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Abstract: The aggressive features of glioblastoma (GBM) are associated with dormancy. Our previous
transcriptome analysis revealed that several genes were regulated during temozolomide (TMZ)-
promoted dormancy in GBM. Focusing on genes involved in cancer progression, Chemokine (C-C
motif) Receptor-Like (CCRL)1, Schlafen (SLFN)13, Sloan-Kettering Institute (SKI), Cdk5 and Abl
Enzyme Substrate (Cables)1, and Dachsous Cadherin-Related (DCHS)1 were selected for further
validation. All showed clear expression and individual regulatory patterns under TMZ-promoted
dormancy in human GBM cell lines, patient-derived primary cultures, glioma stem-like cells (GSCs),
and human GBM ex vivo samples. All genes exhibited complex co-staining patterns with different
stemness markers and with each other, as examined by immunofluorescence staining and underscored
by correlation analyses. Neurosphere formation assays revealed higher numbers of spheres during
TMZ treatment, and gene set enrichment analysis of transcriptome data revealed significant regulation
of several GO terms, including stemness-associated ones, indicating an association between stemness
and dormancy with the involvement of SKI. Consistently, inhibition of SKI during TMZ treatment
resulted in higher cytotoxicity, proliferation inhibition, and lower neurosphere formation capacity
compared to TMZ alone. Overall, our study suggests the involvement of CCRL1, SLFN13, SKI,
Cables1, and DCHS1 in TMZ-promoted dormancy and demonstrates their link to stemness, with SKI
being particularly important.

Keywords: glioblastoma; temozolomide; dormancy; stemness; Chemokine (C-C motif) Receptor-Like
(CCRL)1; Schlafen (SLFN)13; Sloan-Kettering Institute (SKI); Cdk5 and Abl Enzyme Substrate
(Cables)1; Dachsous Cadherin-Related (DCHS)1

1. Introduction

Glioblastoma (GBM) represents the most common and most malignant primary brain
tumor in adults [1]. Besides its highly invasive nature, its resistance to chemo- and ra-
diotherapy, the inevitable incidence of recurrences, and a vast intra- and intertumoral
heterogeneity account for the up-to-now incurability of this tumor type. Intense research
and technological advancements have allowed an increasing subclassification of the het-
erogenous tumor entity [2], even though, to date, no breakthrough in therapy permitting a
significant prolongation of life expectancy has been accomplished. Across subtypes, the ag-
gressive properties of GBM were shown to be linked to distinct phenomena such as glioma
stem-like cells (GSCs) and dormancy [3]. Since GSCs possess the capacity to self-renew and
initiate a tumor, and play a decisive role in tumor progression and relapse, they represent
an exciting starting point concerning new therapeutic approaches [4]. In the previous work
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of our group, we were able to prove striking parallels between stemness and the concept of
cellular dormancy in GBM [3]. As cellular dormancy depicts a reversible growth arrest of
cells, dormant cells can escape conventional treatment strategies since they mainly affect
fast-dividing cells. With time, the dormant state can be abandoned, leading to tumor recur-
rence following therapy. The entry into dormancy in GBM was shown to be characterized
by the upregulation of a specific dormancy-associated gene set [5]. Interestingly, the agent
temozolomide (TMZ) itself, used as standard chemotherapy in GBM, was shown to induce
entry into a dormant stage [3]. Given this, in the framework of a previously performed
microarray-based transcriptome analysis, our group investigated the influence of microen-
vironmental factors on GBM gene expression during TMZ-promoted cellular dormancy
entry and exit. Altogether, 1512 genes were differentially regulated during TMZ-promoted
cellular dormancy entry and 1381 during dormancy exit [6]. To narrow down the number
of particularly interesting genes for this study, we only selected (1) known genes that
(2) were regulated during TMZ-promoted cellular dormancy entry or exit in this specific
setup with at least a log2FC = 1.3 value, (3) were expressed to clearly detectable extents
after TMZ treatment, and (4) which could also be analyzed at the protein level. After this
preselection, we focused on genes already described to be involved in tumor development,
the progression or repression of malignancies, and to be connected to the phenomenon
of stemness in the broadest sense. Following this procedure, we decided to exemplarily
investigate five genes, namely Chemokine (C-C Motif) Receptor-Like (CCRL)1, Schlafen
(SLFN)13, Sloan-Kettering Institute (SKI), Cdk5 and Abl Enzyme Substrate (Cables)1, and
Dachsous Cadherin-Related (DCHS)1, to further evaluate their significance in GBM.

CCRL1 is an atypical chemokine receptor that was shown to predominantly exhibit
tumor-restricting effects in different malignancies [7–9]. However, other studies found the
promotion of epithelial-to-mesenchymal transition (EMT) by CCRL1 and hence postulated
a tumor-promoting effect [10]. SLFN13 belongs to a family of genes that are involved in cell
cycle regulation and mediate growth-inhibitory responses. Its function, especially in cancer,
is still poorly understood. An analysis of “The Cancer Genome Atlas” database revealed
the downregulation of SLFN13 in breast cancer, lung squamous carcinoma, prostate cancer,
and rectal carcinoma, whereas the protein was upregulated in pancreatic- and renal-cell
carcinoma [11]. SKI is a proto-oncogene overexpressed in tumor cells of various malig-
nancies and hence involved in the growth, proliferation, invasion, metastasis, and tumor
progression of cancer cells [12–14]. However, SKI was also shown to express the effect of a
tumor suppressor gene in lung cancer [15]. Cables1 is a cyclin-dependent kinase-binding
protein that was shown to be involved in the cell cycle, mitosis, cell death, development,
and differentiation [16,17]. In multiple types of cancer, a very frequent loss of Cables1 has
been observed which implies a potential suppressive effect on tumorigenesis [18]. However,
a strong Cables1 expression was found in breast and pancreatic cancers [19]. DCHS1, also
known as Cadherin (CDH)19, belongs to the cadherin superfamily and establishes and
maintains intercellular connections [20]. It has been attributed to an important role in de-
velopment, especially in the proliferation and differentiation of neural progenitor cells [20].
In different tumor types, DCHS1 seems to execute a tumor-suppressive effect [21–23].

To date, only limited-to-no data concerning the role of CCRL1, SLFN13, SKI, Cables1,
and DCHS1 in GBM are available, and their relation to phenomena known to be associated
with the high therapy resistance of the disease, such as dormancy and stemness, are still
mainly uncharted. Hence, this study aimed to further validate the role of the markers
in TMZ-promoted cellular dormancy, to examine whether CCRL1, SLFN13, SKI, Cables1,
and DCHS1 inherit a potential connection to the phenomenon of stemness in GBM, and
investigate whether targeting (any of) these markers can improve the antitumor potential
of TMZ.
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2. Materials and Methods
2.1. Human Specimens

Human tumor samples (n = 20) were obtained by surgical dissection at the Depart-
ment of Neurosurgery (Kiel, Germany) with the approval of the ethics committee of the
University of Kiel, Germany, after the written informed consent of donors (file reference:
D471/15 and D524/17) and in accordance with the Helsinki Declaration of 1975, revised
in 2013. Tumors were diagnosed and classified, according to World Health Organization
(WHO) criteria, as GBMs CNS WHO Grade 4 by a pathologist (University Medical Center
Hamburg-Eppendorf, UKE, Hamburg, Germany).

