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Abstract: Pluripotent stem cells are endless sources for in vitro engineering human tissues for
regenerative medicine. Extensive studies have demonstrated that transcription factors are the key
to stem cell lineage commitment and differentiation efficacy. As the transcription factor profile
varies depending on the cell type, global transcriptome analysis through RNA sequencing (RNAseq)
has been a powerful tool for measuring and characterizing the success of stem cell differentiation.
RNAseq has been utilized to comprehend how gene expression changes as cells differentiate and
provide a guide to inducing cellular differentiation based on promoting the expression of specific
genes. It has also been utilized to determine the specific cell type. This review highlights RNAseq
techniques, tools for RNAseq data interpretation, RNAseq data analytic methods and their utilities,
and transcriptomics-enabled human stem cell differentiation. In addition, the review outlines the
potential benefits of the transcriptomics-aided discovery of intrinsic factors influencing stem cell
lineage commitment, transcriptomics applied to disease physiology studies using patients’ induced
pluripotent stem cell (iPSC)-derived cells for regenerative medicine, and the future outlook on the
technology and its implementation.

Keywords: transcriptomics; human stem cell differentiation; RNA sequencing and data analysis;
differential gene expression

1. Introduction

Stem cells are able to differentiate into different cell types depending on their potency.
The two most utilized sources of human pluripotent stem cells (hPSCs) are human em-
bryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). They are utilized
in organ regeneration, cell and tissue transplantation, drug testing, tissue repair, wound
healing, and diverse disease treatments after induced lineage specification. Over the past
two decades, tremendous efforts have been made to generate favorable tissues or cell types
through in vitro stem cell differentiation with the proper extracellular conditions. Cell–cell
and cell–microenvironment interactions have a large impact on stem cell differentiation [1].
Extracellular matrix (ECM) compositions vary depending on the tissue type, which may
create better microenvironmental conditions to guide hPSC differentiation into specific cell
types and organoids [1–4]. In addition, the regulation of cellular transcriptome expression
plays an important role in stem cell lineage commitment [5,6]. Studies in this regard have
focused on understanding the complex interplay between gene expression and cell fate as
cells specify distinct lineages. Microfabricated substrates provided optimal topographical
placement for cell–cell interactions, promoting cell signaling for the lineage commitment
of stem cells [7–9]. Growth factor nanoparticle delivery has been implicated in osteogenic
differentiation, and laminin expression promotes differentiation into many cell types, in-
cluding cardiomyocytes, keratinocytes, and retinal cells [9,10]. However, the generation of
biologically mature cells/tissues from hPSCs has been challenging due to the complexity
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of stepwise developmental trajectories during differentiation and the multiple extrinsic
and intrinsic regulatory components. In the process of hPSC differentiation, transcription
factors are the most critical intrinsic regulators in cell fate decisions [11]. For example,
FLK2 and THY1.1 promote the lineage specification of hematopoietic stem cells (HSCs)
toward either short-term HSCs, long-term HSCs, or a multipotent progenitor population,
depending on the expression levels of the two genes [12]. Short- and long-term HSCs are
retained in the bone marrow and are characterized by the duration that they will remain as
HSCs. The characterized multipotent progenitor populations are related to either myeloid
progenitor cells or the more specified myeloid-committed oligopotent progenitor cells [12].
THY1.1lo− and FLK2− cells committed to a long-term HSC cell fate, THY1.1lo+ and FLK2+
cells differentiated into short-term HSCs, and the multipotent progenitor population was
characterized by THY1.1− and FLK2+ expression [12].

One approach to analyzing global transcriptome expression, including transcription
factors, is through RNA sequencing (RNAseq) and subsequent data analysis. RNAseq tech-
nologies generate the transcriptomic data of individual cells and allow the determination of
how gene expression varies through the comparison of differential gene expression (DGE)
among biological samples [13,14]. They generate high-quality genomic information for
single cells or groups of cells. Hence, they have been widely applied to characterize the
heterogeneity of hPSC-derived cells and cellular specification. Determining marker genes
for each cell type allows for the more accurate cell typing of individual cells. Promoting the
expression of these genes could also lead to increased differentiation toward that specific
fate. Furthermore, DGE analysis offers an indicative assessment of the status of hPSC
differentiation toward a specific cell or tissue type and the maturity of the hPSC-derived
cells and organoids. Due to high heterogeneity within tissues, it is important to screen
differentiated cells individually. Hence, single-cell RNA sequencing (scRNAseq) has been
utilized for high-throughput RNAseq data analysis to assess each individual cell’s biological
identity [15]. This review focuses on RNAseq techniques, tools for RNAseq data interpre-
tation, RNAseq data analytic methods and their utilities, and transcriptomics-enabled
human stem cell differentiation. In addition, the review outlines the potential benefits
of the transcriptomics-aided discovery of intrinsic factors influencing stem cell lineage
commitment, transcriptomics for disease physiology studies using patients’ iPSC-derived
cells, and the future outlook on the technology and its implementation.

2. RNAseq Techniques

RNAseq provides the transcriptomic information that gives a cell its own identity.
scRNAseq allows for gene expression analysis and interpretation at as low as the cellular
level [16]. It is performed by first extracting the RNA, reverse transcribing RNA to a cDNA
library, scaling up the generated cDNA library, and then sequencing the library [13,17–19].
Although the reverse transcription of RNA into cDNA might introduce some errors that
limit the accuracy of sequence quantification [20], the accuracy of RNAseq of bulk cells
is comparable to that of traditional quantitative reverse transcription PCR (qRT-PCR) in
both the gene expression level and transcriptome complexity [21]. Furthermore, single-
nucleus RNA sequencing (sNuc-Seq) that uses isolated nuclei is available with comparable
transcriptome analysis sensitivity and cell type classification ability [22]. Several different
single-cell and sNuc-Seq methods are utilized for sequencing. Table 1 highlights the
methods of different RNAseq techniques, their advantages, and their limitations. The
RNAseq methods can be either low throughput, such as Smart-seq2 and CEL-Seq2, or
high throughput, such as Drop-seq, Seq-Well, or sci-RNA-seq [22]. RNAseq has also been
accomplished by focusing specifically on the 5′-end with different methods, such as CAGE,
RAMPAGE, STRT, NanoCAGE XL, and Oligo-capping [23]. All methods provide useful
data but vary from one another in data consistency, cost, sensitivity, and duration [22].
sNuc-Seq is utilized for the sequencing of cells that are not easily separated into single
cells, such as those in the brain, muscle, and adipose tissue [22]. There are associated
limitations with sNuc-Seq since it does not consider transcriptomic data outside of the
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nucleus like scRNAseq or bulk RNAseq [22]. Bulk RNAseq differs from scRNAseq in
that it measures the average gene expression of many cells rather than an individual cell’s
genome expression. Thus, bulk RNAseq provides less data variability between samples
compared to scRNAseq or sNuc-Seq sequencing [22] and is unable to distinguish unique
cell populations in biological samples [24]. This limitation results from the inability to
separate cell types in heterogeneous tissues so that the average genome expression from
bulk sequencing cannot determine each cell type’s unique genome expression.

Table 1. RNAseq techniques applied in current research.

