and storage materials
(51 articles).

3.7. Experimental Set-Up

Using the categorization proposed within this review, the number of possible exper-
imental set-ups could be as high as 48 (age (6 categories) × metabolic profile (2 categories)
× quiescence meaning (2 categories) × starvation induction (2 categories)) (Figure 8). We
identified the most frequent combination, which is an auxotrophic population gradually
starved for 49–96 h (2–3 days) and analyzed as a whole population (without distinguishing
subpopulations). This combination occurred in 35 research articles. Two other frequent
combinations involve a auxotrophic population gradually starved for 4–7 days and an-
alyzed as a whole population (25 articles) or with the identification of subpopulations
(24 articles). The most frequent experimental set-up with prototrophic strain(s) occurred
18 times, in which populations were gradually starved for 4–7 days and analyzed with the
identification of subpopulations. Eight combinations do not occur in any article.
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frame. The maximal y-value in a given panel corresponds to the total number of categories within
the feature; for example, we distinguish two categories within the feature Q_meaning (whole_pop and
subpop) and six categories within the age feature (less than 24 h, 24 h–48 h, 49–96 h, 4 d–1 w, 1–2 w, more
than 14 d). (B) Visualization of frequencies of experimental set-ups. The size of points corresponds
to the number of articles within the given experimental set-up; if the point is missing, it means
that no research was conducted using that experimental set-up. The shape of the point (circle/star)
corresponds to the way in which quiescence was induced and the color corresponds to the meaning of
quiescence. The metabolic profile is divided into two panels and age is plotted on the x-axis.

4. Discussion

This systematic review presents the diversity of research on the quiescent state in
the eukaryotic cell model organism of the yeast Saccharomyces cerevisiae. QUIESCENCE is a
broad term; therefore, to ensure the transparency and reproducibility of research across
different laboratories and to facilitate knowledge transfer, it is important to define the
crucial variables that vary between the research.

The major division within the research on quiescence is what the authors consider
quiescence to be, namely whether the whole starved/stationary-phase population is treated
as quiescent, or whether some phenotypic heterogeneity is acknowledged via the identifi-
cation of distinct subpopulations within the stationary-phase population. The technique
most widely used to separate quiescent (lower fraction) cells was invented in 2006 in the
laboratory of Margaret Werner-Washburne [10]. The fractionation procedure is based on the
assumption that growth-arrested cells tend to be denser due to the accumulation of storage
materials, and as such, they can be separated via centrifugation on a density gradient.
However, both the biological state and nomenclature of the subpopulations separated via
the fractionation procedure are confusing. While some researchers have adopted the terms
“Quiescent and Non-Quiescent”, others prefer to name them “Upper and Lower fractions”
(both nomenclatures used in the original work [10]). Their argument is that all cells in
the stationary-phase population that restart division when nutrients are available are Q,
including some cells called NQ, and that the above method rather separates cells with a
low and high amount of storage material [19]. Other identification methods use hallmarks
such as histone methylation landscapes [71], the mitochondrial network morphology [19],
or cytoplasmic granules [18]. However, these methods only enable the identification of
heterogeneity, and not the physical separation of subpopulations and independent testing.
Indeed, given the natural heterogeneity of stationary-phase populations, any attempt to
physically separate subpopulations may be considered overly simplistic. We believe that
this is the most striking gap in knowledge and technology. Namely, we recognize the great
need to connect population-based research (mostly on Q and NQ subpopulations) with the
cellular heterogeneity recognized by studies on single cells.

Although the presence of phenotypic heterogeneity in stationary-phase populations is
well documented, the extent to which this heterogeneity affects population characteristics,
as well as adaptations to specific conditions, is frequently unknown. For example, after
experimental evolution aimed at enriching the population for quiescent or non-quiescent
cells (Lower and Upper fractions, respectively), the proportion of Q (L) cells varied from
95% (Q-enriched) to 13% (NQ-enriched), whereas the ancestral strain had 75% Q cells [67].
In this case, the Q-enriched population can be roughly treated as homogeneous, while
making the same assumption for the NQ-enriched population would be incorrect. On the
other hand, the article by Sagot and Laporte (2019b) [17] shows heterogeneity even within
quiescent cells, which are often believed to fall mostly into the Lower fraction. Altogether,
the heterogeneity of the stationary-phase population needs to be taken into account in order
to make further assumptions, although physical separation into multiple homogeneous
subpopulations may be impossible or may additionally affect cells’ entry into quiescence
and/or cellular properties.