2.2. Human Glioblastoma (GBM) Cell Lines, Primary Culture Cells, and Stem-like Cells

The human glioblastoma cell lines LN229 (ATCC-CRL-2611), U251 (ECACC 89081403;
formerly known as U373MG), U87MG (ECACC 89081402), and T98G (ECACC No. 92090213)
were obtained from the European Collection of Authenticated Cell Cultures (ECACC,
Salisbury, UK) or the American Type Culture Collection (ATCC, Manassas, VA, USA)
and cultured as described previously [24]. Human primary GBM cultures (n = 2) were
produced by dissociation and cultured according to established techniques as described
before [24]. Human primary GBM stem-like cell cultures (n = 8) as well as GBM cell line-
derived stem-like cells were established and intensively characterized by the formation
of neurospheres, the ability to survive and proliferate under stem cell conditions, and the
ability to differentiate into more mature cells as described before [3,25–27]. The purity of the
GBM cells was ascertained by immunostaining with cell type-specific markers and by the
absence of contamination with mycoplasms. GBM cell line identity was verified by short
tandem repeat profiling at the Department of Forensic Medicine (Kiel, Germany) using
the Powerplex HS Genotyping Kit (Promega, Madison, WI, USA) and the 3500 Genetic
Analyzer (Thermo Fisher Scientific, Waltham, MA, USA) as previously described [3].

2.3. Stimulation of Glioblastoma (GBM) Cells

As previously described in detail, 1.5 × 105 LN229, U251, primary culture (PC)a, or
PCb cells, respectively, were stimulated for 10 days with TMZ (500µM, Sigma-Aldrich,
St. Louis, MO, USA) dissolved in dimethyl sulfoxide (DMSO, Merck Millipore, Darmstadt,
Germany) in Dulbecco’s modified Eagle’s medium (DMEM; Thermo Fisher Scientific) sup-
plemented with 10% fetal bovine serum (FBS; Thermo Fisher Scientific). DMSO 0.5% (v/v)
was used as a control. Hereafter, the medium was changed, and the cells were cultured for
another 15 days without TMZ stimulation. Stem-like U251 and LN229 cells were stimulated
under the same conditions and for the same periods, but in neurosphere medium [50%
DMEM, 50% F12 medium (Thermo Fisher Scientific) containing the following supplements:
2 mM L-glutamine, 0.6% glucose (Roth, Karlsruhe, Germany), 9.5 ng/mL putrescine dihy-
drochloride (Sigma-Aldrich), 6.3 ng/mL progesterone (Sigma-Aldrich), 5.2 ng/mL sodium
selenite (Sigma-Aldrich), 0.025 ng/mL insulin (Sigma-Aldrich), 2 µg/mL heparin (Sigma-
Aldrich), and 4 mg/mL bovine serum albumin (Thermo Fisher Scientific). The growth
factors EGF (epidermal growth factor; PeproTech, Rocky Hill, NJ, USA) and bFGF (basic
fibroblast growth factor; ImmunoTools, Friesoythe, Germany) were added at a concentra-
tion of 20 ng/mL as described before [27]. In addition, native LN229 cells were stimulated
for 10 days with TMZ (500µM, Sigma-Aldrich) dissolved in DMSO (Merck Millipore) in
DMEM (Thermo Fisher Scientific) supplemented with 10% FBS (Thermo Fisher Scientific)
alone or in combination with Disitertide (P144; 100 µg/mL; Tocris Bioscience, Bristol, UK)
dissolved in 0.01 M phosphate-buffered saline (PBS), pH 7.4. DMSO 0.5% (v/v) and PBS
were used as controls. Then, the medium was changed and the cells were used for differ-
ent experiments or cultured for another 11 days without TMZ stimulation but with the
continuous addition of Disitertide (100 µg/mL) [6].
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2.4. Reverse Transcription and Quantitative Real-Time PCR (qRT–PCR)

RNA of cells and tissue were isolated with the TRIzol® reagent (Invitrogen, Carlsbad,
CA, USA) or with the ARCTURUS® PicoPure® RNA isolation kit (Applied Biosystems,
Foster City, CA, USA) according to the manufacturer’s instructions. DNase digestion,
cDNA synthesis, and qRT–PCR were performed as previously described [28] using Taq-
Man primer probes (Applied Biosystems) listed in Supplementary Table S1. Cycles of
threshold (CT) were determined, and the ∆CT values of each sample were calculated as
CT gene of interest − CT GAPDH. Either ∆CT values or linearized ∆CT values (2−∆CT) are shown
in the figures. The regulation of gene expression upon stimulation with Disitertide is dis-
played as n-fold expression changes = 2∆C

T
control − ∆C

T
stimulus.

2.5. Immunofluorescence Staining

Cryostat sections of GBM ex vivo tissues were prepared as previously described [3].
Cells were incubated overnight with the primary antibodies at 4 ◦C, followed by the
secondary antibodies for 1 h at 37 ◦C. The nuclei were counterstained with 4′,6-diamidino-
2-phenylindole (Thermo Fisher Scientific; 1:30,000, 30 min, room temperature) and the
embedded slides were analyzed by fluorescence microscopy (AxioObserver.Z1; Carl Zeiss
AG, Oberkochen, Germany) using the ZEN 3.5 (blue edition) software (Carl Zeiss AG).
Used primary antibodies are listed in Supplementary Table S2. If primary antibodies
were derived from the same species, non-specific binding was blocked by F(ab) fragments
derived from that species (1:1000, from Jackson ImmunoResearch, West Grove, PA, USA).
Primary antibodies were omitted for negative controls. Donkey anti-mouse or anti-rabbit
IgGs labeled with Alexa Fluor 488 or Alexa Fluor 555 (1:1000; Thermo Fisher Scientific)
served as secondary antibodies.

2.6. Gene Set Enrichment Analysis

Gene set enrichment analyses (GSEA) were performed with the tool gProfiler based
on the gene ontology (GO) source ‘biological process’ [29]. p-values were adjusted using a
Benjamini–Hochberg FDR correction.

2.7. Cytotoxicity Assay and Determination of Proliferation

The cytotoxic effects were determined using the CytoTox-FluorTM Cytotoxicity As-
say (Promega) according to the manufacturer’s instructions and as described before [27].
Supernatants of treated and control cells were collected at days 10 and 21 of stimulation,
mixed with the bis-AAF-R110 substrate, and measured in a fluorescence microplate reader
(Infinite M200Pro, TECAN, Zürich, Switzerland) at 485/535 nm. The numbers of dead
cells were determined according to a prepared standard of digitonin-lysed (82.5 µg/mL;
Merck Millipore) cell dilutions. Cell survival/proliferation was determined by counting
viable cells with a hemocytometer at days 0, 10, and 21 of the treatment. The percent-
ages [%] of dead cells were calculated as the n-fold number of viable cells as described in
Equations (1) and (2) after 10 and 21 days of stimulation, respectively. Growth rates were
calculated as an n-fold number of alive cells compared to day zero of the treatment.