RNAseq Technique Description Advantages Limitations Methods References

Bulk RNAseq

Measures genome
expression of bulk sample
containing many cells and

averages expression

Lower data variability
between samples,

cost-effective

Cannot distinguish
unique cell populations

SMARTer
SuperScript II reverse

transcriptase from Invitrogen
Prime-seq method

[21,22,24,25]

scRNAseq
Measures genome

expression of
individual cells

Distinguishes unique
cell populations

Cannot accurately
distinguish gene
expression from

multinucleated cells

Tube-based sequencing methods:
SMARTer Ultra Low RNA Kit,

TransPlex kitMicrofluidic-based
sequencing methods: SMARTer
cDNA synthesis utilizing the C1

microfluidic system

[21,22]

sNuc-Seq
Measures genome

expression of
individual nuclei

Best method for
analyzing

multinucleated cells

Does not consider
genomic information
from outside of the

nucleus

Tube-based sequencing methods:
SMARTer Ultra Low RNA Kit,

TransPlex kit
Microfluidic-based sequencing

methods: SMARTer cDNA
synthesis utilizing the C1

microfluidic system

[21,22]

Temporal RNAseq

scRNAseq method for
analyzing genome

expression of individual
cells at different

time points

More complete data
acquisition compared to
scRNAseq, tracks gene

expression of
differentiating and

maturing cells

Very expensive; variable
differentiation rate can
lead to transcriptome

inconsistencies between
cells by assuming they

are at the same
differentiation step

Next-maSigPro
Modeling the Poisson

distribution’s rate parameter
[26,27]

Spatial RNAseq

scRNAseq method for
analyzing genome

expression of individual
cells within a measured

cluster to find location of
specific gene expression

Provides cell
transcriptomic

information at the
spatial level within

histological sections,
measures heterogeneity
of genomic information
and tissue architecture

at a cellular level

Very limited current
applications in research,
no applications in stem

cell differentiation

DBiT-seq for spatial omics
sequencing using

formaldehyde-fixed tissues
Spatial sequencing performed

with 2100 Bioanalyzer from
Agilent with Qubit dsDNAHS

Assay Kit from Life Technologies
and sequenced with Illumina

NextSeq sequencer

[28–31]

Spatiotemporal
RNAseq

scRNAseq method for
analyzing genome

expression that combines
spatial and

temporal RNAseq

Combines advantages
of spatial and temporal

sequencing to obtain
genomic information

and tissue architecture
of a histological section

over time

Very expensive, very
limited current

applications in research,
no applications in stem

cell differentiation

10x RNAseq Visium spatial
transcriptomic platform utilizing

PHATE trajectory analysis
[28,29,31–33]

Interestingly, certain RNAseq methods, such as Ribo-Zero, RNase H, duplex-specific
nuclease, NuGEN, and SMART, have been developed for low-input and degraded samples
with varying success [34]. The RNase H sequencing method was the most successful out
of the observed methods in obtaining high values for the number of genes detected, the
percentages of 5′ and 3′ covered, and Pearson correlation coefficients, with the lowest levels
of rRNA and coefficient of variation [34]. The comparison of 5′-to-3′ sequence coverage
for the observed low-input methods is shown in Figure 1. The Ribo-Zero sequencing
method was also effective in transcribing moderately degraded samples with comparable
5′-to-3′ coverage [34,35]. However, Ribo-Zero loses its effectiveness if the RNA input is
extremely degraded. In contrast, another method known as RNA Access RNAseq remains
effective even for severely degraded samples as long as the input sample is larger than
5 nanograms [35]. However, many sequencing methods are inadequate to use for these
samples due to poor observed performance and technical drawbacks [34]. These inadequate
RNAseq methods utilize oligo(dT) to isolate RNA, particularly poly(A)+ RNA [34]. These
methods could not generate significant results given low-quality or low-quantity readings
due to a failure to observe poly(A)− or ribosomal RNA transcripts. Nevertheless, oligo(dT)
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is utilized as a primer for the reverse transcription of RNA into cDNA for most high-
throughput scRNAseq methods, including 5′ capture, Drop-seq, Seq-well, sci-RNA-seq,
10x, and inDrop [36,37]. It is also utilized for a few low-throughput scRNAseq methods,
such as Smart-seq and CEL-seq, and bulk sequencing methods, such as TagSeq, QuantSeq,
and 3′ Pool-seq [37]. While oligo(dT)-related RNAseq methods are not optimal for degraded
sample sequencing, methods such as RNase H, Ribo-Zero, NuGEN, and SMART can more
effectively transcribe limited transcriptomic information [34].

Figure 1. The 5′-to-3′ sequence coverage of low-quantity and low-quality samples utilizing differ-
ent RNAseq analysis techniques. Reproduced with permission from Adiconis, Nature Methods;
published by Springer Nature, 2013 [34].

Additionally, paired-end sequencing was suggested to provide substantial benefits
to the sequencing yield compared to single-end sequencing [38]. Single-end sequencing
involves only sequencing a single side of the cDNA generated during RNAseq, whereas
paired-end sequencing involves sequencing both ends of the cDNA [38]. Inclusion and
exclusion isoforms can be better detected in paired-end sequencing compared to single-
end sequencing due to the increased ability to detect alternative exons [38]. Paired-end
sequencing is also more cost-effective compared to single-end sequencing, especially when
using short paired-end reads compared to long single-end reads [39]. Further, paired-end
reads provide better gene expression results for each isoform and more characterized DGE
results compared to single-end reads [39].

3. Tools for RNAseq Data Interpretation

There are several data analysis tools for interpreting RNAseq results applied to hPSC
differentiation into diverse cell types. Each software tool interprets the data in a slightly dif-
ferent way, but each generates meaningful data. These different analysis packages and their
uses, alongside the software that runs each program, are displayed in Table 2. These data
include information on the DGE of the cells and can also include more specified information
on cell clustering, cell subpopulation identification, network reconstruction, pseudotime
analysis, and how transcriptomic expression changes given varying environmental or
cellular conditions [40]. Pseudotime analysis is the process of developing a continuous
trajectory for the genome expression of the cell over a specified time course [41]. Saturation,
or the determination that sufficient sequencing has occurred for a specific sample, can
be analyzed through software tools such as vegan [42]. Three analysis methods utilized
for DGE are limma, DESeq2, and EdgeR [43]. They have differences in the approach to
processing the data, for which limma utilizes a linear model, while DESeq2 and EdgeR use
a negative binomial distribution [43]. The normalization of RNA data is not necessary for
DESeq2, while the other two methods require it. DESeq2 also utilizes local regression to
create bounds for the mean and variance of the data, as well as utilizes the Bayes theorem
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to generate gene movement and apply thresholds for gene expression based on available
information [44]. EdgeR and the similar baySeq analysis method use the Bayesian empirical
method to moderate transcript overdispersion [44]. The limma package is recommended to
be used alongside other analysis methods, such as the EdgeR-associated package voom,
which is used to normalize the data [44]. Myrna is another software analysis tool that deter-
mines the DGE from RNAseq data and is particularly useful for larger datasets [45]. Myrna
utilizes parametric and non-parametric permutation testing to determine DGE after gene
or exon coverage is calculated post-alignment [45]. Not all sequencing analysis methods
are focused on DGE. MAP-RSeq is software focused on the generation of transcriptome
alignment, gene and exon counts, fusion transcript information, and single-nucleotide
variant information [46]. This software is intended to generate information on transcript
quantification and should be paired with other downstream software such as EdgeR to
determine DGE [46]. Variations in the datasets make certain analysis methods significantly
more accurate depending on the environmental conditions of the experiment. EBSeq, which
is similar in function to the baySeq analysis method, is beneficial for identifying differen-
tially expressed isoforms, whereas EdgeR is better for determining biological variation [44].
NOIseq is a method that determines the model’s noise but is limited in that replication
is not possible. Other analysis software such as sleuth is more beneficial for filtering and
observing transcripts that occur in low abundance [44]. Based on the information needed
for a specific dataset, different software packages can be used to obtain the relevant in-
formation. Software packages can also be utilized alongside one another, similar to how
MAP-RSeq can be utilized with EdgeR to obtain more information from the transcriptome
data. Analysis software may vary in effectiveness based on the cell type. For example,
Rajkumar et al. showed that EdgeR was superior compared to Cuffdiff2, DESeq2, and
the two-stage Poisson model software analysis methods in determining DGE in mouse
brain samples [47]. Software analysis tools can compensate for the limitations of current
RNAseq methods [13]. The analysis software allows for normalizing the transcriptomic
data, correcting errors associated with factors that are not biological, and smoothing the
data by predicting missing values [41,48]. Some data analysis tools will also visualize the
data at the cellular level through either cluster or trajectory analysis charts or at the genetic
level through differential expression, gene set, or gene regulatory network analysis [48].
Regardless of the analysis method used, it is expected that the transcriptomic analysis of the
RNAseq data can provide information that helps to uniquely identify different cell types.