Cell properties change with the time spent in starvation, during the so-called chrono-
logical ageing [7,17]. The transition to quiescence begins before nutrients are exhausted,
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and the gradual slowing down of metabolic activity takes days to establish (see review [7]
for details). Authors should therefore carefully decide upon the time point at which they
determine and name the cell or population to be “quiescent”. In particular, they should
decide how long the population should be kept in starvation for all cells to achieve the
quiescent state and whether, for example, 2-day-old and 7-day-old quiescent cells are
significantly different, taking into account the specific conditions of a given experiment.
The commonly used statement declaring that “the population has been grown to stationary
phase” traditionally refers to a 24 h old, overnight, population with an average density of
2 × 108 cell/mL. However, this description is not precise enough for quiescence identi-
fication. The physiological state of the cell changes with age, particularly at the onset of
starvation (approximately up to 7 days), so chronological age is an important feature of
the population. In 45 articles, we failed to assign the correct age to the populations being
studied. This might cause major problems in the interpretation of results.

Another aspect related to nutrient limitation is the method applied in order to induce
starvation/quiescence entry. We noted whether cells were allowed to adapt slowly to the
decreasing amount of nutrients, or whether they were suddenly transferred to starvation
media and/or a growth-arresting treatment was applied. This classification is important
because gradual nutrient limitation leads to a different physiological state to that induced
by an abrupt transfer to a nutrient-limited environment. In particular, nutrient transporters
have varying levels of efficiency, which are adapted to the availability of a given substance
in the environment. Consequently, the gradual depletion of a nutrient is reflected in
progressive switches in the appropriate transporters, which is not the case when the
environment is suddenly changed [7]. Although cells are adapted to gradually decreasing
nutrients, both abrupt and gradual quiescence inductions can mimic naturally occurring
ecological scenarios. For example, abrupt nutrient deprivation can occur when yeasts
growing on ripening fruit are suddenly washed into the soil by rain. Nevertheless, the
way in which quiescence entry is induced is a major signal and can influence a variety of
cell properties. Therefore, we argue that the way in which starvation is induced should be
thoroughly described in the article, and not just mentioned in the Section 2, especially in
the case of the less frequently used methods of abrupt growth arrest.

Quiescence entry is a complicated and multi-step process that requires energy and
extensive adjustments in cell functioning. Thus, any genetic disruption, especially one that
affects nutrient uptake and amino acid synthesis, has a pronounced effect on cellular prop-
erties and consequently on survival [14]. Within this review, we report whether prototrophic
or auxotrophic (or both) strains were used. There is evidence that auxotrophs may be short-
lived and lack the characteristic of quiescence, due to disruptions in growth-controlling
pathways [14,15]. Moreover, amino acid over-supplementation in order to compensate for
genetic defects causes further nutritional imbalances that additionally shorten the chrono-
logical life span [7,14]. Laboratory strains with trophic markers (auxotrophs) are widely
used because they are easy to select on a specific media. However, gene deletions, such
as those seen in auxotrophs, have a pronounced effect on cell function and may interfere
with proper quiescence entry. Furthermore, when using auxotrophic strains in research, it
may be difficult to distinguish the effect being studied from the effect of disrupted amino
acid synthesis. For example, it has been shown that quiescent cells are more sensitive
to UV radiation [105], but as this was carried out using auxotrophic strains, it is unclear
whether the same sensitivity would be seen when testing prototrophs. According to current
knowledge, auxotrophs should be avoided when studying quiescence [7].

We were also interested in whether research on S. cerevisiae quiescence is limited to
laboratory strains or whether there have been some attempts to study this phenomenon
in wild/non-laboratory strains. We recognized only five research articles in which non-
laboratory strains were used [47,58,72,87,191]. Laboratory strains are unlikely to be good
representatives of microbes isolated from nature [219]. There is a growing interest in
wild yeast [220], so studying quiescence in wild isolates can provide valuable insights, for
example, into how universal traits are, even just within the Saccharomyces sp. group.
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The fundamental importance of quiescence is reflected in the broad range of research
fields (biological aspects) we identified (Figure 7). Quiescence can be studied at the gene-
level in order to discover the mechanisms responsible for the transition, the biochemical
processes that enable this cellular response, and finally how these changes affect ecological
aspects, such as cells’ survival and resistance to environmental changes.

Finally, we investigated the experimental setups used to study quiescence by com-
bining the information on the populations under study. We report that since 2006, all the
categories of analyzed features that we defined are present in the experimental set-ups
(Figure 8A), which means that the diversity of approaches used to study quiescent state is
steadily present in research. We also analyzed which experimental set-ups are the most
and the least frequently used to study quiescence, which can help to identify knowledge
gaps. In particular, there are eight theoretically possible experimental set-ups that have
never been used to study quiescence in budding yeasts (Figure 8B).

