
Citation: Wang, Q.; Zuurbier, C.J.;

Huhn, R.; Torregroza, C.; Hollmann,

M.W.; Preckel, B.; van den Brom, C.E.;

Weber, N.C. Pharmacological

Cardioprotection against Ischemia

Reperfusion Injury—The Search for a

Clinical Effective Therapy. Cells 2023,

12, 1432. https://doi.org/10.3390/

cells12101432

Academic Editors: Matthias L. Riess

and Detlef Obal

Received: 6 April 2023

Revised: 10 May 2023

Accepted: 17 May 2023

Published: 20 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

Pharmacological Cardioprotection against Ischemia
Reperfusion Injury—The Search for a Clinical
Effective Therapy
Qian Wang 1,†, Coert J. Zuurbier 1,† , Ragnar Huhn 2, Carolin Torregroza 2, Markus W. Hollmann 1,* ,
Benedikt Preckel 1 , Charissa E. van den Brom 1 and Nina C. Weber 1

1 Department of Anesthesiology—L.E.I.C.A., Amsterdam University Medical Centers, Location AMC,
Cardiovascular Science, Meibergdreef 11, 1105 AZ Amsterdam, The Netherlands;
q.w.wang@amsterdamumc.nl (Q.W.); c.j.zuurbier@amsterdamumc.nl (C.J.Z.);
b.preckel@amsterdamumc.nl (B.P.); c.vandenbrom@amsterdamumc.nl (C.E.v.d.B.);
n.c.hauck@amsterdamumc.nl (N.C.W.)

2 Department of Anesthesiology, Kerckhoff-Clinic-Center for Heart, Lung, Vascular and Rheumatic Disease,
Justus-Liebig-University Giessen, Benekestr. 2-8, 61231 Bad Nauheim, Germany;
r.huhn-wientgen@kerckhoff-klinik.de (R.H.); c.torregroza@kerckhoff-klinik.de (C.T.)

* Correspondence: m.w.hollmann@amsterdamumc.nl
† These authors contributed equally to this work.

Abstract: Pharmacological conditioning aims to protect the heart from myocardial ischemia-reperfusion
injury (IRI). Despite extensive research in this area, today, a significant gap remains between exper-
imental findings and clinical practice. This review provides an update on recent developments in
pharmacological conditioning in the experimental setting and summarizes the clinical evidence of these
cardioprotective strategies in the perioperative setting. We start describing the crucial cellular processes
during ischemia and reperfusion that drive acute IRI through changes in critical compounds (∆GATP,
Na+, Ca2+, pH, glycogen, succinate, glucose-6-phosphate, mitoHKII, acylcarnitines, BH4, and NAD+).
These compounds all precipitate common end-effector mechanisms of IRI, such as reactive oxygen
species (ROS) generation, Ca2+ overload, and mitochondrial permeability transition pore opening
(mPTP). We further discuss novel promising interventions targeting these processes, with emphasis
on cardiomyocytes and the endothelium. The limited translatability from basic research to clinical
practice is likely due to the lack of comorbidities, comedications, and peri-operative treatments in
preclinical animal models, employing only monotherapy/monointervention, and the use of no-flow
(always in preclinical models) versus low-flow ischemia (often in humans). Future research should
focus on improved matching between preclinical models and clinical reality, and on aligning multitarget
therapy with optimized dosing and timing towards the human condition.

Keywords: cardioprotection; ischemia-reperfusion injury; drug development

1. Introduction

The present article describes the pivotal cellular processes occurring during ischemia
and reperfusion that contribute to acute IRI and provides an up-to-date overview of novel
and promising interventions that target these processes. We focus on cardiomyocytes and
the endothelium. The review highlights the need to address the limited translatability of
findings from basic research to clinical practice, which may be attributed to factors such
as the absence of comorbidities, concurrent medications, and peri-operative treatments in
preclinical animal models. In order to bridge this gap, future research should prioritize
improved alignment between preclinical models and clinical reality, considering factors
such as comorbidities, comedications, and peri-operative treatments.