Table 2. RNAseq analysis software and associated software packages.

Software Analysis Packages Description and Common Uses References

R vegan Determines saturation of a sample [42]

R
EdgeR v3.2.4, limma, DESeq, DESeq2 v.1.0.19,

baySeq, voom, Myrna, EBSeq, two-stage
Poisson model, MAST v.1.0.5, monocle, SCDE

DGE analysis of datasets [43–45,47,49,50]

Python v.2.7.6 D3E DGE analysis of datasets [49,50]
C++ Cuffdiff2 v.2.1.1 DGE analysis of datasets [47]

R, Python v.2.7, Java v.1.6.0_17, PERL
v.5.10.0 Map-RSeq

Transcriptome alignment, gene/exon count,
fusion transcripts, single-nucleotide variant

information
[46]

R NOIseq Determines noise within a dataset [44]
R sleuth Observes low-abundance transcripts [44]

R

DESeq2 v.1.20.0, count-per-million
(EdgeR v.3.24.2), Linnorm v.2.6.0, SCnorm
v.1.4.2, BASiCs v.1.4.0, scran v.1.8.2, TMM

(EdgeR v.3.24.2)

Normalization of a dataset [51]

R
Seurat v.2.3.4, Seurat3.0, RaceID3 v.0.1.3, RCA
v.1.0, SC3 v.1.10.0, clusterExperiment v.2.2.0,
MNN (scran v.1.8.2), CCA, scanorama v.1.0

Clustering analysis of a dataset [51,52]

Python BERMUDA, scVI Clustering analysis of a dataset [52]
R DPT, Monocle2, Slingshot, SLICER, TSCAN Trajectory analysis of a dataset [51]

Python NS-Forest v2.0, DESC Machine learning of DEGs [52,53]
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4. RNAseq Data Analytic Methods and Their Utilities

There are different methods to observe DGE and perform normalization depending
on the RNAseq analysis method used. Bulk RNAseq normalization methods include TMM,
DESeq2, and count-per-million, and bulk RNAseq differential expression methods include
DESeq and EdgeR [49,51]. Linnorm, SCnorm, BASiCS, and scran are scRNAseq normal-
ization methods, and MAST, Monocle, SCDE, and D3E are differential expression analysis
methods mainly used for scRNAseq [50,51]. Linnorm and scran are the normalization
methods that most consistently produced beneficial normalization results [51]. A com-
parison between normalization methods is shown in Figure 2. The differential expression
analysis of scRNAseq data can utilize bulk analysis methods in some scenarios but requires
a new characterization of the difference in expression to be established beyond having
the average expression be a non-zero difference [49]. While normalization and differential
expression are more effective when utilizing different methods for bulk and scRNAseq,
clustering analysis software can be used on datasets from both sequencing methods. Clus-
tering analysis methods include Seurat, RaceID3, RCA, SC3, and clusterExperiment [51].
Trajectory analysis methods such as DPT, Monocle2, Slingshot, SLICER, and TSCAN can
be utilized for both bulk and scRNAseq as well but require distinct pseudotime paths
from one cell type to another to generate each cell’s trajectory and overall lineage commit-
ment [51]. While there are a few popular RNAseq analysis methods, such as EdgeR and
DESeq2, for DGE, there is not a universal method. This is due to assumptions that must be
made when using each analysis tool. Both EdgeR and DESeq2 assume that differentially
expressed genes (DEGs) are rare and that the variance and signal intensity are independent
of one another [54]. The transformation of the data must also occur in both methods when
combining normalization and differential expression testing to minimize inconsistencies in
results [54]. These assumptions may introduce errors in the data analysis. Therefore, each
analysis method requires testing to find the optimal experimental conditions to minimize
the error observed due to the assumptions made. The removal of outlier data points is
one major source of error for some analysis methods, such as DESeq and DESeq2, due to
the data manipulation of these methods [55]. DESeq utilizes a dispersion-mean trend to
remove outlier data points, whereas DESeq2 uses Cook’s distance metric. In both instances,
the removal of data points that fall outside of the distribution range occurs, which limits
the discovery of new differentially expressed genes but still prevents false discovery [55].
Down-weighting the outlier data points rather than removing them from the dataset has the
potential to reduce false discovery rates while still allowing for new DEGs to be discovered.
Reducing false discovery errors not only improves the accuracy of the data but also allows
for better comparison of the data between samples [55]. User error is another limitation
of RNAseq analysis software. While DESeq2 and EdgeR are commonly used due to the
strong results obtained, as well as the relative ease of use, novice users of the software
packages could miss steps, such as checking the hypothesis of the methods or controlling
data quality [54]. Tools such as SARTools have been created to streamline the use of DESeq2
or EdgeR to prevent user error [54]. This tool is used to ensure that all steps necessary for
the proper use of the software are followed to prevent errors. Reducing error is beneficial
to the software’s accuracy in producing normalization, cluster and trajectory analyses, and
DGE results from RNAseq datasets.

RNAseq data analysis facilitates the identification of cell identity and the discovery
of new cell subtypes by observing the DEGs and comparing them to previous results [56].
For instance, Clark et al. utilized the Smart-Seq2 data analysis method and 10x Genomics
Chromium 3′ v2 platform software to characterize retinal cell types through the DGE
analysis of scRNAseq transcriptomic data [57]. They observed gene expression changes
throughout retinal neurogenesis while specifying different retinal cell types throughout
development [57]. CCND1, CDK4, and PAX6 were the gene markers used to specify retinal
progenitor cells, while further specified cells, such as retinal ganglion cells and amacrine
cells, were identified with POU4F2/ISL1 and TFAP2B expression, respectively [57]. In
Villani and co-workers’ work on characterizing blood cell types [58], the dendritic cells in
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their scRNAseq study were sequenced by utilizing Smart-Seq2 and analyzed with Seurat
software. Two new subtypes of dendritic cells were discovered through sequencing analysis,
finding the unique expression of CD1C/BDCA-1+ cDC2 cells [58]. The first subpopulation
expressed CD1CA, while the other expressed CD1CB, and neither subtype was related to
any previously characterized dendritic cell type [58].

Figure 2. Normalization capabilities of several different RNAseq methods. Each method was scaled
in comparison to the other tested methods, creating a scaled score for each method. Reproduced with
permission from Tian, Nature Methods; published by Springer Nature, 2019 [51].