Dead cells (day 10) [%] =
number o f dead cells [day 10]

number o f dead cells [day 10] + vital cells [day 10]
× 100 (1)

Dead cells (day 21) [%] =
number o f dead cells [day 10 + day 21]

number o f dead cells [day 10 + day 21] + vital cells [day 21]
× 100 (2)

2.8. Self-Renewal Capacity and Extreme Limiting Dilution Assay

The self-renewal capacity of 10- versus 3-day-TMZ-pretreated cells and 10 day-TMZ-
or TMZ + Disitertide-pretreated cells were measured using an extreme limiting dilution
analysis (ELDA) as described before [3]. Briefly, remaining cells after treatment were
determined, and decreasing numbers (1600–800–400–200–100–75–50–25–10–5–1 cells per
well) of cells were cultured in neurosphere medium (see above), plus 20 ng/mL of bFGF
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and 20 ng/mL of EGF as described before [3]. Cultures were maintained until day 10 when
the number of spheres per well and wells containing spheres for each cell plating density
(number of positive cultures) were recorded and plotted using the online ELDA program25
(http://bioinf.wehi.edu.au/software/elda, accessed on 13 April 2023) [30].

2.9. Statistical and Correlation Analysis

Depending on the experimental setup, either a two-tailed Student’s t-test or a one-
or two-way analysis of variance (ANOVA) was performed using the GraphPad Prism
8 software (accessed on 13 April 2023; GraphPad Software, San Diego, CA, USA). The
sample sizes and a description of the sample collection, including the number of bio-
logical/technical replicates, are described in the figure legends. In general, the data are
presented as mean ± standard deviation. Correlations were calculated with the Pearson
correlation index. Statistical significance is marked with asterisks depending on the p-value:
* p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Results
3.1. Expression and Regulation of Selected Genes under Temozolomide (TMZ)-Promoted Cellular
Dormancy in Glioblastoma (GBM) Cell Lines and Patient-Derived Primary Cultures

To evaluate the relevance of CCRL1, SLFN13, SKI, Cables1, and DCHS1 in GBM
progression, we first examined their gene expression under TMZ-promoted dormancy entry
and exit in different GBM cell lines (LN229 and U251) and primary cultures (PCa and PCb),
respectively, using our previously established in vitro model with sole-TMZ stimulation.

Except for SLFN13, which was not found in PCb, all genes were expressed in the
regarded cell lines and primary cultures at different levels. The highest gene expression
level amongst all examined cell cultures was found for SKI, whereas CCRL1 and especially
SLFN13 exhibited overall a rather low gene expression. The gene expression of DCHS1
and also, though to a lesser extent, Cables1, appeared heterogeneous among the different
cell cultures.

Concerning gene regulation under TMZ-promoted cellular dormancy entry and exit,
differences were observed amongst the regarded cells. Overall, a more homogeneous pat-
tern of gene regulation was found, particularly within the primary culture group. Whereas
most of the examined genes exhibited an upregulation in dormancy entry and exit in the
primary cultures, the cell lines revealed a more complex profile of gene regulation (Figure 1).
In detail, in LN229, CCRL1 showed downregulation, albeit only in tendency, both enter-
ing and leaving quiescence. Furthermore, a statistically significant upregulation of gene
expression was observed for SLFN13 (p = 0.017), whereas Cables1 (p = 0.028) and DCHS1
(p = 0.026) revealed a downregulation in TMZ-promoted dormancy exit. Furthermore,
Cables1 (p = 0.008) and DCHS1 (p = 0.026) showed a significantly higher gene expression
after 15 days of stimulation with DMSO in comparison to 10 days of stimulation. Albeit
not statistically significant, SKI was found to be slightly upregulated during the entry
and downregulated during the exit of TMZ-promoted dormancy; however, high standard
deviations were observed. U251 cells revealed the downregulation of CCRL1 (p = 0.016)
after 15 days of stimulation with TMZ in comparison to 10 days. Contrary to this, SLFN13
(p = 0.019) was found to be upregulated after 15 days of stimulation with TMZ. In ac-
cordance with LN229, the expression of SKI tended to be downregulated during TMZ-
promoted dormancy exit in U251 cells, and a significant downregulation was observed
when comparing 10 and 15 days of TMZ stimulation (p = 0.049). Whereas Cables1 re-
vealed a downregulation during TMZ-promoted dormancy entry (p = 0.004) and a trend of
upregulation during exit, DCHS1 was downregulated in both scenarios (p entry = 0.011;
p exit < 0.001). In addition, DCHS1 revealed an upregulation after 15 days of stimulation
with DMSO versus 10 days (p = 0.016), and a downregulation after 15 days of stimula-
tion with TMZ in comparison to after 10 days of treatment (p = 0.005). Concerning the
primary cultures, tendencies or even statistically significant upregulations for CCRL1 (PCa:
p entry = 0.021) and Cables1 (PCa: p entry = 0.003; p exit < 0.001; PCb: p exit < 0.001) during
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TMZ-promoted dormancy entry and exit were observed. Whereas SLFN13 was found to be
upregulated during the entry and exit of TMZ-promoted dormancy in PCa (p entry = 0.022;
p exit < 0.001), no expression of the gene was observed in PCb. However, DCHS1 (p < 0.001),
which was only detected in a low amount and not significantly regulated in PCa under
TMZ-promoted dormancy, revealed an upregulation during dormancy exit in PCb. In
PCa, SLFN13 (p = 0.007) and Cables1 (p < 0.001), and in PCb, Cables1 (p = 0.004) and
DCHS1 (p < 0.001), exhibited upregulation after 15 days of TMZ stimulation in comparison
to 10 days of stimulation. Data are presented in Figure 1.
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Figure 1. Gene regulation under TMZ-promoted cellular dormancy entry and exit. Gene expression
under TMZ-promoted cellular dormancy entry and exit was analyzed by qRT–PCR (n = 3 biological
replicates, n = 2 technical replicates each). After the treatment of cell lines (LN229, U251) and
primary cultures (PCa, PCb) with 500µM TMZ or 0.5% (v/v) DMSO, respectively, for 10 days,
followed by 15 days without TMZ stimulation, gene expression levels were detected after 10 days
of stimulation (dormancy entry) and another 15 days without stimulation (dormancy exit). Gene
regulation after TMZ stimulation was statistically analyzed by two-way ANOVA with Bonferroni’s
multiple-comparison post hoc test. * p < 0.05, ** p < 0.01, and *** p < 0.001. DMSO: Dimethyl
sulfoxide; TMZ: Temozolomide; PCa/b: Primary culture a/b; CCRL1: Chemokine (C-C Motif)
Receptor-Like 1; SLFN13: Schlafen 13; SKI: Sloan-Kettering Institute; Cables1: Cdk5 and Abl Enzyme
Substrate 1; DCHS1: Dachsous Cadherin-Related 1; qRT–PCR: Reverse transcription and quantitative
real-time polymerase chain reaction; ANOVA: analysis of variance.

3.2. Expression and Correlation of Selected Genes with Each Other in Patient-Derived
Glioblastoma (GBM) Ex Vivo Samples

Next, we examined the basal gene expression of the selected genes in human GBM ex
vivo samples to validate our previous findings. All of the selected genes were detected in
the patient’s material at different levels. The highest gene expression level was again found
for SKI (average ∆CT = 3.44), followed by DCHS1 (average ∆CT = 4.23). SLFN13 (average
∆CT = 6.87), CCRL1 (average ∆CT = 7.19), and Cables1 (average ∆CT = 7.22) altogether
exhibited similar comparatively lower gene expression levels (see Figure 2A).
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3-phosphate dehydrogenase; GBM: Glioblastoma; qRT–PCR: Reverse transcription and quantitative
real-time polymerase chain reaction.