The review focuses purposely only on novel pharmacological interventions, thus not
on any “ischemic conditioning” protocol or drugs that have been tried already in several
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clinical trials, such as, e.g., cyclosporine A, nitrite, antioxidants, or gene therapies. It is also
not the intention of this review to cover all IR mechanisms and all protective strategies
reported in the literature. Such an extensive review was already recently published [1]. Ad-
ditionally, we mainly focus on novel compounds for which the on-target IR mechanisms are
clearly defined, such as NAD+ precursors to restore the IR-induced depletion of NAD+, or
inhibitors of succinate oxidation (acidic malonate) to reduce the succinate-driven ROS pro-
duction at early reperfusion. We have left out other novel promising compounds that have
a much broader but more undefined mechanism(s) of protection, such as microRNAs [2,3],
SGLT2i’s [4,5], and extracellular vesicles [6,7].

2. Mechanisms of Cardiac IRI

Myocardial IRI is, first of all, caused by the alteration of several specific cellular pro-
cesses during the actual ischemic episode. Early restoration of flow to ischemic tissue,
i.e., reperfusion, which is clinically achieved by thrombolytics, percutaneous coronary in-
tervention, or other revascularization modalities, prevents further ischemic cardiomyocyte
death, but paradoxically results in further damage of the cardiac tissue [8]. Important cellu-
lar processes during both the ischemic and reperfusion period that are known to contribute
to acute cardiac IRI will be discussed and summarized in Figure 1. We will mainly focus on
the first hours of cardiac IRI because, in this period, most of the damage occurs.
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Figure 1. Schematic diagram of mechanisms during the ischemic and reperfusion period that together
cause acute cardiac IRI.

During ischemia, the lack of oxygen causes ∆GATP to decrease, resulting in increased
acidosis and the build-up of intracellular Na+ and, consequently, Ca2+. In the mitochon-
dria, succinate accumulates from the breakdown of TCA intermediates and glycogen.
The decreased pH, together with the build-up of G6P from glycogen breakdown, detach
HKII from mitochondria, facilitating mitochondrial ROS production. The Ca2+-activated
NOX, together with eNOS uncoupling driven by BH4 oxidation, increase cytosolic ROS
production. Mitochondrial acylcarnitines accumulate due to the activation of CPT1. At
reperfusion, the efflux of H+ through reactivation of NHE results in a burst of cytosolic
Na+ and Ca2+. Accumulated succinate drives mitochondrial ROS production through
RET. HKII detachment from mitochondria, high mitochondrial acylcarnitine inhibition
of the ETC, and Ca2+-induced NOX contribute to ROS production. Following pH nor-
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malization, the high ROS and Ca2+ induce mPTP opening, allowing NAD+ and CytC to
escape from mitochondria and dissipating mitochondrial membrane potential. NAD+

is degraded by NADases into the Ca2+-mobilizing second messenger cADPR, and cytC
activates apoptosis. Additionally, high Ca2+ causes hypercontracture, calpain, and caspase
activation. Acytel-CoA = acetyl coenzyme A; ADP = adenosine diphosphate; ATP = adeno-
sine triphosphate; BH4 = tetrahydrobiopterin; cADPR = cyclic ADP-ribose; Casp = caspase;
Cyt C = cytochrome C; CTP1 = carnitine palmitoyltransferase 1; eNOS = endothelial nitric
oxide synthase; FAD = flavin adenine dinucleotide; FADH2 = reduced flavin adenine
dinucleotide; Gly = glycogen; G6P = glucose 6-phosphate; HK2 = hexokinase 2; mPTP = mi-
tochondrial permeability transition pore; NAD+ = oxidized nicotinamide adenine din-
ucleotide; NADH = reduced nicotinamide adenine dinucleotide; NCX = Na+/Ca2+ ex-
changer; NHE = Na+/H+ exchanger; NKA = Na+/K+-ATPase; NLRP3 = nucleotide-binding
domain, leucine-rich–containing family, pyrin domain–containing-3; NOX = nicotinamide
adenine dinucleotide phosphate oxidase; RET = reverse electron transfer; ROS = reactive
oxygen species; SERCA = sarco-endoplasmic reticulum calcium ATPase; SR = sarcoplas-
mic reticulum; 4-HNE = 4-hydroxynonenal; 3-NT = 3-nitrotyrosine; and α kg = alpha
ketoglutarate.