Machine learning uses algorithms and statistical computational models to analyze
megadata. It has recently been utilized to observe the number of unique transcripts
necessary to identify the cell type of a tested cell [53]. Aevermann et al. utilized NS-Forest
v2.0 machine learning software to characterize cell type in a sNuc-Seq study of cells from
each cortical layer of the middle temporal gyrus [53]. Machine learning utilizes known
marker genes to classify cell clusters into specific cell types and further uses the genome
expression information of these classified cell types to identify cell types in future datasets.
In another study, Li et al. compared machine learning techniques for the cluster analysis
of pancreatic cells from scRNAseq datasets [52]. The DESC deep neural network machine
learning software was able to perform clustering stability and accuracy analyses comparable
to other standard analysis methods, such as scVI, MNN, Seurat3.0, CCA, BERMUDA, and
scanorama [52]. Furthermore, DESC was able to preserve the biological variation, remove
the batch effect from the datasets, and allow for the biological interpretation of pseudo-
temporal and discrete cellular structures [52]. Notably, cluster analysis and batch effect
removal are usually accomplished with the simultaneous use of multiple different analysis
software methods, while DESC can accomplish it with a single method [52]. Machine
learning can present baseline information as to the number of unique genes displayed by
a cell to be accurately characterized [59]. Peng et al. found that unique gene expression
can be the result of RNA editing and not of unique cell types [59]. This creates the same
issue as when the sequencing analysis does not properly filter outliers in that there will be
false positives in determining DGE for that particular cell type [59]. Hence, predicted gene
expression using machine learning–based methods after RNAseq should be validated by
means of other biological characterizations.
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5. Transcriptomics-Enabled Human Stem Cell Differentiation

RNAseq technologies have been extensively applied to the generation of a variety of
cells and tissues from hPSCs in the past decade since differential expression characterization
is vital for determining how cells develop and mature during the course of the stepwise
differentiation of stem cells. The best way to analyze stem cell differentiation through
RNAseq is to perform RNAseq at different differentiation stages to acquire important
information regarding the specific genes crucial for the differentiation process [26,60,61].
Nair et al. used a 20-day stepwise differentiation protocol to differentiate hESCs into
endocrine β-like cells and purified insulin-GFP-expressing β-like cells by flow cytometry,
followed by the aggregation of these immature insulin-GFP+ cells with extended culture.
They compared the transcriptome differences between the hESC-derived immature β-cells
after 20 days without aggregation, cells after aggregation and extended culture, and native
β-cells isolated from adult human islets using RNAseq analysis. They found that the
isolation of hESC-derived immature insulin-GFP-expressing cells and the aggregation of
these cells into islet sizes with extended culture allowed the generation of mature β-cells
with functions similar to those of human islet β cells [62]. These stem-cell-derived cells
showed dynamic insulin secretion and increased calcium signaling in response to insulin
secretagogues. Wang et al. utilized EdgeR to determine DEGs in human mesenchymal
stem cell (MSC) differentiation into endothelial cells. Differentially expressed genes in
endothelial cells compared to MSCs include HIPK2, GREM1, LEF1, and EFNB2 [63]. The
upregulations of these genes, along with seven other genes, namely, ADGRA2, CHRNA7,
LRG1, NTRK1, S100A9, MMRN2, and RAPGEF3, in MSC differentiation toward endothelial
cells is an indication of endothelial specification by RNAseq analysis [63]. Through RNAseq
analysis at different stages of MSC differentiation, specifically toward endothelial cells,
the study found that ECM organization, angiogenesis, blood vessel morphogenesis, and
growth-factor- and ECM-binding pathways all had enriched expression at the later stage of
differentiation [63].

The process of analyzing RNAseq results at varying time points is known as temporal
RNAseq. DyNB and DESeq analysis methods were utilized by Äijö et al. to assess tem-
poral RNAseq data [60]. Both analysis methods are run with an assumption that ignores
correlations between time points, which allows for the testing of each time point for DEGs
independently of time. This reduces the need for the regularization of the data and provides
estimations of gene expression throughout differentiation, as well as shows transcriptome
responses to differentiation [60]. Th17 cells are a subclass of T helper lymphocyte cells
that express interleukin 17 (IL17) [60]. ISG20 and IL17A are known to have roles in Th17
cell function. Their expression was initiated after 48 h post–TH17 differentiation and
showed increased expression thereafter, as quantified by temporal RNAseq analysis [60].
By analyzing stem cells at different time points, one can determine how gene expression
changes between each time point. This can show not only the differentiation pathway of
the cell throughout its lineage commitment but also reveal new cell subpopulations or
intermediates during differentiation. Wang et al. demonstrated that signaling pathways
involved in ECM–receptor interactions, TGF-β, and cytokine–cytokine-receptor interac-
tions had the highest expression for MSC differentiation toward endothelial cells [63]. The
top Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways for MSC-to-
endothelial-cell differentiation are shown in Figure 3. The TGF-β pathway is consistently
downregulated across associated genes, such as NOG, ID4, INHBA, INHBB, INHBE, THBS2,
BMP8B, COMP, and CHRD, during endothelial specification [63]. However, ECM orga-
nization genes such as MMP1, ELANE, CTSG, MMP10, KDR, MYF5, VWF, PDGFB, and
COL17A1 are all significantly upregulated for MSC-to-endothelial-cell differentiation [63].
These results indicate that ECM interaction and organization-related gene upregulation and
TGF-β inhibition are important for endothelial specification. RNAseq can also increase the
knowledge of the differentiation mechanisms involved in the specification of cells derived
from stem cells [63]. Such sequencing could give insight into the regulatory networks
that are utilized to promote cell specification and lineage commitment [26]. This can be
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useful in determining the balance between the proliferation and differentiation of stem
cells [26]. Certain data analysis techniques are also able to discern cell cycle processes
that are closely aligned to cellular differentiation [61]. Temporal RNAseq allows for more
complete data acquisition compared to normal sequencing analysis. However, cell dif-
ferentiation still presents issues even with temporal sequencing analysis. For instance,
single-cell temporal RNAseq can reveal the differentiation of a single cell, but there is no
guarantee that analyzing at the same time points during the differentiation of another cell
of the same type will yield the same results. The second cell could differentiate at a much
different rate, suggesting that comparing time points is not completely accurate. As an
alternative approach, same-time temporal modeling eliminates this issue, as there is no
need for replicates to observe each different differentiation step [60]. Same-time temporal
sequencing is the process of sequencing cells simultaneously, each at a different stage of
differentiation into the desired cell type. This removes variable differentiation rate errors
since specific cells are selected at specific stages of differentiation for sequencing and data
analysis [60].

Figure 3. Top KEGG enrichment pathways of differentially expressed genes (DEGs) in endothelial
cells generated from MSCs. * Indicated significantly enriched KEGG pathway terms found in induced
endothelial cells compared with MSCs. Reproduced with permission from Wang, European Journal
of Vascular and Endovascular Surgery; published by Elsevier, 2020 [63].

