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Abstract: Cystic fibrosis (CF) is a monogenic recessive genetic disorder caused by mutations in the
CF Transmembrane-conductance Regulator gene (CFTR). Remarkable progress in basic research has
led to the discovery of highly effective CFTR modulators. Now ~90% of CF patients are treatable.
However, these modulator therapies are not curative and do not cover the full spectrum of CFTR
mutations. Thus, there is a continued need to develop a complete and durable therapy that can treat
all CF patients once and for all. As CF is a genetic disease, the ultimate therapy would be in-situ
repair of the genetic lesions in the genome. Within the past few years, new technologies, such as
CRISPR/Cas gene editing, have emerged as an appealing platform to revise the genome, ushering in
a new era of genetic therapy. This review provided an update on this rapidly evolving field and the
status of adapting the technology for CF therapy.
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1. Introduction

CRISPR—clustered regularly interspaced short palindromic repeats—were first discov-
ered in the 3′-end flanking region of the iap gene in E. coli in 1987 [1] and later found in many
other bacteria and even archaea [2–4]. These repeats and their associated proteins constitute
an adaptive immune system to protect host microbes from invasion by foreign genetic
elements, such as viruses, through targeted cleavage of the nucleic acids with RNA-guided
endonuclease [5–8]. Among many types of CRISPR-associated proteins (Cas), Streptococcus
pyogenes Cas9 (SpCas9) is the most studied [9,10]. Jennifer Doudna, Emmanuelle Charp-
entier, and their teams first engineered the CRISPR/Cas9 system for programmable gene
editing in 2012 [11]. Then in the following year, Feng Zhang, George Church, and their
colleagues published the first eukaryotic genome engineering with the system [12,13],
which opened the floodgates for genome engineering in living cells of diverse species. This
breakthrough has led to revolutionary advances in medicine through the direct correction
of disease-associated genes in the genome for therapy. To date, a decade after the inven-
tion of programmable gene editing, there have been 76 clinical trials registered with the
US Food and Drug Administration (ClinicalTrials.gov) to test CRISPR/Cas technology in
different diseases or conditions. Excitingly, the first such trial for sickle cell disease and
β-thalassemia achieved a sustained cure for these two deadly transfusion-dependent blood
diseases [14], greatly inspiring basic researchers and clinical practitioners to pursue similar
treatments for other genetic diseases, including cystic fibrosis (CF).

2. CF Gene Mutations and CF Clinical Diseases
2.1. CF Genomic Mutations

CF is one of the most common life-threatening genetic disorders, affecting all races and
ethnic groups, but the Caucasian population has the highest rate of incidence [15]. There are
currently over 100,000 CF patients worldwide [16]. CF genetic lesions have been mapped to
human chromosome 7 (7q31.2) in 1989 by Francis Collins and Lap-chee Tsui’s groups [17,18].
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The normal function of the CF locus is to direct the synthesis of CF transmembrane-
conductance regulator (CFTR) protein, a cAMP-activated anion channel [19]. Since the
discovery of CFTR [18,20], more than 2000 mutations have been identified, which cause
clinical illnesses with varying severity [21,22]. Based on CFTR protein production and
channel activity, CF mutations can be categorized into five classes [23,24]. Class 1 contains
nonsense mutations, e.g., G542X, giving rise to premature termination of CFTR protein.
Class 2, represented by F508del, produces a full-length, but misfolded CFTR protein that
degrades in the endoplasmic reticulum. Class 3, such as G551D, results in a full-length
CFTR with a null channel function. Class 4 leads to a mature, correctly targeted CFTR with
partial channel function. Class 5 produces insufficient CFTR protein. The F508del mutation
in one or two alleles occupies ~85.5% of all CF individuals, and the other CFTR mutations
take up the remaining ~14.5% [25].