2.1. Decreased ∆GATP, Acidosis, and Ion Disturbances as Initial Processes Driving IRI

Myocardial IRI starts from the onset of ischemia. During ischemia, cardiomyocyte
metabolism shifts from oxidative phosphorylation to anaerobic glycolysis because of the
lack of oxygen and nutrients. The increased glycolytic ATP turnover, together with the
diminishing mitochondrial ATP synthesis, CO2 accumulation, and net ATP breakdown, in-
creases the build-up of H+, resulting in intracellular acidosis [9]. Ion homeostasis is largely
dictated by thermodynamic control of the active ion pumps (e.g., the sodium/potassium
ATPase (NKA pump)) and exchangers (e.g., the sarcoplasmic–endoplasmic reticulum
calcium-ATPase (SERCA)), i.e., determined by the amount of free energy that can be lib-
erated during ATP hydrolysis (∆GATP). During the first ten minutes of ischemia, a first
initial small drop in ∆GATP that starts to inhibit the pumps, and that causes intracellular
Na+ to increase and intracellular K+ to decrease, is observed [10]. Then, following the
depletion of glycogen and halting of anaerobic glycolysis, ∆GATP starts to fall much more,
driving further increases in Na+ and decreases in K+ [10]. The increase in Na+ drives
the rise in intracellular Ca2+ by impairing the normal forward mode action (exchanging
intracellular Ca2+ for extracellular Na+) of the sodium–calcium exchanger (NCX). Ischemic
contracture starts to develop because of rising cytosolic calcium and lack of ATP [11].
Intracellular acidosis may further increase intracellular Na+ load through activation of
the sodium–hydrogen exchanger (NHE), although the quick development of extracellular
acidosis during ischemia will start to inhibit NHE activity [12,13]. At reperfusion, extra-
cellular acidosis is quickly normalized, reactivating NHE to supranormal activity [12] to
restore intracellular pH at the expense of further increasing intracellular Na+. The rise in
intracellular Na+ further impairs or even reverses the NCX, extruding Na+, now at the
expense of a large Ca2+ overload.

This burst in cytosolic Ca2+ within the first minutes of reperfusion, together with
the fast normalization of intracellular pH, is one of the crucial mediators of IRI. The high
calcium level facilitates (1) opening of the mitochondrial permeability transition pore
(mPTP), dissipating mitochondrial potential and thereby ATP synthesis, causing swelling
and rupture of mitochondria and consequently cardiac cells; (2) activation of calpains,
proteolytic proteases that breakdown the cell, and activates caspases through dislodgement
of these programmed cell death enzymes from the cytoskeleton, resulting in pyroptosis
through an NLRP3 dependent or independent mechanism [14,15]; and (3) hypercontracture
of the myofilaments and thereby mechanical rupture of cardiac tissue, also resulting in cell
death [9,16].
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2.2. Oxidative Stress Involvement in IRI

Part of IR-associated oxidative stress develops during the ischemic period, as demon-
strated by techniques allowing for measurements of direct ROS production [17–20]. These
findings are supported by end-ischemic measurements of cardiac 4-hydroxy-2-nonenal
(4-HNE), a breakdown product of lipid peroxidation, and 3-nitrotyrosine, a marker of
nitrated tyrosine due to peroxinitrite, both specific biomarkers of oxidative stress [21].
Ischemic ROS mostly develops during the initial period of ischemia, but not during later
ischemia [21–23]. Interestingly, once 4-HNE is generated during ischemia, no further 4-
HNE is produced during reperfusion, and reperfusion in itself cannot reduce the ischemic
build-up of 4-HNE. Sources of ROS during ischemia include increasing cytochrome p450 ac-
tivity, mitochondrial electron transport damage and uncoupling, NAD(P)H oxidase (NOX)
activity, and uncoupled nitric oxide synthase (NOS) activity [24]. In addition, oxidative
damage during ischemia can also be a result of a decreased antioxidant capacity in the
ischemic heart, creating a more pro-oxidant environment. Reduced glutathione (GSH) is an
important endogenous antioxidant in the heart that is rapidly oxidized during ischemia.
Restoration into GSH needs ATP, which becomes scarce.