To determine potential links between the selected genes, a correlation analysis was per-
formed. All genes revealed positive correlations with each other. Particularly strong correla-
tions were found for CCRL1 and SLFN13 (corr. = 0.91), SLFN13 and Cables1 (corr. = 0.97),
and CCRL1 and Cables1 (corr. = 0.85). Medium correlations were detected for SKI and
DCHS1 (corr. = 0.73), SKI and Cables1 (corr. = 0.69), SKI and CCRL1 (corr. = 0.68), Cables1
and DCHS1 (corr. = 0.62), and DCHS1 and CCRL1 (corr. = 0.56) (see Figure 2B).

3.3. Co-Staining Patterns of Selected Molecules with Each Other in Patient-Derived Glioblastoma
(GBM) Ex Vivo Samples

Given the positive correlations found between the selected genes, immunofluorescence
double staining of the respective molecules with each other was performed. Since this is a
non-quantitative methodology and, in most cases, only individual or small groups of cells
exhibit clear co-staining, a purely qualitative assessment of staining was performed here.
Overall, staining for all five proteins was detected in the GBM samples. A co-staining of the
molecules and solely positive cells was observed in all different staining combinations in
varying amounts. Whereas most of the markers revealed either direct co-staining or solely
positive cells, SLFN13 and Cables1 also often seemed to be stained in different structures of
the same cell. Representative staining examples are shown in Figure 3.

3.4. Cellular Sources of Selected Molecules in Patient-Derived Glioblastoma (GBM) Ex Vivo Samples

To identify the cellular sources of the investigated genes, immunofluorescence double
staining of the selected molecules with cell type-specific markers was carried out. Von
Willebrand factor (vWF) served as a marker for endothelial cells, a cluster of differentiation
molecule (CD)11b tagged microglia, and glial fibrillary acidic protein (GFAP) detected
cells of astroglial origin. Furthermore, the stemness markers octamer binding transcription
factor (OCT)4, sex-determining region Y-box (Sox)2, and krüppel-like factor (KLF)4 were
used to detect a possible link of the markers to tumor stem-like cells.
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CCRL1, SLFN13, SKI, Cables1, and DCHS1 were stained with or nearby vWF to
different extents. Whereas SLFN13, SKI, and Cables1 mainly exhibited direct co-staining
with vWF, respectively, DCHS1 and especially CCRL1 also seemed to be expressed in
different structures of the same vWF-positive cell. Concerning the microglial marker,
CD11b, CCRL1, SLFN13, SKI, and DCHS1 seemed to be expressed in different structures of
the same CD11b-positive cell. In contrast, Cables1 revealed either a co-staining or was found
to be stained separate from CD11b. All of the examined dormancy-associated markers were
also found to be stained in GFAP-positive areas. In particular, SKI, Cables1, and DCHS1
revealed a co-staining with GFAP. Interestingly, all of the mentioned markers exhibited
individual co-staining patterns with stemness markers. Since tumor stem-like cells are
known to represent only a small subpopulation within the total tumor mass (ranging from
~2–20% depending on GBM and stem-like cell subtypes [31]), only single or small groups
of double-positive cells have usually been found. Whereas CCRL1, SLFN13, and SKI most
frequently appeared directly co-stained with the investigated stemness markers, Cables1
and DCHS1 also often seemed to be stained in different structures of the same cell. Single
positive cells for all examined markers were detected. Representative staining examples
are presented in Figure 4.
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Figure 3. Immunofluorescence double-staining of the selected molecules. Human GBM ex vivo sec-
tions (n = 5, different patients; n = 1, technical replicate for each patient) were immunofluorescently
stained regarding the presence of co-staining (yellow) for CCRL1, SLFN13, SKI, Cables1, and DCHS1
(green and red, respectively). Nuclei appear blue. Magnification 400×; white bar = 20µm. CCRL1:
Chemokine (C-C Motif) Receptor-Like 1; SLFN13: Schlafen 13; SKI: Sloan-Kettering Institute; Cables1:
Cdk5 and Abl Enzyme Substrate 1; DCHS1: Dachsous Cadherin-Related 1; GBM: Glioblastoma.

3.5. Correlation Analysis of Dormancy-Associated Genes and Stemness Markers in
Patient-Derived Glioblastoma (GBM) Ex Vivo Samples

Based on the previously described finding of a co-staining for CCRL1, SLFN13, SKI,
Cables1, and DCHS1 with stemness markers, respectively, we examined the gene expres-
sions of OCT4, Sox2, and KLF4 in human GBM ex vivo samples. All stemness markers were
clearly detected in the samples to different extents (Figure 5). The highest gene expression
was found for Sox2 (average ∆CT = 4.37), followed by KLF4 (average ∆CT = 7.0), and
OCT4 (average ∆CT = 7.14). To validate the detected link between the genes regulated
under TMZ-promoted dormancy and the stemness markers, we performed a correlation
analysis. Positive correlations were found, especially for the stemness markers OCT4 and
KLF4 with CCRL1, SLFN13, and SKI. In detail, medium correlations were found for OCT4
and SKI (corr. = 0.79), CCRL1 (corr. = 0.74), and SLFN13 (corr. = 0.68); and for KLF4 and
CCRL1 (corr. = 0.75), SKI (corr. = 0.74), SLFN13 (corr. = 0.68), and Cables1 (corr. = 0.58).
Sox2 exhibited medium correlations with DCHS1 (corr. = 0.65), and CCRL1 (corr. = 0.54).
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Sox2 and Cables1 (corr. = 0.47), as well as Sox2 and SLFN13 (corr. = 0.45) only revealed
weak correlations.
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Figure 4. Source of molecules regulated under TMZ-promoted dormancy. Human GBM ex vivo
sections (n = 5, different patients; n = 1, technical replicate for each patient) were immunofluores-
cently stained regarding the presence of a co-staining (yellow) for CCRL1, SLFN13, SKI, Cables1, and
DCHS1 (green) with the cell type-specific markers vWF, CD11b, and GFAP and the stemness markers
OCT4, Sox2, and KLF4 (red). Nuclei appear blue. Magnification 400×; white bar = 20µm. CCRL1:
Chemokine (C-C Motif) Receptor-Like 1; SLFN13: Schlafen 13; SKI: Sloan-Kettering Institute; Cables1:
Cdk5 and Abl Enzyme Substrate 1; DCHS1: Dachsous Cadherin-Related 1; vWF: Von Willebrand
factor; CD11b: Cluster of differentiation molecule 11b; GFAP: Glial fibrillary acidic protein; OCT4:
Octamer binding transcription factor 4; Sox2: Sex determining region Y-box 2; KLF4: Krüppel-like
factor 4; TMZ: Temozolomide; GBM: Glioblastoma.

3.6. Expression of Selected Genes in Stem-like Cells Generated from Glioblastoma (GBM) Cell Lines
or Patient-Derived Primary Cultures

To further validate the link between CCRL1, SLFN13, SKI, Cables1, and DCHS1 with
stemness properties, we examined their expression in stem-like cells of different GBM cell
lines and patient-derived primary cultures.