Table 3 exhibits diverse RNAseq methods that aid in hPSC differentiation into varied
cell types. Collin et al. focused on the development of retinal organoids from hESCs and
further characterized the cell populations within the organoid through temporal scRNAseq
using integrated fluidic circuits [64]. Transcriptomic data for multiple time points during
differentiation were collected to characterize the orderly appearance of retinal cell types
as organoid development progressed [64]. Additionally, scRNAseq has been applied to
hESC differentiation into pancreatic β-cells [65] and heart organoid tissue [66] (Table 3).
hESC-to-β-cell differentiation was tracked at multiple points throughout differentiation
to characterize genomic expression changes during β-cell development [65]. Spatiotem-
poral scRNAseq was utilized to map the cell type distribution and genome expression
in the human heart during embryonic development to better understand cardiac mor-
phogenesis [66]. Spatiotemporal scRNAseq has also been applied to understanding how
hypoxia plays a role in iPSC differentiation toward liver bud cells throughout organoid
development [67]. Kidwai et al. assessed the progress of hESC and iPSC differentiation
into osteogenic progenitor cells through bulk RNAseq and focused on transcriptomic dif-
ferences between osteogenic progenitors derived from the paraxial mesoderm, lateral plate
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mesoderm, and neural crest [68]. Tsujimoto et al. applied both bulk and scRNAseq to
characterize iPSC differentiation toward kidney-lineage-specific cells, such as metanephric
and mesonephric nephron progenitors, as well as ureteric bud cells, to gain a better un-
derstanding of the mechanisms that are behind kidney development [69]. They focused
on early renal development to characterize the origin of embryonic kidney cell types de-
rived from the intermediate mesoderm to better characterize early kidney development
in kidney organoids. Furthermore, RNAseq and transcriptome characterization can be
utilized for disease treatment. Wang et al. assessed the transcriptome data of endothelial
cell differentiation from MSCs by utilizing bulk RNAseq, aiming to understand the mecha-
nism underlying differentiation for potential cell-based treatment that can reduce ischemic
symptoms in patients with peripheral artery disease [63] (Table 3).

Table 3. RNAseq methods applied to hPEC differentiation.

Cell Line RNA Sequencing Method Terminally Differentiated Cell Type Reference

hESC H9 Integrated fluidic circuit scRNAseq Retinal cells [64]

Human bone-marrow-derived
MSCs Bulk RNAseq Endothelial cells [63]

iPSCs Bulk RNAseq: KAPA Stranded mRNAseq
Kit with BCL2FASTQ v1.8.4 software

Metanephric nephron progenitors,
mesonephric nephron progenitors,

ureteric bud
[69]

iPSCs scRNAseq: ddSEQ with BCL2FASTQ
v1.8.4 software

Metanephric nephron progenitors,
mesonephric nephron progenitors,

ureteric bud
[69]

iPSC Genome-wide scRNAseq Liver bud [65,67]

hESC H9 Genome-wide scRNAseq Pancreatic β-cells [65]

Human embryo-derived
developmental heart tissue

scRNAseq with CellRanger analysis with
Seurat v2.3.4 software

Heart-derived cells: cardiomyocytes,
endothelium, immune, epicardium,
fibroblasts, smooth muscle, cardiac

neural crest

[66]

NCRM-5 human iPSCs from male
CD34+ cord blood

Bulk RNAseq with FASTQC, GENCODE
v25, and STAR v2.5.2a software Osteogenic progenitors [68]

hESC H9 Bulk RNAseq with FASTQC, GENCODE
v25, and STAR v2.5.2a software Osteogenic progenitors [68]

Huang et al. focused on analyzing the transcriptomes of pancreatic β-cells derived
from iPSCs, looking specifically for DEGs [70]. iPSC generation of β-cells was shown to
be possible in both healthy patients and diabetic patients. The main process of iPSC-to-
β-cell differentiation involved the generation of embryoid bodies from the initial iPSCs,
the differentiation of embryoid bodies into multipotent progenitors, and the induction of
β-cells from the multipotent progenitors. Differentiation was aided by increased signaling
via the TGF-β, PI3K-AKT, and MAPK signaling pathways in later pancreatic differentiation
toward a β-cell fate [70]. Specific gene expression favoring β-cell differentiation includes
genes associated with each of the highly expressed signaling pathways. The β-cell fate is
tied to the high expression of signaling pathway genes, such as TGF-β genes (TNF, TGFB2,
and THSB1), PI3K genes (ITGB4, FGF3, LAMA1, JAK2, and FLT1), and MAPK genes (TNF,
FGF3, TGFB2, and FGFR2) [70]. Liang et al. also focused on how transcriptomic expression
can benefit stem cell differentiation but focused on dopaminergic progenitor generation
from hESCs [71]. Dopaminergic progenitors are located in the midbrain and are part of the
differentiation pathway that progresses from hESCs to radial glial cells to early floor plate
progenitor cells to dopaminergic progenitor cells. Favorable transcriptomic signatures have
been discovered for each step in the differentiation process from hESCs to dopaminergic
progenitors. The initial high expression of SOX2, FABP7, FEZF1, TCF7L2, and HMGB2
promotes radial glial specification and eventually gives way to the high expression of floor
plate markers such as LMX1A, CORIN, OTX2, and FOXA2 [71]. The final high expression
of dopaminergic progenitor markers, including TH, NR4A2, and PITX3, demonstrates
effective differentiation into dopaminergic progenitor cells from hESCs [71].
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Aside from characterizing known cell types and discovering new unique cell subtypes,
RNAseq analysis has been used to observe how substrates alter cellular gene expression
and in cell differentiation studies [26,72]. Carrow et al. reported how the presence of
synthetic clay nanosilicates can alter the cellular transcription profile in human MSCs and
prompt differentiation toward an osteochondral cell fate [72]. Gene expression analysis
indicates that nanosilicate introduction negatively impacts the expression of the multipotent
and motility markers WNT5A, AFAP1, SOCS5, and INHBA in MSCs while increasing
the expression of the bone and cartilage development genes COMP, COL1A1, ACAN,
and COL11A [72]. The data support the theory that nanosilicates alter the transcriptome
expression in human MSCs toward an osteochondral cell fate. Lange et al. developed
a toolkit, named CellRank, for single-cell fate mapping after scRNAseq. The toolkit helps
to predict the cell fate trajectory during cellular differentiation [73]. It predicted both the
terminal state and fate potential of the analyzed cell. This is accomplished by looking at the
genome expression in the analyzed cell and comparing it to all of the possible cell types that
the progenitor could terminally differentiate into [73]. Based on DGE, the analysis software
predicts the most likely cell fate. While this is not an exact prediction, the software is
capable of determining the level of uncertainty in the lineage commitment prediction [73].

6. Transcriptomics-Aided Discovery of Intrinsic Factors Influencing hPSC
Lineage Commitment

Transcription factors bind to DNA and directly influence target genes’ transcription
and expression in the cells [74]. Hence, transcription factors play a pivotal role in regulating
cellular differentiation. Cells cannot further specify the desired lineage without expressing
specific transcription factors [75]. Reimold reported that the transcription factor XBP-1 is
selectively and specifically required for the generation of plasma cells. Heller et al. analyzed
RNAseq and chromatin immunoprecipitation-sequencing (ChIPseq) data to understand
transcriptional and regulatory mechanisms during hPSC pancreatic development [76].
They discovered that GATA6 and FOXA2 are responsible for inducing hESC differentiation
toward a definitive endoderm cell fate, which will later differentiate into pancreatic and
endocrine progenitors alongside the expression of other transcription factors, including
ONECUT1, PDX1, SOX9, and NKX6.1 [76]. Using the RNAseq approach, Jennings et al.
identified transcription factors responsible for initiating the development of either the
pancreas or liver [77]. PDX1, GATA6, FOXA2, HNF1B, and ONECUT1 control pancreatic
endoderm commitment from hPSCs, while HNF4A and FOXA are key transcription factors
regulating the onset of liver specification from hPSCs [77].