Next to ischemic ROS, a burst of ROS is also initiated during the first minutes of
reperfusion [17,25,26]. A major contributor to the ROS burst during reperfusion is the
oxidation of the ischemic accumulated succinate (see Section 2.3.1 below) [27]. Although
two-thirds of the ischemic succinate is released from the heart upon reperfusion, the
remaining one-third is oxidized during the first five minutes of reperfusion. At the end
of ischemia, the heart is already in a highly reduced state, with maximal high levels of
NADH and a maximally reduced ubiquinone (Q) pool. At this early stage of reperfusion,
succinate is rapidly oxidized to fumarate by succinate dehydrogenase (SDH), trying to
further reduce the already highly reduced Q pool. Because the Q pool is already maximally
reduced, electrons are forced backward (reverse electron transport: RET), and O2 is partially
reduced to O2− at complex I [27]. Other contributors to reperfusion ROS are activated
NOX2/4 [28], highly charged (high ψm) mitochondria due to detachment of Hexokinase
II (HKII) from mitochondria [26,29–31], interrupted oxidative phosphorylation due to
ischemic accumulation of long-chain acylcarnitines (see below Section 2.3.3) [32,33], and
uncoupled endothelial NOS (eNOS) [24,34].

ROS produced during early reperfusion primes the mPTP for the high cytosolic
calcium, permanently opening this mitochondrial pore and causing cell death [35]. ROS
and nitrative stress, both during ischemia and reperfusion, also oxidizes and/or nitrates
several proteins, thereby hampering their function and contributing to IRI.

2.3. Involvement of Intermediate Metabolites in IRI

IRI of the heart can be considered a metabolic pathology with abruptly halted metabolism
during ischemia, and is aggravated by a sudden restart of specific metabolic pathways trying
to recover metabolic homeostasis at reperfusion [36]. Variations in cellular levels of metabolic
intermediates during IR underlie part of the mechanisms contributing to the development
of IRI. Here, we describe changes in metabolic intermediates that are now known to affect
cardiac IRI.

2.3.1. Succinate

It has been known since 1978 [37] that succinate increases in the heart during ischemia.
More recent research demonstrated that oxidation of ischemic succinate during the first
minutes of reperfusion contributes largely to early reperfusion ROS and, therefore, IRI [27].
Originally it was suggested, by employing isolated mitochondria as a model, that ischemic
succinate was generated from fumarate through mitochondrial complex II reversal [27].
However, research using a more physiological model of isolated mouse hearts demon-
strated that ischemic succinate is mostly arising from remaining Krebs cycle activity during
ischemia, still turning in the normal direction (so-called canonical TCA activity) [38]. The
metabolic precursors of ischemic succinate are mostly (75%) intermediates of the Krebs
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cycle, whereas the remaining 25% is generated through complex II reversal (6%), aspartate
anaplerosis (10%) via aspartate aminotransferase (AST), and glutamine anaplerosis (8%)
via alanine aminotransferase (ALT) [38]. Increased glycogen breakdown and glycolysis
during ischemia indirectly contribute to ischemic succinate accumulation by providing the
substrates (pyruvate, NADH) for AST and ALT. Actually, the depletion of glycogen before
ischemia resulted in a 40% decrease in ischemic succinate, demonstrating the importance
of glycogen during ischemia for the generation of ischemic succinate [38]. Of note, the
generation of succinate during ischemia can also be protective against IRI, as it provides en-
ergy in the form of GTP through substrate-phosphorylation by succinyl-coenzyme A (CoA)
synthetase. Those beneficial effects were reflected by delayed contracture with increased
succinate during ischemia [38]. Thus, impairing succinate generation during ischemia is a
double-edged sword, whereas impairing its oxidation during early reperfusion is mostly
protective against IRI.