In most cases, the markers were detectable in the stem-like cells generated from
commercial cell lines to different extents. Overall, the highest gene expression in all
stem-like cell lines was observed for SKI. The other markers revealed a rather heteroge-
nous pattern between the different stem-like cell lines, which was especially observed
for SLFN13 and Cables1. In LN229, the gene expression of SKI (average ∆CT = 7.65) was
followed by CCRL1 (average ∆CT = 9.31), DCHS1 (average ∆CT = 10.96), Cables1 (average
∆CT = 12.02), and SLFN13 (average ∆CT = 13.89). In U251, the gene expression of SKI
(average ∆CT = 6.05) was followed by DCHS1 (average ∆CT = 8.92), Cables1 (average



Cells 2023, 12, 1491 10 of 22

∆CT = 10.66), CCRL1 (average ∆CT = 11.02), and SLFN13 (average ∆CT = 11.91). In
U87MG, the gene expression of SKI (average ∆CT = 7.38) was followed by CCRL1 (average
∆CT = 10.47), DCHS1 (average ∆CT = 11.18), SLFN13 (average ∆CT = 14.06), and Cables1
(average ∆CT = 16.57). Finally, in T98G, the gene expression of SKI (average ∆CT = 7.45)
was followed by CCRL1 (average ∆CT = 10.16), Cables1 (average ∆CT = 10.50), DCHS1
(average ∆CT = 13.14), and SLFN13 (average ∆CT = 15.77). The data are displayed in
Figure 6.
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Figure 5. Gene expression of stemness markers in GBM ex vivo samples and their correlation with
genes regulated under TMZ-promoted dormancy. (A) Basic gene expression levels were detected in
human GBM ex vivo samples (n = 10; n = 2, technical replicates each) by qRT–PCR. Lines represent
the mean gene expression for each gene (∆CT 3.3 = 10-fold expression difference). (B) The correlation
of gene expression was analyzed by the Pearson correlation index. A darker shade of red corresponds
to a higher correlation value. Non-statistically significant correlations are marked by n.s.. OCT4:
Octamer binding transcription factor 4; Sox2: Sex determining region Y-box 2; KLF4: Krüppel-like
factor 4; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; CCRL1: Chemokine (C-C Motif)
Receptor-Like 1; SLFN13: Schlafen 13; SKI: Sloan-Kettering Institute; Cables1: Cdk5 and Abl Enzyme
Substrate 1; DCHS1: Dachsous Cadherin-Related 1; GBM: Glioblastoma; TMZ: Temozolomide;
qRT–PCR: Reverse transcription and quantitative real-time polymerase chain reaction.
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Figure 6. Expression of genes regulated under TMZ-promoted dormancy in stem-like cells generated
from commercial cell lines. Basic gene expression levels were detected in stem-like cells from
LN229, U251, U87MG, and T98G GBM cells (n = 3–6; n = 2, technical replicates each) by qRT–
PCR. Lines represent the mean gene expression for each gene, the symbol tags the respective cell
line (∆CT 3.3 = 10-fold expression difference). CCRL1: Chemokine (C-C Motif) Receptor-Like 1;
SLFN13: Schlafen 13; SKI: Sloan-Kettering Institute; Cables1: Cdk5 and Abl Enzyme Substrate 1;
DCHS1: Dachsous Cadherin-Related 1; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; TMZ:
Temozolomide; qRT–PCR: Reverse transcription and quantitative real-time polymerase chain reaction.
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Except for SLFN13 (∆CT = 11.08), the patient-derived GBM stem-like cells (n = 8) also
mostly revealed an expression of the examined markers. DCHS1 (average ∆CT = 7.26)
exhibited the highest gene expression among all markers, closely followed by SKI (average
∆CT = 7.44). The lowest gene expressions were observed for Cables1 (average ∆CT = 11.15),
and CCRL1 (average ∆CT = 12.00). Data are shown in Figure 7.
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Figure 7. Expression of genes regulated under TMZ-promoted dormancy in patient-derived stem-
like cells. Basic gene expression levels were detected in patient-derived GBM stem-like cells
(n = 8; n = 2, technical replicates each) by qRT–PCR. Lines represent the mean gene expression for
each gene (∆CT 3.3 = 10-fold expression difference). CCRL1: Chemokine (C-C Motif) Receptor-Like
1; SLFN13: Schlafen 13; SKI: Sloan-Kettering Institute; Cables1: Cdk5 and Abl Enzyme Substrate 1;
DCHS1: Dachsous Cadherin-Related 1; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; TMZ:
Temozolomide; qRT–PCR: Reverse transcription and quantitative real-time polymerase chain reaction.

3.7. Expression and Regulation of Selected Genes under Temozolomide-Promoted Cellular
Dormancy in Stem-like Cells and Neurosphere Formation Assay

To further corroborate our findings, next, we examined the gene expression of CCRL1,
SLFN13, SKI, Cables1, and DCHS1 under TMZ-promoted dormancy entry and exit in
LN229 and U251 stem-like cells. The data are displayed in Figure 8.

Interestingly, the results in LN229 and U251 stem-like cells showed similar trends to
those obtained for native LN229 and U251, although there were clear differences in some
aspects (please compare to Figure 1). For example, in the LN229 and the U251 stem-like
cells, similar to the respective native cells, SKI showed the highest expression in both
dormancy entry and exit. Similar to the native cells, a statistically significant induction of
SKI was observed for both stem-like cell types after 10 days of TMZ stimulation compared
to the control (LN229: p = 0.015; U251: p = 0.0216), which was more pronounced in LN229
stem-like cells. When considering dormancy exit, SKI was slightly downregulated in LN229
stem-like cells, but further induced in U251 stem-like cells, and this was also in contrast to
native U251 cells (p < 0.0001). CCRL1 and SLFN13 were rather lowly expressed in both
stem-like cell types but showed partly significant induction of gene expression compared to
the controls, respectively, after 10 days of TMZ stimulation and a further 15 days of recovery
(CCRL1, LN229, entry: p = 0.0170; CCRL1, U251 entry and exit: p = 0.0001; SLFN13, U251,
entry: p = 0.0004, and exit: p < 0.0001). The Cables1 expression level was at a rather low
level in LN229 and U251 stem-like cells and was partially significantly induced in both
cell types in dormancy entry and exit (U251 entry and exit: p = 0.0005). Interestingly, this
aspect was not observed in native LN229 and U215 cells. Finally, a strong statistically
significant reduction in DCHS1 expression in dormancy exit was observed, particularly in
LN229 stem-like cells (p < 0.0001), which was consistent with the results observed in native
LN229 cells. DCHS1 expression in U251 stem-like cells was more intermediate and was
significantly induced in dormancy exit (p < 0.0096), whereas a reduction in gene expression
was observed in native U251 cells in dormancy exit compared to the control.
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Figure 8. Gene regulation under TMZ-promoted cellular dormancy entry and exit in stem-like
cells. Gene expression under TMZ-promoted cellular dormancy entry and exit was analyzed by
qRT–PCR (n = 3, biological replicates; n = 2, technical replicates each). After the treatment of
LN229 and U251 stem-like cells with 500µM TMZ or 0.5% (v/v) DMSO, respectively, for 10 days
followed by 15 days without TMZ stimulation, gene expression levels were detected after 10 days
of stimulation (dormancy entry) and another 15 days without stimulation (dormancy exit). Gene
regulation after TMZ stimulation was statistically analyzed by two-way ANOVA with Bonferroni’s
multiple-comparison post hoc test. * p < 0.05, ** p < 0.01, and *** p < 0.001. DMSO: Dimethyl
sulfoxide; TMZ: Temozolomide; CCRL1: Chemokine (C-C Motif) Receptor-Like 1; SLFN13: Schlafen
13; SKI: Sloan-Kettering Institute; Cables1: Cdk5 and Abl Enzyme Substrate 1; DCHS1: Dachsous
Cadherin-Related 1; qRT–PCR: Reverse transcription and quantitative real-time polymerase chain
reaction; ANOVA: analysis of variance.