Transcription factor enhancement or repression could make a difference in late-stage
differentiation into two separate committed cell lines. Yagi et al. demonstrated how GATA3
expression influences the late-stage differentiation of CD4+ T cells into either Th1 or Th2
cells [78]. As transcription factors are capable of binding to DNA to directly influence
genes that are transcribed and expressed in a cell, gene expression is directly influenced
and controlled by transcription factors. Ge et al. confirmed that ATOH7, OTX2, POU4F2,
and ISL1 all influence the differentiation of retinal progenitors toward a retinal ganglion
cell fate by attaching to the genome and influencing gene expression through RNAseq data
analysis [79]. Due to the significant relationship between transcription factor presence and
specific gene expression, transcription factors are vital for cell lineage commitment.

Notably, RNAseq technologies allow the sequencing of not only transcription fac-
tors but also long non-coding RNA (lncRNA) and microRNA (miRNA). lncRNA and
miRNA have been implicated in cellular differentiation and are able to regulate gene ex-
pression [80–83]. miRNAs are small RNA transcripts, and lncRNAs make up the majority
of the transcriptome [82,83]. However, lncRNAs have a complex overlap of transcripts that
makes the discovery of their function difficult [82]. Through RNAseq analysis, Chen et al.
discovered that the expression of LINC00458, a lncRNA, induces hPSCs toward an endo-
dermal cell fate, provided that the cells are cultured on soft substrates [84]. The influence
of substrate stiffness on LINC00458 expression in cultured hPSCs is shown in Figure 4A.
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Different expression levels of this lncRNA resulted in varied endodermal cell commitment,
as quantified by SOX17 protein expression levels (Figure 4B) [84]. Increasing the stiffness of
the substrate has been shown to negatively influence LINC00458 expression, stunting differ-
entiation into endodermal lineages. Soft substrates are favorable for inducing LINC00458
expression, which in turn interacts with SMAD2/3 within the nucleus. The knockout of
LINC00458 also resulted in the loss of endodermal marker genes such as FOXA2 and
SOX17, indicating the importance of this lncRNA in hPSC-to-endoderm differentiation [84].
Jha et al. showed the lncRNA GATA6-AS1 is necessary for proper differentiation from
hPSCs to cardiomyocytes. This lncRNA expression is directly related to the expression
level of the GATA6 gene [80]. It was shown that the knockout of GATA6-AS1 restricted
cardiomyocyte lineage specification through the direct loss of GATA6 expression, which is
essential for cardiomyocyte development from hPSCs [80]. On the other hand, miR-17~92
has been shown to repress CXCR5 expression in developing T cells, which results in in-
hibited T-cell generation and migration. However, miR-17~92 is also necessary for the
repression of TH17, Th22, and other associated incorrect lineages’ gene expression during
T-cell differentiation into T follicular helper cells [83]. These repressed genes include RORA,
CCR6, ILLR2, ILLR1, and IL22 [83]. By means of miRNAseq and RNAseq, miRNA has also
been discovered to impact human placental development studies using the early stages of
placental samples [81]. These studies strongly suggest that RNAseq techniques facilitate
the discovery of miRNAs that play a role in the differentiation and development of cells.

Figure 4. (A) Expression of lncRNA LINC00458 in hPSCs cultured on hard (165 kPa) or soft (3 kPa)
substrates. Cells were cultured on soft and hard substrates for 3 days. RNA was isolated at the
indicated time points, and LINC00458 expression was detected by qRT-PCR. The results are presented
as means ± SD of triplicates. ** p < 0.005, * p < 0.05, two-sided Student’s t test. (B) Percentage of
SOX17+ cells in hPSCs grown on substrates with varied stiffnesses. The results are presented as
means ± SD of triplicates. One-way ANOVA (n = 3 independent experiments). Different letters
indicate significant differences, and the same letters indicate no significant differences. The data are
adapted from Chen et al. [84].

7. Transcriptomics Applied to Disease Physiology Studies Using Patients’
iPSC-Derived Cells for Regenerative Medicine

Transcriptome analysis is beneficial for understanding disease and providing insight
into potential regenerative medicines capable of mitigating or treating disease. This com-
monly encompasses utilizing iPSCs derived from patients’ tissues to generate diseased
organoids for research (Table 4) [85–91]. Figure 5 summarizes the key steps in disease
modeling through a combination of iPSC technology and transcriptomics for regenerative
medicine. For instance, iPSC-derived brain cells have been utilized to mimic the pro-
gression of Alzheimer’s disease (AD) to study the transcriptomic effect on cells. These
patient-derived brain cells obtained from iPSC differentiation showed genotypes and
phenotypes associated with AD [85]. Zhao et al. generated cerebral organoids from AD de-
mentia patient-derived iPSCs. Transcriptomic profiling revealed that the cerebral organoids
originating from AD patients showed abnormal cytoplasmic RNA granules and deranged
RNA metabolism [92]. The studies provide a more in-depth understanding of the disease.
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Figure 5. Model of diseased iPSC generation and its use for regenerative studies and disease
characterization. Created using Biorender.com.

Another disease in which transcriptomic analysis has been utilized for potential re-
generative medicine is Parkinson’s disease (PD). PD studies currently lack dopaminergic
neuron samples, as these neurons die off at an increasing rate with the progression of the
disease, leaving few neuronal samples post-mortem [86]. iPSCs derived from fibroblasts
have been generated with the PINK1 gene mutation ILE368ASN to imitate PD dopamin-
ergic neurons [86]. These mutated neurons were utilized to analyze the dysregulation of
neuronal function as a result of PD (Table 4). Novak et al. theorized that PD is not the result
of a single mutation but rather the effect of transcriptomic dysregulation from several inter-
connected genes and signaling pathways [86]. Azevedo et al. also analyzed PD through
iPSCs but instead analyzed how myelination was prevented during oligodendrocyte spec-
ification and maturation [93]. This loss of maturation in PD patients leads to a lower
transcriptional contribution of oligodendrocytes compared to healthy controls [87]. The
utilization of iPSCs developed from PD patients led to the discovery that alterations in the
cell’s transcriptome are associated with the loss of myelination in oligodendrocytes [93]. For
example, mutations in the SNCA gene are known to play a role in the loss of oligodendro-
cyte myelination in PD [93]. A53T α-synuclein and G2019S LRRK2 mutations have also been
implicated in the formation of PD [87]. LMX1B and OTX2 are suggested to influence PD
pathogenesis [87]. Numerous genes were found to be enriched or depleted in PD-patient-
derived oligodendrocytes through transcriptomic analysis, suggesting the involvement
of these genes in PD. iPSC-derived oligodendrocytes also showed the involvement of the
inflammatory components C4b and HLA proteins, promoting oligodendrocyte immune
reactivity rather than myelination [93]. Moreover, studies in iPSC-derived PD models are
able to determine familial-PD- and sporadic-PD-related gene expression, including the
expression levels of miRNA and piRNA, for understanding PD gene deregulation. miRNA
and piRNA transcriptome expression is altered as a result of PD presence (Table 4) [87].
It was shown that 26, 34, and 40 different miRNAs were dysregulated in the PD group
compared to the healthy control group for fibroblasts, iPSCs, and neurons, respectively. The
increased expression of LET7-family miRNAs occurs consistently in PD patient samples.
SINE- and LINE-family piRNA overexpression is associated with PD, as diseased neurons
cannot silence these genes properly [87]. Temporal RNAseq analysis has been utilized to
analyze DEGs for mutated PD dopaminergic neurons [86]. Dopamine metabolism genes
TH and DCC were significantly expressed in mutated dopaminergic neurons alongside
NES and VIM, which are cytoskeletal protein genes. Both NES and VIM are associated
with cytoskeletal transport, a process commonly impacted by PD [86]. Other common
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PD-related genes include LGI1 and CNTNAP2, which are both dysregulated throughout
disease progression, although they do not have direct links to the disease [86].