2.2. CF Clinical Diseases

Clinically, CF presents as a progressive, chronic, and debilitating illness [26] that affects
multiple organ systems, including the lung, sinuses, gastrointestinal tract, liver, pancreas,
and vas deferens. Among all these afflicted organ systems, CF lung disease is predominant
in the adult patient population, accounting for over 90% of CF morbidity and mortality.
CFTR transports chloride and bicarbonate anions across the apical membrane of airway
epithelia and regulates sodium absorption and airway surface liquid hydration [27]. CFTR
dysfunction impairs anion secretion, increases sodium absorption, causes airway surface
liquid dehydration, and disables mucociliary clearance [28]. It is widely believed that
these conditions induce chronic bacterial infection, persistent neutrophilic inflammation,
and small airway mucopurulent obstruction, which ultimately cause bronchiectasis and
pulmonary failure.

The pancreas is one of the earliest- and most commonly-affected organs in people
with CF. The term “cystic fibrosis” was named after the fibrocystic lesions observed in
the pancreas from pediatric autopsy cases [29]. Ductal obstruction leads to pancreatic
protein buildup behind the obstructive sites, which induces inflammation, fibrosis, fatty
replacement, and eventually pancreatic destruction. Approximately 85% of CF patients
become pancreatic insufficient, requiring lifelong pancreatic enzyme replacement [30].
CF-related diabetes is an increasingly recognized complication of CF that occurs in 40–50%
of adults with CF [31].

CF intestinal disease begins in the uterus and is often the first sign of CF encountered
clinically. Meconium ileus (MI) presents in up to 20% of neonates with CF [32]. The in-
spissated meconium obstructs the small intestine at the terminal ileum. If left untreated,
the prognosis is poor. In infancy and childhood, CF patients demonstrate nutrient mal-
absorption, steatorrhea, and inadequate weight and body length, for which pancreatic
insufficiency is largely responsible [33]. Pancreatic enzyme replacement therapy proves
beneficial in overcoming some of these problems. However, distal intestinal obstruction syn-
drome (DIOS) and constipation continue to be a problem throughout the patients’ lives [34].
Adult CF patients demonstrate small intestine bacterial overgrowth (SIBO) [35] and large
intestine dysbiosis [36,37]. CF intestinal disease is also marked by a swollen intestinal wall,
intestinal stricture, excessive neutrophil infiltration, and fibrosing colonopathy [38–44].

CF liver disease (CFLD) affects ~30% of CF patients. Clinical manifestations of
CFLD are elevation of serum liver enzymes, hepatic steatosis, focal biliary cirrhosis, mul-
tilobular biliary cirrhosis, neonatal cholestasis, cholelithiasis, cholecystitis, and micro-
gallbladder [45]. CFTR chloride channel is expressed to the apical membrane of cholangio-
cytes lining the biliary ducts [46], essential to maintain pH regulation and biliary HCO3

−

secretion. A proper alkaline balance is believed to protect cholangiocytes against hydropho-
bic bile acids [47].

CF damages the reproductive system, with a majority of adult male patients showing
congenital bilateral absence of vas deferens [48]. Females with CF are found less fertile than
normal healthy women, and some show congenital absence of the uterus and vagina [49].