To further support these results, we next performed neurosphere formation assays with
extreme limiting dilution analysis (ELDA) to investigate sphere formation capacity after
pretreatment with TMZ for 3 or 10 days. Here, previous work by our group using native
LN229 as an example has shown that LN229 cells pretreated with TMZ for 10 days exhibited
a higher self-renewal capacity compared to cells pretreated for a shorter time, yielding
sphere formation even at high dilutions [3]. Since these studies were previously performed
only with native LN229, we now performed ELDA analysis with patient-derived primary
cells (native PCa cells). The data are displayed in Figure 9. Similar to the results observed for
LN229 cells, 10 days of pretreatment with TMZ resulted in a higher neurosphere formation
capacity of PCa cells in comparison to 3 days of pretreatment (Figure 9A). In accordance
with this, induction of the stemness markers OCT4 and KLF4 was more pronounced after
10 days of TMZ pretreatment, whereas Sox2 expression remained unaffected (Figure 9B).

3.8. Gene Set Enrichment Analysis and Inhibition of Sloan-Kettering Institute (SKI)

As the relationship between the expression of CCRL1, SLFN13, SKI, Cables1, and
DCHS1 and the stemness characteristics of GBM cells became increasingly clear based on
our results, we next performed gene set enrichment analyses. We used the microarray-
based transcriptome datasets previously published by our group, which analyzed the
regulation of gene expression during TMZ-promoted entry and exit from cellular dormancy
in GBM cells [6]. In detail, up- and downregulated genes comparing the groups of TMZ
versus DMSO in both dormancy entry and exit were used for analysis.

Indeed, the stemness GO term GO:0019827 (stem cell population maintenance) yielded
significant results (p = 0.019) for the comparison between TMZ versus DMSO in dormancy
entry. Genes assigned to this GO term also included SKI. All data from the gene set
enrichment analysis are given in Supplementary Tables S3 and S4, and the significantly
regulated GO terms of the comparison of TMZ versus DMSO in dormancy entry and exit
are visualized in a heatmap in Supplementary Figure S1.
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Figure 9. Self-renewal capacity, ELDA, and qRT–PCR analysis. Native primary culture (PCa) cells
were stimulated with 500 µM TMZ for 10 and 3 days, and (A) self-renewal capacity was determined
under stem cell culture conditions with ELDA (n = 2). Briefly, cells were plated in decreasing
numbers from 1600 cells/well to 1 cell/well. Cultures were maintained until day 10 when the
number of spheres per well and wells containing spheres for each cell plating density (number of
positive cultures) were recorded and plotted using online ELDA program25; http://bioinf.wehi.
edu.au/software/elda, accessed on 13 April 2023; (B) expression of stemness markers OCT4, Sox2,
and KLF4 was determined by qRT–PCR. The induction of gene expression upon stimulation with
TMZ was displayed as n-fold expression changes = 2∆CT control − ∆CT stimulus. Error bars correspond
to the standard deviation. TMZ: Temozolomide; DMSO: Dimethyl sulfoxide; OCT4: Octamer
binding transcription factor 4; Sox2: Sex determining region Y-box 2; KLF4: Krüppel-like factor 4;
ELDA: extreme limiting dilution analysis; qRT–PCR: Reverse transcription and quantitative real-time
polymerase chain reaction.

Since SKI appeared to be particularly important in TMZ-promoted dormancy and its
link to stemness, finally, we examined to what extent TMZ application with the simultane-
ous inhibition of SKI led to increased cytotoxicity and a decreased proliferation of GBM
cells compared to TMZ treatment alone. Using our previously established in vitro model,
native LN229 cells were stimulated with TMZ alone or in combination with Disitertide for
10 days, after which TMZ was omitted but Disitertide was added for an additional 11 days.
Disitertide (also known as P144) itself is a TGF-β inhibitor, which also mediates its efficacy
via the downregulation of SKI at both transcriptional and translational levels [32]. The
number of dead cells was examined by cytotoxicity assay after 10 and 21 days of treatment,
respectively, and the proliferation of cells was also analyzed over the course of treatment.
In parallel, we determined the gene expression of SKI in the Disitertide-treated LN229 cells
by qRT–PCR. The results are shown in Figure 10. After both 10 and 21 days of Disitertide

http://bioinf.wehi.edu.au/software/elda
http://bioinf.wehi.edu.au/software/elda
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stimulation, the significant inhibition of SKI gene expression was observed compared to
unstimulated controls (10 days: p < 0.0002; 21 days: p < 0.0001; Figure 10A). Similarly, a sig-
nificantly increased cytotoxicity of the combination therapy of TMZ + Disitertide compared
to TMZ stimulation alone was observed, especially after 21 days of treatment (Figure 10B;
~20% dead cells with TMZ alone, up to ~70% dead cells with TMZ + Disitertide; p < 0.0011).
In line with this, treatment with TMZ + Disitertide significantly decreased the proliferation
of LN229 to a higher extent in comparison to after the administration of TMZ alone (TMZ
alone: p < 0.0087; TMZ + Disitertide: p < 0.0083, compared to control, respectively).
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Figure 10. Cytotoxic and antiproliferative effect of TMZ application with simultaneous inhibition
of SKI in GBM cells. LN229 cells were treated with TMZ + Disitertide (500 µM TMZ, 100 µg/mL
Disitertide) for 10 days, followed by another 11 days without TMZ stimulation but with continuous
addition of Disitertide (100 µg/mL). (A) Gene expression of SKI was quantified by qRT–PCR at
different time points of treatment. The induction of gene expression upon stimulation with Disiter-
tide was displayed as n-fold expression changes = 2∆CT control − ∆CT stimulus. (B) Death rates were
obtained by performing a cytotoxicity assay after 10 and 21 days of stimulation, respectively. The
cell survival/proliferation was determined by counting viable cells at days 0, 10, and 21 of the
treatment. The percentages [%] of dead cells were calculated as the n-fold number of viable cells.
n = 2, biological replicates, with n = 2, technical replicates each. The significances between different
stimulations were determined using either a two-tailed Student’s t-test (A) or a two-way ANOVA test
followed by a Tukey´s multiple-comparison test (B) (** p < 0.01; *** p < 0.001). Error bars correspond
to the standard deviation. TMZ: Temozolomide; SKI: Sloan-Kettering Institute; GBM: Glioblastoma;
qRT–PCR: Reverse transcription and quantitative real-time polymerase chain reaction; ANOVA:
analysis of variance.