Recently, transcriptome analysis became a powerful tool for regenerative medicine
applications in diabetes research thanks to the continual improvement of protocols for
hPSC–endocrine cell differentiation [2–4,94–97]. Technologies for iPSC differentiation into
insulin-secreting β-cells have been applied to generate β-cells or endocrine tissue from
patients suffering from different subtypes of diabetes, such as type I diabetes (T1D), type
II diabetes (T2D), and monogenic diabetes (MD) (Table 4) [88,98–100]. Memon et al. fo-
cused on utilizing T2D-derived iPSCs to study the mechanism behind insulin resistance
in T2D [89]. RNAseq analysis of insulin-resistant iPSCs discovered the downregulation of
L1TD1, RIF1, MYSM1, ZNF195, ZNF208, and ZNF770 compared to healthy controls [89].
Upregulated genes in the insulin-resistant group compared to healthy controls include
AGRN, SLFN13, CD74, SEMA6B, SLC22A17, and TMEM151B [89]. The T2D iPSC group had
increased lactate secretion and increased oxidative stress in the cells, suggesting lowered
oxygen availability to the diseased islet cells. Oxidative stress also induces mitochondrial
dysfunction, which compounds the impact of insulin resistance on affected islet cells [89].
A combination of diseased iPSC-derived cells and transcriptome analysis has been utilized
to understand the mechanism and transcriptomic changes causing diabetes. For example,
it helped to reveal the genetic mechanism underlying transcription factor PDX1-mutation-
associated impaired glucose tolerance in patients with an increased risk for diabetes [98].
Using a PDX1-mutant-derived iPSC line and subsequent differentiation, the study deduced
that amino acid mutations in PDX1 impair pancreatic endocrine formation and β-cell
function, contributing to a predisposition for diabetes [98]. The downregulation of the
PDX1-bound genes MNX1, MEG3, and CES1 is attributed to the lowered β-cell differentia-
tion ability [98]. Augsornworawat et al. discovered that β-cell maturation occurs in both
iPSC- and hESC-derived islets post-implantation [101]. Maturation was assessed based on
the comparison of β-cell maturation gene expression levels before and after implantation
through RNAseq data analysis. The β-cell maturation genes INS, MAFA, MNX1, SIX2,
and G6PC2 were all expressed in higher quantities in the post-transplantation group. The
increased maturation and functionality of the transplanted islets suggest that native tissue
gene expression can be acquired once the iPSC-derived cells are transplanted in vivo. Both
α- and β-cells undergo increased maturation once they are transplanted in vivo, further
suggesting that the in vivo environment and native tissue influence genome expression
toward more mature cells [101]. Furthermore, RNAseq data analysis allowed the identi-
fication of transcriptomic abnormalities. Mutated transcription factors can be corrected
through genome editing using tools such as CRISPR/Cas9 to restore the proper functional-
ity in the diseased islets [91,102]. These genes include but are not limited to HNF1A [103],
INS [99,104], and GATA6 [105].

In addition, hypertrophic cardiomyopathy (HCM) is another disease in which tran-
scriptomic information can be uncovered from diseased iPSC-derived cells. Patient tissue
was utilized to generate iPSCs, which were then developed into cardiomyocytes for tran-
scriptomic analysis studies focused on discovering genes related to HCM functionality
(Table 4) [90]. Approximately 50% of HCM patients carry mutations in sarcomere genes,
such as MYH7 and MYBPC3 [106]. The MYBPC3 c.1928-569G > T mutation was discovered
as one of the causes of HCM through iPSC-derived cardiomyocyte transcriptome analy-
sis. This mutation results in aberrant splicing, which is commonly undetected in genetic
testing [90]. Not only does this method uncover a new cause for HCM, but it also opens
the door for research into the therapeutic inhibition of aberrant splicing, which could treat
the disease [90]. iPSC-derived cardiomyocytes have also been used for disease modeling
and RNAseq analysis of congenital heart disease (CHD). Xu et al. utilized iPSC-derived
cardiomyocytes to model hypoplastic left heart syndrome by analyzing the impact of the
defects caused by the disease [107]. scRNAseq showed a correlation between the number
of DEGs and disease severity compared to the healthy control group. An increased number
of DEGs indicated the increased severity of disease progression [107]. The iPSC-derived
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cardiomyocytes that were from patients with less severe disease progression had gene
expression more similar to the healthy control iPSC-derived cardiomyocytes when com-
pared to patients with more severe disease progression. Many of the DEGs correspond to
signaling pathways in mitochondria, hypoxia, cell death, or apoptosis. These pathways all
corresponded to increased mitochondrial dysfunction in the diseased groups that caused
severe oxidative stress and increased cell death [107].

Table 4. Patients’ iPSC-derived cells for disease modeling by means of transcriptomics.

Disease Type Patient Cells Utilized Final Cell Types Purpose References

Alzheimer’s disease iPSCs
Neural progenitors,

astrocytes, microglia, and
oligodendrocytes

Brain cells generated from AD patients’ iPSCs to
mimic disease progression by

transcriptomic analysis
[85]

Parkinson’s disease
iPSCs Dopaminergic neurons A PD patient’s dopaminergic neurons generated

from iPSCs for scRNAseq analysis [86]

iPSCs Oligodendrocytes
Transcriptome analysis of PD patient

iPSC-derived oligodendrocytes to determine
cause of reduced myelination

[93]

iPSCs Midbrain neurons iPSC-derived model to study the effect of
mRNA, miRNA, and piRNA on PD progression [87]

Diabetes
iPSCs Insulin-resistant iPSCs

T2D-patient-derived iPSCs to study insulin
resistance mechanisms such as increased

oxidative stress and lactate secretion
[89]

iPSCs Pancreatic β cells Patient iPSCs to study the effect of mutant PDX1
expression on impaired glucose tolerance [98]

hESCs and iPSCs Pancreatic α, β, and δ cells
iPSC-derived islets further mature after

implantation into the body based on RNAseq
data analysis

[101]

Hypertrophic
cardiomyopathy iPSCs Cardiomyocytes Transcriptomic analysis of iPSC-derived

cardiomyocytes from diseased patients [90]

Congenital heart disease iPSCs Cardiomyocytes Modeling hypoplastic left heart syndrome
through iPSC-derived cardiomyocytes [107]

8. Challenges and Limitations

A limitation of current RNAseq is the necessity of cDNA reverse transcription for the
sufficient scale-up of genomic information [13]. The challenge with utilizing cDNA comes
with many manipulation steps necessary for RNAseq. Manipulation is necessary to remove
second-strand cDNA from strand-specific sequencing, account for cDNA library generation-
related dissociation, and synthesize cDNA without independent primer synthesis. Some
genes are uncooperative with RNAseq and will not provide accurate results. Uncooperative
genes are typically small in base-pair number and produce a significant batch effect when
sequenced utilizing different library preparation techniques [108]. When using unique
versus multiple alignment, some genes seemed to be differentially expressed in one of the
methods rather than both [108]. This occurrence suggests that the differentially expressed
gene could be a false-positive value, which throws off the accuracy of the data interpretation.
On top of uncooperative genes, some RNAseq methods have limited reproducibility [109].
NOIseq is one analysis method that cannot be reproduced, as the noise from one dataset to
another is not consistent [44]. Another major challenge to RNAseq analysis is analyzing
low-input samples or samples that have become degraded [34]. The majority of analysis
methods are limited to analyzing full transcripts, and incomplete transcripts lead to a highly
inaccurate interpretation of the transcriptome. For more accurate results, studies must be
completed using productive RNAseq and analysis methods, together with experimental
confirmation. For degraded samples, more effective analysis methods include RNase H and
Ribo-Zero [34]. Due to the availability of different types of analysis software, only a limited
number of methods have been significantly investigated in a research context [109]. More
studies will have to be completed to validate the accuracy of the software programs and
the resulting transcriptomic data.