Cells 2023, 12, 1555 3 of 15

The CFTR channel is also expressed in many non-epithelial cells, including endothe-
lial cells [50], skeletal muscle [51], smooth muscle [52,53], cardiac muscle [54], red blood
cells [55], platelets [56], neurons [57] and even reproductive sperm cells [58], suggesting
a role of CFTR in the functions of these cells. More importantly, immune cells, such as
neutrophils and monocytes/macrophages, have CFTR expression [59–61]. As infection
and inflammation are the two major pathologies in CF, it was predicted that the host
immune system is impaired. Indeed, CFTR is a major chloride channel that transports chlo-
ride to phagosomes to produce hypochlorous acid, a potent antimicrobial oxidant [61–66].
CFTR loss of function in neutrophils impairs the host’s defense against selective pathogens
and compromises the host’s ability to resolve inflammation [59,67–70]. Other abnormal-
ities are also reported in CF neutrophils, including suboptimal activation [71], cleavage
of CXCR1 [72], hyper-sensitivity to LPS stimulation [73], deviant production of reactive
oxygen species [74], genome-wide gene expression perturbation [75], alteration in inflam-
matory signaling [76], hyper-production of IL-8 [77,78], delayed apoptosis [79], abnormal
extracellular trap formation [80], hyper-oxidation of glutathione [81], and lately abnor-
mal granule release [82]. Moreover, CF monocytes/macrophages exhibit deficiencies in
their host defense and other functions, including hyper-sensitivity to challenge [83–85],
impaired capacity of killing internalized bacteria [60,86,87], and reduced scavenger abil-
ity [88]. In addition to the infection and inflammation complications, CF patients often
suffer arthropathies [89,90]. CF-related arthropathy has a rate of occurrence ranging from
2% to 8.5% [91] with distinct symptoms, such as recurrent episodes of joint pain, swelling,
tenderness, and limitation of movement. One or more joints may be affected, and there
may also be fever and skin manifestations [90]. Moreover, 2–7% of CF patients suffer
hypertrophic pulmonary osteoarthropathy with long-bone periostitis, and finger and toe
clubbing with symmetric arthralgia [92,93]. These inflammation-related clinical manifesta-
tions further demonstrate the CF immune defect.

3. General Considerations in Gene Editing Design for CF

First, CF is a systemic disease that affects many epithelial and non-epithelial organs.
What is the best route to deliver gene editing? From a therapeutic perspective, the ideal way
is through systemic delivery that can reach all tissues with one application. Second, CF has
more than 2000 distinct mutations. How can gene editing achieve pan-mutation correction
with one formula? One strategy is to perform targeted insertion of a full-length CFTR
cDNA into the CFTR locus to replace the endogenous CFTR. This one-size-fits-all approach
can target almost all CF mutations. Third, terminally differentiated epithelial cells have a
certain life span. How can durable gene editing be achieved? Stem and progenitor cells
would be the preferential targets for correction. Fourth, CF clinical diseases develop early
in life. What is the best age to perform gene editing for therapy? It is apparently important
to target CF before damage to organ structures and functions become irreversible. Thus,
gene editing components and formulation must be applicable to young patients. Fifth, safe
genome manipulation is paramount. Efforts to minimize off-target effects and to ensure
long-term safety should guide any gene editing design. Attention should be specially
paid to the systemic delivery of gene editing to young patients, as germline modification
may occur.

4. Gene Editing Tools for Selection
4.1. Cas Nuclease Editors

There are 2 classes of CRISPR/Cas systems, which can be subdivided into 6 types and
at least 29 subtypes according to their structure and function of Cas protein [94]. Class I
contains Types I, III and IV, while Class 2 contains Types II, V and VI. Each member in Class
I has multiple effector complexes with several Cas proteins, whereas each Class II member
has a single, large, multidomain Cas protein. Due to the relatively simple ribonucleoprotein
complexes involved, Class II members have been extensively studied and are the most
widely used tool for genome engineering.
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The prototype CRISPR/Cas9 complex is an assembly of CRISPR RNAs and Cas9
endonuclease. The CRISPR RNAs have two separate molecules: (1) guiding CRISPR RNA
(crRNA) [95], and (2) trans-acting CRISPR RNA (tracrRNA) [96]. The crRNA recognizes its
target DNA sequence and tracrRNA recruits Cas9 to the target sites. Cas9 induces double-
strand breaks (DSBs) through its two distinct nuclease domains: an HNH-like nuclease
domain that cleaves the gRNA-targeted strand, and a RuvC-like nuclease domain to cut
the non-target strand [97]. To simplify the system, the two separate RNAs can be fused into
a single RNA chimera, referred to as single-guide RNA (sgRNA), which is able to achieve a
similar RNA-guided DNA targeting function [11,98]. SpCas9, a 1368 amino-acid protein
from the Class II, Type II category, induces a blunt DSB at the target sequence positioned
next to 5′-NGG (N represents any nucleotide) protospacer adjacent motif (PAM) [10]. To
increase the availability of target sites and the target specificity, multiple SpCas9 variants
have been generated [99], one of which is xCas9 which recognizes 5′-NG, 5′-GAA, and
5′-GAT PAM sequences [100]. To modify the Cas9 enzymatic property, a single point
mutation, either D10A or H840A, was introduced into Cas9 to turn it into a nickase (nCas9)
that can only cleave single-stranded target sites recognized by gRNA. In contrast to the
regular SpCas9 that uses a single sgRNA to produce a DSB, nCas9 requires two sgRNAs to
achieve a DSB, thus enhancing the targeting specificity. Another Cas9 derivative is “dead”
Cas9 (dCas9) which has a D10A and H840A double mutation. As a result, both HNH-
and RuvC-nuclease domains are disabled. This dCas9 binds to its gRNA target site as
normal, but not induces breakage in either DNA strand. Thus, the dCas9 can be fused to
transcriptional activators or suppressors to regulate gene transcription [101,102].