2.3.2. Glycogen and Glucose-6-Phosphate

Several glycolytic intermediates and end-products accumulate during ischemia from
the breakdown of glycogen, such as glucose-1-phosphate, glucose-6-phosphate (G6P),
fructose-6-phosphate, pyruvate, and lactate [39,40]. Although for several of these inter-
mediates, it remains to be elucidated whether they modulate IRI; elevated G6P levels
are detrimental. The increase in G6P, together with acidosis during ischemia, will de-
tach HKII from the mitochondria, thereby increasing infarct size [41,42]. The amount of
HKII bound to mitochondria (mtHKII) is a strong determinant of infarct size [41], making
treatments directed at maintaining mtHKII a valid target for cardioprotection [43]. The
strongest cardioprotective intervention to date, ischemic preconditioning (IPC), was shown
to be associated with differences in mtHKII, but not with, e.g., ischemic succinate accu-
mulation [41–45]. Maintaining HKII at the mitochondria may provide protection through
several mechanisms: (1) reduction in the mitochondrial membrane potential to lower mito-
chondrial ROS production [29], (2) activation of glucose metabolism with attenuation of
mitochondrial activity [46], (3) impairment of mPTP opening [47], and (4) prevention of
ischemic mitochondrial ATP hydrolysis by reversed ATPase [48], thereby also attenuating
anaerobic glycolysis and acidosis during ischemia. Pretreating hearts with insulin may
therefore increase cardiac IRI, because insulin will load the heart with glycogen, which,
once totally depleted because of prolonged ischemia, increases G6P and acidosis, detaching
HKII from mitochondria and increasing infarct size [49]. However, when total glycogen
depletion is prevented, for example, due to such short ischemia that glycogen is not totally
depleted during ischemia, insulin pretreatment is protective because insulin per se increases
cardiac mtHKII [50] and the increased glycogen provides additional glycolytic ATP during
ischemia [51]. Therefore, glycogen is also considered a double-edged sword during IRI:
protective when not completely depleted, detrimental when all glycogen is broken down
during ischemia [51].

2.3.3. Acylcarnitines

Older literature has reported the accumulation of acyl-CoA and acylcarnitine during
ischemia [52,53]. Recent studies demonstrated especially the accumulation of long-chain
acylcarnitines to contribute to cardiac IRI [32,36]. Acylcarnitines accumulate during is-
chemia because carnitine palmitoyltransferase 1 (CPT1, the enzyme catalyzing the transfer
of acyl-coA to carnitine to form acylcarnitine) becomes highly activated due to the decrease
in its natural inhibitor malonyl-CoA [54]. The enzyme-generating malonyl-CoA, acetyl-
CoA carboxylase, is inhibited due to the ischemia-induced increase in phospho-AMPK. In
turn, CPT1 generates large amounts of long-chain acylcarnitines that cannot be metabolized
by mitochondria due to the lack of oxygen [32]. This detrimental effect of high cardiac levels
of acylcarnitines on IRI is especially present in the fasted condition, when acylcarnitines
can accumulate five times more than in the fed condition [55]. Mechanistically, the presence
of high levels of long-chain acylcarnitines inhibits oxidative phosphorylation (OXPHOS)
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during early reperfusion, thereby inducing mitochondrial membrane hyperpolarization
and contributing to mitochondrial ROS production [56] to increase cardiac IRI. Thus, the
detrimental effects of long-chain acylcarnitines become apparent during reperfusion, when
the supply of oxygen drives ROS from acylcarnitine-impaired mitochondria [33].

2.4. Cofactors Involved in IRI

Tetrahydrobiopterin (BH4): For nitric oxide (NO) synthesis, eNOS requires the redox-
sensitive cofactor BH4. However, this cofactor is continuously oxidized during ischemia,
such that at 30 min of ischemia, 85% of BH4 is already irreversibly degraded [34]. As a
consequence, eNOS becomes uncoupled, and the enzyme starts to generate ROS (•O2−)
instead of NO. It was estimated that ROS produced by uncoupled eNOS following 30 min
of ischemia and reperfusion contributed to 30% of the total ROS detected [55]. Restoring
BH4 directly by supplying BH4 in the liposomal formulation [34], or indirectly through,
e.g., folic acid administration, protected hearts against IRI [57,58].