To further examine whether TMZ application with the simultaneous inhibition of SKI
affected stemness properties, we performed neurosphere formation assays with ELDA
to investigate the sphere formation capacity of native LN229 cells stimulated for 10 days
with TMZ alone or with TMZ in combination with Disitertide. The results are shown in
Figure 11. Indeed, compared with TMZ treatment alone, the surviving native LN229 cells
of the TMZ + Disitertide stimulation showed a lower ability to form neurospheres, which
indicated the inhibition of stemness capacity and further supported the higher efficiency of
the combination therapy (Figure 11A). In agreement with this, a lower expression of KLF4
was also detected in cells treated for 10 days with TMZ + Disitertide (Figure 11B, p = 0.006).
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Figure 11. Self-renewal capacity, ELDA, and qRT–PCR analysis. Native LN229 cells were stimulated
with 500 µM TMZ or TMZ + Disitertide (500 µM TMZ, 100 µg/mL Disitertide) for 10 days, and
(A) self-renewal capacity was determined under stem cell culture conditions with ELDA (n = 2).
Briefly, cells were plated in decreasing numbers from 1600 cells/well to 1 cell/well. Cultures were
maintained until day 10 when the number of spheres per well and wells containing spheres for each
cell plating density (number of positive cultures) were recorded and plotted using online ELDA
program25; http://bioinf.wehi.edu.au/software/elda, accessed on 13 April 2023; (B) expression
of stemness markers OCT4, Sox2, and KLF4 was determined by qRT–PCR. The induction of gene
expression upon stimulation was displayed as n-fold expression changes = 2∆CT control − ∆CT stimulus.
The significances between different stimulations were determined using either a two-tailed Stu-
dent’s t-test or a one-way ANOVA test followed by a Tukey´s multiple-comparison test (** p < 0.01;
*** p < 0.001). Error bars correspond to the standard deviation. TMZ: Temozolomide; DMSO: Dimethyl
sulfoxide; OCT4: Octamer binding transcription factor 4; Sox2: Sex determining region Y-box 2; KLF4:
Krüppel-like factor 4; ELDA: extreme limiting dilution analysis; qRT–PCR: Reverse transcription and
quantitative real-time polymerase chain reaction; ANOVA: analysis of variance.

Overall, our study suggests the involvement of CCRL1, SLFN13, SKI, Cables1, and
DCHS1 in TMZ-promoted dormancy and demonstrated their link to stemness with SKI
being particularly important.

http://bioinf.wehi.edu.au/software/elda
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4. Discussion

GBM is the most aggressive primary brain tumor known and still an incurable disease
with a medium life expectancy of 15 months despite surgery, and radio- and chemother-
apy [1]. One of the reasons for this disastrous prognosis is the high therapy resistance,
which has been shown to be linked to distinct phenomena such as, e.g., dormancy [3]. The
currently used chemotherapeutic agent in GBM, TMZ, itself does promote dormancy. In
the previous work of our group, we identified different genes which were regulated during
drug-promoted dormancy entry and exit [6]. Focusing on genes already described to be
involved in tumor development, progression, or repression of malignancies, and to be
connected to the phenomenon of stemness in the broadest sense, we selected five promising
genes associated with TMZ-promoted dormancy in GBM, namely CCRL1, SLFN13, SKI,
Cables1, and DCHS1, for further validation.

We observed differences in the gene regulation patterns of chosen molecules under
TMZ-promoted dormancy entry and exit between different GBM cell cultures. Whereas
patient-derived GBM primary cultures revealed an upregulation of most of the markers
during the entry and exit of dormancy, cell lines exhibited a more heterogeneous gene-
regulation pattern.

GBM is known to exhibit a vast molecular intra- and inter-tumoral heterogeneity,
which might account for the differences in the gene regulation observed. Intense research
and technical advancements have yielded a subclassification of the tumor into either a clas-
sical, mesenchymal, and proneural subtype depending on the molecular signature [2]. Fur-
thermore, the O6-methylguanine-DNA methyltransferase (MGMT) expression status does
significantly affect TMZ response. Silencing of the DNA-repair enzyme MGMT by its pro-
moter methylation abolishes its inhibitory effects against alkylating agents such as TMZ [33].
Additionally, more and more molecular markers are identified, which might affect gene
regulation under TMZ-promoted dormancy entry and exit in a complex way [34–36], and
hence contribute to the heterogeneous picture of gene regulation between the different
GBM cells found. Concerning the investigated markers, to date, only CCRL1 was examined
regarding its general gene expression in different molecular subtypes of GBM (isocitrate
dehydrogenase mutant vs. wildtype, 1p19q codeletion vs. no codeletion). In this specific
context, no clear expression changes were found [37].

Consistent with the upregulation of most of the markers during the entry into and
exit from dormancy observed in the primary cultures, our study revealed a relationship
between CCRL1, SLFN13, SKI, Cables1, and DCHS1 as indicated by co-staining and
correlation analysis of their gene expressions. To date, no further studies focusing on
a connection between these markers exist. Concerning the function of the respective
markers, SLFN13, CCRL1, and SKI, especially, were shown to exert tumor-promoting
effects in different malignancies. In accordance with the mainly observed upregulation
of SLFN13 during TMZ-promoted dormancy exit in our study, previous investigations
revealed an increase in the gene expression with progressive glioma grade and hence with
incremental aggressive properties [38]. Concerning CCRL1, which was also mainly found to
be upregulated during TMZ-promoted dormancy exit in the primary cultures in our study,
previous studies documented a reduction in the adherence of cancer cells to each other
and to extracellular matrix proteins, and the promotion of EMT by CCRL1 in breast cancer
cells [10,39]. However, CCRL1 was also shown to execute opposite effects as an inhibitor
of tumor cell proliferation, a reduction in EMT properties, and the tumor cell migration
in breast-cancer, hepatocellular, and, nasopharyngeal carcinoma [7–9]. As mentioned
above and in accordance with the correlations of SKI with CCRL1 and SLFN13 found in
our study, SKI was mainly postulated to exert tumor-promoting effects [13–15]. Various
mechanisms were identified to investigate its function as an influence on Wnt/beta-catenin,
phosphatidylinositol 3-kinase/protein kinase B and transforming growth factor (TGF)-ß
signaling pathway [40–42]. Despite Chen et al. also postulating a tumor-suppressive
function in lung cancer [12], in GBM, SKI was shown to negatively regulate the TGF-β
signaling pathway, leading to the promotion of tumor progression [43]. Nevertheless, in the
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specific setup of TMZ-promoted dormancy exit, SKI revealed a reduced gene expression
in our study. In accordance with these contradictory findings, the downregulation of
SKI by small interfering ribonucleic acid in pancreatic cancer cells resulted in decreased
proliferation, whilst, at the same time also increasing EMT, and invasive and metastatic
features were observed [43,44]. The mainly observed upregulation of Cables1 and DCHS1
during dormancy entry and exit in the primary cultures, and the correlations found with
CCRL1, SLFN13, and SKI seem contradictory considering the tumor-restricting functions
of Cables1 and DCHS1, both located on the same chromosome 18q [22,45], as postulated
in the literature. Despite Wu et al. postulating an overexpression of Cables1 in breast and
pancreatic cancers [19], most of the previous studies documented a very frequent loss of
Cables1 in multiple types of cancer which promoted tumor progression [45]. DCHS1 was
also proposed as a tumor suppressor gene candidate in gestational and non-gestational
choriocarcinomas [22], and was found to be downregulated in colorectal tumors [23]. To
date, no data regarding the expression of Cables1 in GBM are publicly available. In our
study, Cables1 was clearly detectable in all cell lines, primary cultures, and GBM ex vivo
samples. The interferences of all the genes can be documented concerning their molecular
mechanisms of action. For instance, SKI, Cables1, and DCHS1 were all shown to be
involved in the Wnt signaling pathway [40,45,46].