In addition to SpCas9, a battery of Cas9 orthologues from other bacterial species have
been discovered. These orthologues have different PAM sequences that provide a greater
choice of target sites across the human genome [103]. Among them are the Cas9 from
Streptococcus thermophiles, Neisseria meningitidis, Staphylococcus aureus and Campylobacter
jejuni. These different variants of Cas9 offer expanded genome targeting capabilities,
improved specificity, and biochemical properties [103,104].

Cas12 and Cas13 from Type V and Type VI categories, respectively, are two latest addi-
tions to the gene editing toolbox. Cas12a nucleases from Acidaminococcus spp. (AsCas12a)
and Lachnospiraceae spp. (LbCas12a) recognize DNA target sequences with complementar-
ity to the crRNA spacer positioned next to a 3′ PAM [105], and generate a staggered DNA
double-strand break by a RuvC domain and a putative nuclease (Nuc) domain. This unique
feature makes it ideal for multiplexed genome editing [106]. Cas13 nucleases solely target
single-stranded RNA without altering the DNA, which can be selected for transcriptomic
manipulation [107].

4.2. Base Editors

Base editing uses a different design to achieve genome modification by the direct
generation of precise point mutations. DNA base editors comprise a catalytically impaired
Cas nuclease fused with a base modification enzyme that induces base alteration on a single
strand of DNA. Then the cellular DNA repair machinery intervenes to repair the mismatch
on the complementary strand to complete the intended base conversion [108]. There are
two classes of DNA base editors that have been reported: (1) cytosine base editors that
convert a C•G base pair into a T•A base pair, and (2) adenine base editors that convert an
A•T base pair into a G•C base pair [109].

4.3. Prime Editors

Prime editing enables all types of DNA substitutions, small insertions, and small
deletions to be created at targeted sites in the genome [110]. It differs from the CRISPR/Cas9
editing and base editing systems in the following aspects: (1) prime editing does not require
DSBs; (2) the prime editor protein is a fusion of nCas9 and a reverse transcriptase; and
(3) prime editing guide RNA (pegRNA) contains a specific genome-targeting sequence
and a programmable reverse transcriptase template to introduce the desired edit [111].
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Compared to Cas nucleases and base editors, prime editors offer several advantages:
(1) High precision. As the desired edit is programmed within the pegRNA template,
and the targeted DNA is only nicked on one strand, the achieved base change is very
specific and rarely generates insertion or deletion mutations. (2) Flexibility. Prime editing
can change bases relatively far from the PAM site and is thus less restricted by PAM site
availability [112]. (3) Lower cellular replication dependence. Prime editors do not rely
on homologous recombination machinery to introduce the desired edit and are therefore
effective in any phase of the cell cycle [111].