Nicotinamide adenine dinucleotide (NAD+): NAD+ is a critical cofactor involved in
more than 500 enzymatic reactions impacting cellular metabolism, inflammation, energetics,
and cell survival, with decreased levels related to a diverse area of pathologies such as
aging, diabetes, metabolic diseases, heart failure, and IRI [59–61]. In the heart, 72% of
all NAD+ is localized in the mitochondrial matrix [62]. During cardiac ischemia, about
30% of NAD+ is lost, which is largely increased to 70% during reperfusion [62]. The
loss of NAD+ during reperfusion can be explained by the opening of the mitochondrial
permeability transition pore (mPTP), a phenomenon mainly occurring during reperfusion
and allowing NAD+ to escape the mitochondria. Outside the mitochondria, NAD+ is
broken down by NADases (e.g., the glycohydrolase enzyme CD38) [62,63] to generate
Ca2+-mobilizing second messenger cyclic ADPR (cADPR) to raise Ca2+ and thus contribute
to IRI. Inhibiting the enzyme aldose reductase of the polyol pathway may be another
means to conserve NAD+ during IR by attenuation of NAD+ use through reduced sorbitol
dehydrogenase activity. The preserved NAD+ is then used for glyceraldehyde 3-phosphate
dehydrogenase in glycolysis, facilitating increases in glycolytic ATP synthesis [64–66].
Major mechanisms explaining increased cardiac IRI with decreased NAD+ relates to the
loss of function of enzymes that need NAD+ as a cofactor, such as sirtuins (deacetylation)
and glycolytic enzymes. Decreased sirtuin and glycolytic activities are known to increase
cardiac IRI [36,67,68].

3. Novel Pharmacological Strategies Targeting IRI in Cardiomyocytes

Drugs modulate their cardioprotection effects through different upstream routes;
however, their final end-effector protective mechanisms culminate in the attenuation of
Na+ and Ca2+ overload, inhibition of ROS production, and mPTP opening, precipitating
reductions in cell death [69]. We now focus on novel pharmacological treatments that
mainly target the mechanisms discussed above in Section 2.

3.1. NAD+ Precursors

NAD+ precursors that have been tested to prevent cardiac IRI ex vivo or in vivo are
nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR). One of the first
studies examining NAD+ precursors in the setting of cardiac IRI [67] reported protection
with 500 mg/kg NMN intraperitonally (i.p.), either once 30 min before ischemia, or four
times just before and during 24 h of reperfusion. Mechanisms of protection by NMN
precursors relate to the activation of sirtuins, glycolysis, and/or autophagy [67,68,70,71].
Surprisingly, few studies have examined NR as an NAD+ precursor in cardiac IRI studies,
which is somewhat surprising given NR’s superiority in elevating NAD+ in humans [72].
Pre-ischemic administration (50 mg/kg i.v.) of NR in an in vivo rat model of cardiac IRI
employing clinically relevant anesthesia reduced infarct size [73]. Subsequently, employing
isolated mouse hearts, we also demonstrated that NR’s protection against cardiac IRI, simi-
lar to NMN [68], is mediated through glycolysis activation [74]. Thus, it seems that NAD+
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precursors offer novel opportunities for acute protection against cardiac IRI. Although
studies in isolated mitochondria have suggested protection through direct inhibition of
mPTP by NAD+ [75], studies in intact hearts or in vivo favor activation of glycolysis as the
major protective mechanism of these compounds.

3.2. Malonate

Malonate is a three-carbon dicarboxylic acid and a competitive succinate dehydro-
genase (SDH) inhibitor, and as such, it inhibits succinate oxidation during early reperfu-
sion [27]. Valls-Lacalle et al. found that disodium malonate reduced infarct size without
increasing the incidence of ventricular fibrillation in pigs with left anterior descending coro-
nary artery occlusion. No malonate was detected in distant myocardium or in plasma [76].
The authors attributed the observed cardioprotective effect of disodium malonate to intra-
coronary administration, which is a clinically feasible method to achieve selective delivery
of cardioprotective treatments. However, other studies reported a lack of malonate pro-
tection, especially under diabetic conditions [77,78]. Although the reasons for this failure
are not completely clear, it could have been partly explained by the absence of malonate in
the hearts at the first minutes of reperfusion due to the experimental set-up. Recently, data
showed that disodium malonate protects in an ischemia-selective way, i.e., only ischemic
tissue with decreased pH and increased lactate will take up disodium malonate [79]. Accu-
mulation of lactate and protons in ischemic tissue facilitates the protonation of malonate
to its monocarboxylate form, which is exchanged for lactate through the monocarboxy-
late transporter 1 (MCT1) to quickly enter cardiomyocytes upon early reperfusion. Then,
malonate is transported into mitochondria by the mitochondrial dicarboxylate carrier and
subsequently inhibits succinate oxidation. Future research should focus on this type of
malonate in preclinical models considering conditions and drugs that are present under
clinical conditions (see Section 4).