However, besides tumor cells, endothelial cells and tumor-associated microglia/macrophages
were shown to account for the gene expression of the regarded markers. This finding might
also contribute to the connection between the markers observed. Supporting our observa-
tions, atypical chemokine receptors, such as CCRL1, are known to be involved in adherence
to endothelium and the extravasation from blood vessels [47]. Furthermore, CCRL1,
SLFN13, SKI, Cables1, and DCHS1 were all found to be expressed in endothelial cells to
different extents [48–51]. A particularly high expression was detected for SKI and DCHS1,
whereas CCRL1 and SLFN13 only exhibited a low gene expression in endothelial cells [49].
Concerning the expression of the markers in tumor-associated microglia/macrophages
and in accordance with our findings, an expression of SKI, Cables1, and DCHS1 was also
described by previous studies [52–56]. Even though data concerning neither an expression
of CCRL1 nor SLFN13 in tumor-associated microglia/macrophages are yet publicly avail-
able, both markers were previously described to be involved in immunological processes.
Whereas CCRL1 controlled intratumor T cell accumulation and activation in a murine
mammary cancer cell line [57], SLFN13 was described as an immune-related biomarker
that might predict tumor recurrence in lung cancer after curative resection [58].

After performing co-staining and correlation analyses of the studied molecules with
stemness-associated markers, and realizing expression studies in both stem-like cells gen-
erated from commercial GBM cell lines and patient-derived primary cultures, our results
showed, in a first using this approach, an association between CCRL1, SLFN13, Cables1,
DCHS1, and SKI, and stemness. Indeed, all the molecules studied were clearly expressed in
GSCs and exhibited co-staining with OCT4, Sox2, and KLF4 to varying extents, underscor-
ing the results of correlation analyses. Among them, CCRL1, SLFN13, and SKI particularly
showed a correlation with the expression of OCT4 and KLF4. When we examined regu-
lation during TMZ-promoted entry and exit from dormancy in GSCs, CCRL1, SLFN13,
Cables1, DCHS1, and SKI were regulated in complex patterns, confirming our results
from native GBM cell lines and patient-derived primary cultures. When neurosphere
formation assays were performed from TMZ-treated native GBM cells, the ability to form
neurospheres and the expression of stemness markers indeed increased during treatment.
Finally, gene set enrichment analyses indicated the importance of SKI in the phenomenon
of stemness in particular.

Consistent with our findings, Arslan et al. previously reported SLFN family members
of SLFN13 to be expressed in GSCs [38]. Additionally, DCHS1 was postulated as a suitable
marker and potential therapeutic target for minimally infiltrative GSCs, since it revealed a
low expression in developing neuroectodermal tissue, specific upregulation in GSCs, and a
potential angiogenic role in tumorigenesis [59]. Concerning SKI, a connection between SKI,
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OCT4, and Sox2 was also previously described by Song et al. in pancreatic cancer. Here,
enhanced SKI expression increased the expression of the pluripotency maintaining markers
such as Sox2 and OCT4, and also components of the sonic-hedgehog pathway (Shh),
indicating that SKI might be an important factor in maintaining the stemness of pancreatic
cancer stem cells through modulating the Shh pathway [60]. Since SKI is involved in the
TGF-ß signaling pathway as previously mentioned [42], which in turn is known to support
self-renewal of glioma-initiating stem cells [61], the TGF-ß/SKI pathway appears to be of
particular importance in GSCs. Indeed, when inhibiting SKI by Disitertide (P144) in our
in vitro model of TMZ-promoted dormancy entry and exit, higher cytotoxicity, a stronger
inhibition of GBM cell proliferation, and a reduced neurosphere formation capacity along
with lower expression of stemness markers were observed. Disitertide is a TGF-β inhibitor
peptide, which can decrease proliferation, migration, invasiveness, and tumorigenicity in
GBM cells in vitro by a reduction in SMAD2 phosphorylation, the downregulation of SKI
and the upregulation of SMAD7 [32]. Thus, in the context of TMZ-promoted entry and exit
from dormancy, additional inhibition of transcriptional target genes of the TGF-β pathway,
including SKI, appeared to result in a higher antitumor efficacy than TMZ treatment alone.
However, because Disitertide, as a TGF-β inhibitor peptide, did not exclusively act on SKI
expression, these effects cannot be attributed to the inhibition of SKI alone, although the
observed effects underscore the role of this molecule in TMZ-promoted dormancy in GBMs.

Despite not being explored in GSCs yet, CCRL1 and Cables1 were shown to be
connected to stemness. Whereas CCRL1 was found to label mesenchymal subpopulations
in an alveolosphere model of mice [62], Cables1 was detected most robustly in embryonic
neural tissues in zebrafish and hence postulated to be important for neural differentiation
during embryogenesis [17]. In the setting of hematopoiesis, Cables1 was also found to
be predominantly expressed in the progenitor cell compartment of bone marrow, hence
suggested to be a stemness marker [45].

Although one limitation of our study is the limited amount of cell lines and primary
cultures and the small sample sizes included, which prohibits the generalization of the
results, our study points to an involvement of CCRL1, SLFN13, Cables1, DCHS1, and partic-
ularly SKI in TMZ-promoted dormancy and reveals their connection to the phenomenon of
stemness. It seems that the roles of the markers in this disease are complex and also include
the tumor microenvironment. However, our study provides basic descriptive research with
initial insights into the functions of the selected genes during GBM progression. Further
studies are needed to elucidate the detailed impact and function of the selected genes
in GBM.

5. Conclusions

GBM still depicts an incurable disease due to phenomena such as dormancy—a
reversible growth arrest even promoted by the standard-of-care TMZ itself—and stemness.
These complex mechanisms, which contribute to the high therapy resistance of the disease,
consist of a large number of downstream factors, whose activities partly overlap and are
still not fully understood. In our study, CCRL1, SLFN13, SKI, Cables1, and DCHS1 were
all shown to be regulated under TMZ-promoted dormancy and, besides tumor cells, to be
expressed by endothelial cells and tumor-associated microglia/macrophages. Moreover,
all of the markers, and of particular importance, SKI, were shown to be related to stemness,
which highlights the connection between TMZ-promoted dormancy and this phenomenon.
Future research is required to investigate the distinct function of CCRL1, SLFN13, SKI,
Cables1, and DCHS1 in GBM. Only by understanding the mechanism involved will it be
feasible to overcome the enormous therapy resistance and improve the disastrous outcome
of GBM patients in the future.
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staining.; Table S3: gene enrichment analysis, dormancy entry, TMZ versus DMSO, regulated,
significant; Table S4: gene enrichment analysis, dormancy exit, TMZ versus DMSO, regulated,
significant. Figure S1: Heatmap of the significantly regulated GO terms of the comparison TMZ
versus DMSO in dormancy entry and exit.
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