5. CRISPR-Based CFTR Gene Editing
5.1. In Vitro Correction of CFTR Mutations

Schwank and colleagues first reported using the CRISPR/Cas9 editing system to
correct the CFTR locus in cultured intestinal stem cells of F508del-homozygous CF pa-
tients [113]. The gene-corrected stem cells were able to develop into organoids that function-
ally responded to forskolin by volume swelling. Firth et al. derived induced pluripotent
stem cells (iPSCs) from skin fibroblast cells from homozygous F508del CF patients, and
performed CRISPR/Cas9 gene correction in CFTR. The corrected iPSCs were able to differ-
entiate into mature airway epithelial cells and showed restoration of CFTR-specific chloride
transport function [114]. In addition to the prevalent F508del mutation, premature stop
codon mutations, such as c.1679 + 1634A > G (1811 + 1.6 kbA > G) and c.3718-2477C > T
(3849 + 10 kbC > T), or c.3140-26A > G (3272-26A > G), were corrected by CRISPR/Cas9
editing [115]. Furthermore, the targeted insertion of a full-length CFTR cDNA into the CF
locus was accomplished in airway stem cells via CRISPR/Cas9 editing [116]. Similarly,
Hu and his team have successfully integrated a full-length CFTR cDNA into GGTA1, a
safe harbor gene in cultured pig cells [117]. These data demonstrate the possibility of
pan-mutation correction with one gene editing vector.

Using adenine base editors, Krishnamurthy et al. successfully corrected premature
stop codon mutations [118]. Moreover, prime editors were recently tested in the functional
correction of CF organoids [119]. These seminal experiments clearly demonstrate that
different gene editing tools are capable of correcting the basic CF defect in vitro.

5.2. Creation of CF Models

When discussing gene editing for CF, it is hard not to mention the many CF models
created using this technology. Because of the simplicity in design and high efficiency in
genome manipulation, the gene editing approach has become mainstream in the production
of new CF models from cell lines to live animals.

Multiple CF cell lines have been generated using the Cas9 nucleases, including Calu-3
CF cells [120], F508del-CF HL-60 cells [121], F508del-CF T84 cells [122], 16HBE14o- CF cells
with F508del, G542X or W1282X mutations [123], CFTR-/- IPEC-J2 porcine cell line [117],
and G551D-CF Caco-2 cells [124]. As compared to existing CF cell lines that were immortal-
ized from patients’ tissues, the gene-edited cell lines have their own isogenic controls, thus
providing a paired cell culture system for CF basic research and drug selection.

Based on the superior genome-targeting and gene-editing efficiency, direct pronuclear
injection or nucleofection of gene editors into fertilized eggs at the single-cell stage (zygote),
followed by after-birth screening, is established as a protocol to produce animal models.
Using the strategy, multiple CF animal models have been generated, including G542X
mice and rats [125–127], F508del rabbits [128], and G551D ferrets [129]. Furthermore,
by combining CRISPR/Cas9 gene editing and somatic cell nuclear transfer technologies,
F508del and G542X CF lambs have been produced. These animal models add valuable
selections to the existing CF animal pool to facilitate the study of CF pathogenesis and the
development of novel therapies.
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5.3. In Vivo Correction of CFTR Mutations

The concept of using different gene editing tools to convey genomic revision of CFTR
mutations has been proven by numerous in vitro gene correction cases, as discussed above.
Now, the compelling call is to adapt the technology for in vivo CFTR correction as a therapy.
As CF lung disease is the major complication in CF patients, early explorations of in vivo
gene editing related to CF have been focused on the lung. McCray and his colleagues
tested a group of amphiphilic shuttle peptides to facilitate gene editor delivery to mouse
lungs and achieved editing of loxP sites in airway epithelia of ROSAmT/mG mice [130].
The editing efficiency was ~13% in the large airways and ~12% in the small airways. The
same team also delivered a base editor to Rhesus monkey lungs [131], and achieved editing
efficiencies of up to 5.3% in rhesus airway epithelia. In mice, a similar procedure led to
the persistence of the gene-edited epithelia for up to 12 months. These exciting early data
demonstrate the therapeutic potential and feasibility of using CRISPR-based gene editors
for CF lung therapy. It is anticipated that the next step would be applying therapeutic
editors to CF animal models to determine if CF lung phenotypes can be rescued.