3.3. NLRP3 Inflammasome Inhibitors

The innate immune system is the first line of defense against exogenous (invading
pathogens) or endogenous (sterile, such as traumatic impact, metabolic, or IR) stress signals,
and is constituted of pattern-recognition receptors (PPRs) that are localized either on the
plasma membrane and endogenous endosomes (Toll-like receptors; TLRs) or within the
cytosol (Nucleotide-binding domain and Leucine-rich repeat-containing proteins; NLRs).
Although TLR inhibition certainly holds promise for reducing cardiac IRI [80,81], the
development of NLR inhibitors is currently more prominent [82].

The most prominent NLR suggested to be involved in acute cardiac IRI and for
which inhibitors are being developed and tested is the NLRP3 inflammasome. NLRP3
inflammasome activity is regulated through expression and then oligomerization of three
components: ASC, NLRP3, and caspase-1 [83]. NLRP3 is hardly expressed in healthy hearts,
explaining the lack of cardioprotection following NLRP3 gene deletion [84,85]. However,
stress and inflammation lead to NLRP3 expression in the heart. Stress induction can occur
(1) during extensive surgery needed for opening the chest, (2) in diseased animals (diabetic,
heart failure, metabolic syndrome, and aging), (3) in the presence of pathophysiology
(low blood pressure, hypoxia, ischemia, and metabolic stress), or (4) examining hearts at
late (>3 h) reperfusion. Impairing NLRP3 inflammasome activity through ASC deletion
decreased infarct size after two days of reperfusion [86]. However, deletion of ASC or
NLRP3 had no effect on IRI when studied between 30 min and 3 h of reperfusion [84,85].
Similarly, cardioprotection by NLRP3 inhibition was only observed at 24 h but not at 3 h of
reperfusion [87]. Moreover, NLRP3 inhibition only reduced infarct size when administered
1 h after reperfusion, while its cardioprotective effect was lost when treatment was delayed
to 3 h of reperfusion [87]. These findings highlight that the therapeutic window of NLRP3
inflammasome inhibition is limited to the first hours of reperfusion.

In a large animal model of cardiac I/R, the NLRP3 inhibitor MCC950 administered
during the first 7 days of reperfusion exerted a mild protective effect on infarct size [88].
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However, cardioprotection was not observed with the novel NLRP3-inflammasome in-
hibitor IZD334 [89]. No clinical trials have been published reporting on the use of specific
NLRP3 inflammasome inhibitors in the setting of acute IRI. Only the old and aspecific anti-
inflammatory drug colchicine, which inhibits the assembly of the NLRP3 inflammasome,
was recently evaluated in a clinical trial. Colchicine was administered immediately at
reperfusion and during the first five days of reperfusion in first-time ST-segment-elevation
myocardial infarct patients [90]. However, no cardioprotection was observed. Although
interleukin-6 and high-sensitivity C-reactive protein concentrations after PCI were de-
creased by colchicine in another study, the myocardial injury did not differ between the
treatment and placebo groups [91].

In conclusion, although preclinical research shows promise for NLRP3 inhibitors to
reduce cardiac IRI in settings of diseased hearts (diabetic, aged, and metabolic syndrome),
and novel NLRP3 inflammasome inhibitors are being developed, the first cardioprotective
trial with these selective NLRP3 inhibitors is still eagerly awaited [91].

3.4. Caspase and Calpain Inhibitors

Caspases, or cysteine-aspartic acid proteases, are cysteine endoproteases that attack
and cleave a protein only after an aspartic acid residue. Caspase-3, -6, -7, -8, and -9 are
mainly involved in apoptosis, whereas caspase-1, -4, -5, and -12 (in humans) and caspase-1,
-11, and -12 (in mice) are mainly involved in inflammatory pathways [92].