We also noticed an interesting connection between the age of the studied population
and the frequency of the subpopulations being distinguished within the SP (Figure 4).
In particular, the older the population studied, the more frequently subpopulations are
distinguished. Although this correlation is not statistically significant (Spearman rank
correlation r = 0.65, p = 0.17), we recognize this as an interesting research area. Cells tend
to be more homogeneous in younger populations; in particular, cells can synchronize
during proliferation, and the diversification starts when nutrients become limiting. The
heterogeneity increases with the time spent in starvation, as the fraction of cells that enter
quiescence can increase, while older/damaged cells commit to senescence or apoptosis.
Although in bacteria survival during the stationary phase (LTSP) and the evolution of
growth advantage in stationary-phase (GASP) mutants are well studied [221,222], there are
only limited reports regarding yeast [223]. Indeed, studies on the evolution of quiescence
and phenotypic heterogeneity in the long-standing stationary phase are potential intriguing
future research directions.

Our systematic review could be a valuable source of information for higher-level
comparisons, such as a meta-analysis. The database we have compiled makes it easy
to identify studies that have been conducted using a specific methodology and contain
empirical results. This tool can be used to address a variety of research questions, such as
the effect of metabolic profile on quiescent characteristics.

In conclusion, this review demonstrates how diverse the understanding of quiescence
can be within research articles on Saccharomyces cerevisiae. Based on this review, we have
prepared guidelines for publishing authors (Box 1). It is crucial to report the following:
whether the whole population was treated as quiescent, or some subpopulations were
distinguished; what the chronological age of the quiescent populations/cells studied was;
how quiescence was induced (i.e., whether the population was left to starve in growth
media or an abrupt environmental change occurred); and whether the strain(s) used were
prototrophic or auxotrophic. These features should not only be carefully reported in the
Section 2, but should also be considered when designing an experiment. We encourage
the scientific community to provide more detailed justification and explanation for their
research. We believe that such details will facilitate knowledge transfer and stimulate
valuable scientific debate.
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Box 1. Guidelines on what information should be provided by authors when studying quiescence in
the budding yeast.

1. DEFINE STUDIED QUIESCENT CELLS

◦ Do you treat the whole stationary-phase population as a homogenous entity with only quiescent cells, or do you distinguish
cell subpopulations with distinct phenotypes?

◦ What method do you use to separate/identify cell subpopulations/phenotypic heterogeneity? Is this method described in the
literature or is it novel? If possible, describe how the used methodology relates to other methods of identifying phenotypic
heterogeneity in the stationary-phase populations.

2. SPECIFY HOW QUIESCENCE IS INDUCED
AND THE TIME WHEN YOU ASSUME THE POPULATION ENTERED QUIESCENCE

◦ How is quiescence induced? Do you leave cultures to starve for some time (how long?) and allow cells to adjust to gradual
nutrient depletion? Do you use any growth-arresting reagents? How long is a population left to grow before growth-arresting
treatment is applied?

◦ How long does the population grow before the conduction of tests/experiments?
◦ What is the growth-limiting nutrient?
◦ Specify the growth conditions (e.g., initial cell density, inoculum size, media composition and volume, inoculum size).

3. DEFINE THE METABOLIC PROFILE AND GENETIC BACKGROUND OF USED STRAINS
◦ Is the strain auxotrophic or prototrophic? Specify all trophic markers, and if possible, describe how such auxotrophies

influence the quiescent state.
◦ Specify strain name and genotype (other than trophic markers).

5. Conclusions

We used a systematic review approach to comprehensively analyze the main method-
ological aspects of studying quiescence in Saccharomyces cerevisiae. Our review shows that
the understanding of quiescence in this model organism is very diverse, reflects researchers’
scientific perspective, and reflects the questions asked. We have observed trends in how
the perception of quiescence has evolved over time. For instance, subpopulations are
increasingly being recognized, and there is a growing interest in prototrophic strains. Im-
portantly, there are no biases in the methodological approaches that have been used in
studies of the different biological aspects. On the one hand, our work highlights the lack of
standardization in reporting the experimental details of quiescent cells and populations,
which can be confusing and misleading when drawing general conclusions. On the other
hand, the diversity of methodological approaches used in the published studies may be
useful for higher-level comparisons that could be made using meta-analyses. Our catalogue
of studies in each category could be very useful for this purpose.

Although we have identified the most frequent experimental set-ups, it is impor-
tant to note that within the research community, there is no single dominant protocol for
quiescence research. To study yeast quiescent cells that are a fraction of the stationary-
phase population, we recommend using prototrophic strains, gradually starved for at least
4 days. However, we believe that given the current state of knowledge, it is impossible
to provide strict recommendations regarding the best approach to studying quiescence.
Therefore, we focus on highlighting the crucial features of the quiescent population un-
der study (Box 1) and encourage researchers to consider the benefits and constraints of
various approaches.
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