6. Non-CRISPR-Based CFTR Gene Editing

Although this review is tasked with updating the advances in CRISPR-based gene
editing for CF, new developments on the non-CRISPR gene-editing front are worth dis-
cussion and comparison. Early non-CRISPR editors include mainly zinc finger nuclease-
(ZFN-) based and transcription activator-like effector nuclease- (TALEN-) based. Although
currently fewer labs are using these systems for CF gene editing, progress is still being
made. Suzuki et al. electroporated ZFN mRNA into CF patient-derived airway basal cells,
followed by AAV-6 donor transduction, and achieved efficient functional correction of
CFTR [132]. Xia et al. packaged the TALEN system into helper-dependent adenoviral
vectors and ~5% targeted gene integration was obtained [133]. In addition to these con-
ventional non-CRISPR editor systems, Egan and her team have adapted a novel peptide
nucleic acid (PNA) gene editing system for CFTR gene correction [134,135]. The PNA
system was first reported by Rogers et al. to achieve site-specific DNA recognition and to
mediate site-directed recombination [136]. Different from the CRISPR-nuclease-triggered
endogenous DNA repair, PNAs form a triplex structure with DNA by strand invasion and
prompt DNA repair and recombination of short donor DNA [137]. When PNAs and donor
DNAs are packed into biodegradable polymer nanoparticles, F508del-CF airway epithelial
cells can be targeted and corrected [134]. Notably, using this approach Piotrowski-Daspit
and colleagues have achieved in vivo correction of F508del-CFTR mutation in the CF mouse
model through systemic delivery [138]. Gene editing has been found in multiple epithelial
tissues, including the nasal epithelium, trachea, lung, ileum, colon, and rectum, with a
correction rate varying from ~0.1% to ~2%. Impressively, phenotypes such as CF lung
inflammation and epithelial chloride transport are shown to be improved.

7. Comparison of CRISPR-Editors and Non-CRISPR PNA Editors for CF Gene Editing

Previous publications have compared the CRISPR editing system with the non-CRISPR
TALEN or ZFN system for CF gene correction [135,139]. Here we focus our comparison of
the CRISPR system with the new non-CRISPR PNA one. Both systems have been proven
feasible in CFTR gene correction in vitro and in vivo, indicating the possibility of rescuing
CF defects. However, they are still at their early development stage for in vivo applications,
and further optimization and better understanding are clearly needed. First, the rates of
editing or correction are still low for a complete rescue of CF. Second, the spectrum of
target cells needs a better understanding. Third, the durability of gene editing requires
longer observation and inspection. Fourth, long-term safety has not been investigated.
Nevertheless, these two approaches are re-igniting the hope of a better CF genetic therapy.
Because of their distinct acting mechanisms in genome modification, each approach has its
pros and cons, which might be important to consider for future preclinical and clinical trials.
First, the CRISPR-based approach needs suitable PAM sites, but the non-CRISPR-based
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approach does not. Thus, the latter approach may provide better flexibility. Second, the
CRISPR-based approach does not have to rely on endogenous DNA repair machinery, but
the non-CRISPR-based approach requires this machinery. For example, the base-editing
or prime-editing complex carries its own DNA modification enzyme, which may offer a
higher editing efficiency. Third, the non-CRISPR editor is small and can fit into nanoparticle
carriers. Thus, it can readily pass through tissue barriers to target the epithelial layer. This
merit makes systemic delivery possible. Fourth, the non-CRISPR editor does not have high
immunogenicity, thus making repetitive administration possible.

8. Barriers to Overcome to Improve In Vivo Gene Editing Efficiency for CF

From the existing data, there is an apparent gap in gene editing efficiency between
in vitro and in vivo applications in both CRISPR- and non-CRIPSR-based gene editors.
Thus, delivery is a determining factor in the success of translating this new technology into
any clinical benefits. As CF predominantly affects epithelium-lined organs, directing CF
gene editors to the epithelial cells is believed to be essential for potential CF therapy. There
are only two feasible routes to deliver the gene editors: (1) through epithelial lumens, and
(2) through the circulation. Each route has its own barriers to overcome.