Another major limitation of RNAseq and the associated data analysis is the variability
in the sequencing results [108,110]. RNAseq has had a limited number of sample replicates
for many cell types, resulting in the lack of sufficient data to compare the new samples
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to [55]. Efforts must be made to increase the number of samples sequenced for each
known cell type to increase the accuracy of the analysis and comparison to previous
methods. Increasing the sample size will decrease the deviation of gene expression for
each cell type and allow for the comparison of new samples to a more uniform dataset of
genome libraries. The false discovery of DEGs or new cell subtypes is another source of
error [55,108]. This can partially be caused by RNA editing of a cell’s transcriptome [59].
No two cells are identical due to biological variations regarding how RNA is transcribed,
which could lead to increased error for the analyzed dataset. Moreover, environmental
changes of any magnitude can potentially alter the identification of DEGs during RNAseq
analysis [111]. This could be from using different batches for sequencing or having the
batches collected at different time points within the experiment. Environmental changes
could also occur during RNA isolation from contamination or slight variations in how the
RNA libraries are obtained and prepared [111]. Temporal RNAseq analysis is limited by
the variability between replicates due to differentiation efficiency [60]. This can throw off
the data observed during stem cell differentiation analysis. Some analysis software, such as
DyNB, has implemented filtering that accounts for the variable timing of differentiation,
which significantly reduces the error [60].

On the other hand, RNAseq analysis for genes that have low copy numbers or are
expressed at low levels presents challenges. Filters must be applied to separate the low-
copy-number genes from the outlier genes and other associated noise [112]. Noise is
the result of biological variation within each cell as well as transcript loss during the
preparation of the cDNA library [113]. Genes from regions of low density can sometimes be
falsely classified as noise due to the assumptions necessary to run RNAseq analysis [113].
Hence, properly eliminating noise and distinguishing noise from a low copy number
of genes are pivotal to obtaining highly accurate DGE and cluster formation analysis
results. Furthermore, the sequencing depth and the number of genes detected in each
biological sample influence RNAseq analysis accuracy [112,114–116]. The sequencing
depth, otherwise known as the size of the sequenced library, varies from sample to sample
due to biological variation between samples [114]. Therefore, normalization must be
performed to accurately compare different genes and datasets. Zyprych-Walczak et al.
investigated multiple data normalization methods, including the EdgeR packages TMM
and Upper Quartile, the DESeq package Median, the EBSeq package Quantile, and the
PoissonSeq package PoissonSeq normalization [114]. They noted that TMM performed
poorly, but there was not one method that performed significantly better than the others
out of the remaining methods [114]. It was also noted that bias and variance should
be analyzed as a part of normalization in order to find a method that is best suited to
analyze the dataset and prevent differential expression errors [114]. Furthermore, current
stem cell differentiation methods cannot obtain homogeneity of the final derived cellular
product. A portion of subpopulations of cells still differentiate into undesired cell types. By
determining the genomic expression of the cells, the goal is to gain an understanding of how
the cells differentiate and why subpopulations form. Once this is known, the undesired
cell clusters can be eliminated to achieve the desired differentiation pathways.

9. Future Direction of RNAseq-Aided Stem Cell Differentiation

The future of RNAseq should look toward addressing the limitations of the current
methods. Sample multiplexing for scRNAseq is one method that would enable the super-
loading of single cells and the unbiased analysis and discovery of cell types [117,118].
Multiplexing scRNAseq has advanced to the point where over 105 cells can be sequenced
at once [117]. RNAseq has a variation in read depths when using different sequencing
methods, which results in a different number of transcripts generated by sequencing.
This variability is an issue for comparison and accuracy. This can increase the error in
the analysis between that dataset and another that utilized a different analysis method.
Normalization methods such as those described by Zyprych-Walczak et al. must be
perfected to generate accurate and comparable RNAseq data [114]. There should be
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a focus on finding a universal method for RNAseq and analysis that provides accurate
results regardless of experimental conditions [119]. This necessitates the generation of
a method that has little to no assumptions necessary to properly characterize the dataset.
Assumptions limit the accuracy of the data analysis and further restrict comparisons
between datasets analyzed by different methods [54]. Finding a universal method will not
only standardize the experimental procedure necessary for proper sequencing but also
eliminate the variability and error in the results generated and compared by using different
sequencing and analysis methods.

Spatial single-cell transcriptomics is another aspect of RNAseq that can be focused on
more in future stem cell research. It provides cell type information at the spatial level in
histological sections. Analyzing the RNAseq data in this manner allows for heterogeneity
and tissue architecture to be observed in a spatial context at the cellular level [28–31].
Moncada et al. were able to map multi-cell-type locations and identified that populations
of ductal cells, macrophages, dendritic cells, and cancer cells are spatially restricted, along
with distinctly co-localized with other cell types, using a combination of spatial transcrip-
tomics and scRNAseq techniques [29]. The combination of these pseudo-spatial techniques,
called multimodal intersection analysis, was used to detect cell type and subtype en-
richment across different locations within a specific tissue microenvironment, such as
pancreatic ductal adenocarcinoma [29]. Spatial transcriptomics has been applied to em-
bryos to characterize and identify the location and makeup of the developing organs [28].
Liu et al. utilized the Seurat3.2 module SCTransform for data normalization and stabiliza-
tion, while spatial variability and differential expression were determined by SpatialDE
and ToppGene, respectively, for their “deterministic barcoding in tissue for spatial omics
sequencing” [28]. The method was utilized to characterize the spatial clustering of major
cell types, including the heart, telencephalon, neural tube, hindlimb bud, and branchial
arches, in a developing embryo.

Spatial transcriptomics can also be paired with temporal transcriptomics in RNAseq
analysis to give an even more complete picture of gene expression over both space and
time [28,31]. This approach allows for the analysis of cell interactions that drive differentia-
tion and the transcriptomic profile associated with those interactions at specific locations
over the time period of development. Hence, the lineage commitment of specific parts of
the organ, as well as each cell cluster’s progression into specific cell types, can be tracked
and mapped [28]. The prospect of analyzing RNA expression and cellular interactions
over space and time allows for a better understanding of cellular interactions and develop-
ment. Spatiotemporal RNAseq technology has been applied to viewing organ development
and differentiation in chicken models [28], mouse organogenesis [32], human cancer re-
search [29], thymus organogenesis in human embryos [33], and human fetal digestive
tract development [31]. However, its application to stem cell differentiation is currently
limited due to the high complexity of differentiated cells and the cost of spatiotemporal
RNAseq [28]. This technology should be further improved to analyze developing organs
and differentiating cells. The next steps should be toward implementing organogenesis
observation with RNAseq to further characterize development in a spatiotemporal manner.

Taken together, stem cell differentiation has yet to accomplish pure lineage commit-
ment toward the desired mature cell types. Global transcriptome analysis by RNAseq
provides a powerful characterization tool to ensure the systematic assessment of the differ-
entiated cells’ identities and identify key signaling pathways critical for the improvement of
lineage commitment. Spatial and temporal transcriptomics alongside RNAseq would give
more complex data involving cell–cell interactions, tissue architecture, and the regulatory
networks that control stem cell differentiation and maturation. RNAseq would assist in
the full characterization of human organoids to benefit in vitro organoid development for
potential implantation into the body in the near future.
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