8.1. Gene Editor Delivery through Epithelial Lumens

For a luminally released gene editor to reach the nucleus of a target epithelial cell,
multiple layers of barriers need to be overcome (Figure 1). First, on the top of an epithelium,
there usually exists a mucus and/or surface liquid layer that gene editors have to penetrate.
Second, an epithelium-lined organ usually evolves a mucociliary clearance mechanism for
the purpose of host defense. This mechanism can also act to clear luminally delivered gene
editors. Third, epithelial cells are typically polarized, and their subcellular structures, e.g.,
cytoskeleton, in the apical and basolateral compartments differ, which limits gene editor
entry from the apical side. Fourth, epithelial stem and progenitor cells need to be targeted
for any lasting gene editing. These cells sometimes are anatomically located underneath
other epithelial cells and are hard to reach without losing the overlaying cells.Cells 2023, 12, x FOR PEER REVIEW  8  of  16 
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highly efficient gene editor delivery from an epithelial lumen.

8.2. Gene Editor Delivery through the Circulatio

Circulation delivery has the potential of targeting every type of cell across the entire
body. However, several barriers have to be overcome to achieve any high-level gene editing
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(Figure 2). First, intravenously released gene editors have to permeate the endothelial
layer and escape the circulation to enter the interstitial space. Second, the escaped gene
editors need to diffuse through the interstitial space and meshwork to reach the epithelial
basement membrane. Third, penetration of the epithelial basement membrane will allow
the gene editors to target the epithelial cells from the basolateral side.
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Altogether, different routes of delivery dictate the required features in gene editor
and vehicle designs. Generally speaking, a smaller size of a gene editor complex favors
its penetration and diffusion to reach the target cells. Epithelial and endothelial junctions
can be temporally manipulated to facilitate the escape of the editor complex. Vehicles
can be engineered to enhance their penetrating and targeting capacity, such as the surface
expression of shuttle peptides or receptors/ligands.

9. Prospects for a Cure in CF

Genetic therapy for CF has been pursued for decades [135,139]. The early strategy
was focused on gene addition by supplementing the diseased cells with a functional
copy of CFTR [140–142]. Multiple vectors have been developed and tested pre-clinically
or clinically in the lungs, including adenoviral vectors [143,144], adeno-associated viral
vectors [145–148], lentiviral vectors [149–152], and non-viral vectors [153]. Unfortunately,
clinical improvement of lung functions has never been achieved. Retrospective reflection
often points to multiple issues, including vector transduction efficiency, stem and progenitor
cell targetability, and duration of the transgene expression [141,154]. However, a key and
largely overlooked issue is that we do not know whether restoration of CFTR function
in epithelial cells alone is sufficient to rescue CF clinical diseases. Nevertheless, there are
several outstanding merits of this strategy. First, gene addition by providing a full-length
CFTR cDNA can treat all CF mutations at once. Second, after decades of improvements in
vector design and delivery procedure, impactful restoration of chloride transport defect
across CF epithelia in vivo can be achieved. Third, persistent gene transfer is doable with
integrating vectors. These merits maintain gene addition as a viable platform for CF therapy.
Moreover, the developed vector systems can be repurposed to deliver gene editors into
target cells and organs [155].

The emerging CRISPR-based gene editing technology and the new non-CRISPR PNA-
based gene editing technology offer precise and versatile options for genome manipulation,
which enable the correction of CF mutations in their natural locations on the chromosome.
After this correction, CFTR gene function and regulation should be restored to normal
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levels. These strategies hold the great promise of achieving an ultimate cure for CF. With
the principle proven, translation of the technology into a CF therapy boils down to the
following issues: (1) what vehicle to use to best deliver the gene editors, (2) how to
effectively target the widespread diseased organ systems, (3) when to perform gene editing
to achieve maximal clinical benefits, and (4) whether gene editing is durable and safe.
Addressing these issues will bring a true cure for CF within reach.
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