Although apoptosis is important for heart development, a resistance to caspase-
dependent apoptotic cell death has been detected in differentiated cardiomyocytes [93]. In
addition, caspase-3/caspase-7 double-knockout mice showed no myocardial protection
during the acute phase of reperfusion [94]. Additionally, in terminally differentiated mouse
myocardium, caspase-3, -6, and -7 are silenced [95]. Directly comparing necrosis and apop-
tosis in an isolated rabbit heart employing different durations of ischemia, it was observed
that necrosis and infarct size (12–23% of heart tissue) was 6–8 times larger than apopto-
sis (2–3% of cells) [96]. Controversial data have been reported for selective inhibitors of
caspase-3 or -9, with one study reporting significant reductions in infarct size [97], whereas
another study reported no effects on infarct size [98]. It is possible that the selective caspase
inhibitors are not so selective and also partly inhibit, e.g., calpains (see below). Those
results demonstrate that pharmacological treatment targeting apoptosis-related caspases
does probably not play a major role in acute cardiac IRI.

In contrast, inhibition of caspase-1 and -4 by VRT-043198 (VRT) or emricasan did re-
duce acute cardiac IRI in both rats and mice [15,99,100]. The degree of protection obtained
with the specific caspase-1 and -4 inhibitor VRT was similar to the protection observed
with the pan-caspase inhibitor emricasan, again providing evidence that apoptosis does not
contribute significantly to acute cardiac IRI [15]. Interestingly, specific calpain inhibition
offered similar protection as that observed with VRT, and adding VRT to calpain inhibi-
tion did not further reduce infarct size, suggesting that the activation of calpain during
early reperfusion is needed for caspase-1-induced infarct size reduction [15]. Calpains are
activated by cytosolic increases in Ca2+, one of the two major signaling events (besides
ROS production) during the first minutes of reperfusion that dictate acute cardiac IRI (see
sections above). Indeed, calpain silencing ameliorated acute cardiac IRI [101]. Although
caspase-1 activation has originally been thought to be a consequence of NLRP3 inflam-
masome activation, recent research showed that calpains can activate caspase-1 through
dislodging procaspase-1 from the actin-filament network and transformation of its active
caspase-1 enzyme through autoactivation [102]. The active caspase-1 can then break down
gasdermin D into its lytic N-terminal fragment to make holes in the plasma membrane
to kill the cell. Indeed, gasdermin D knockout hearts were protected against acute car-
diac IRI [103]. This process of cell death has been called pyroptosis, and because of its
significance in acute cardiac IRI, it can be considered a high-potential target for reperfusion
injury therapy.
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4. Translating Preclinical Cardioprotection into the Clinical Arena: Role of Risk
Factors, Comorbidities, Comedications, Peri-Operative Care, and Ischemia Duration

One of the main obstacles to successful translation from the preclinical towards the
clinical condition has been the omission of patient risk factors, comorbidities, comedi-
cations, and peri-operative treatments in preclinical models of cardiac IRI. Risk factors
and comorbidities (aging, diabetes, hyperglycemia, sex, metabolic syndrome, and hyper-
tension), comedications (statins, β blockers, metformin, GLP-1 agonists, and SGLT2is),
and peri-operative treatments (heparin, aspirin, P2Y12 platelet inhibitors, nitroglycerine,
opioids, benzodiazepines, and propofol) can all abrogate cardioprotective interventions.
Most of these factors have been recently summarized in comprehensive reviews [1,104].
Interestingly, recent work revealed a possible mechanism by which comorbidities such
as prediabetes, hyperglycemia, and metabolic syndrome may abrogate cardioprotective
interventions such as insulin treatment or ischemic preconditioning [105]. This mecha-
nism entailed enhanced nitration of caveolin-3 at tyrosine 73 by peroxinitrite formed from
increased NADPH oxidase-induced ROS and increased iNOS-induced NO, thereby disrup-
tion the Cav3 signalosome needed for insulin sensitivity, resistance to myocardial ischemia,
and several cardioprotective signaling pathways [105]. Therefore, decreasing nitration
through inhibition of iNOS or NOX activity, e.g., through the use of SGLT2 inhibitors that
have been reported to reduce ROS and increase NO [106,107], may help to restore the
cardiac intrinsic pathways of protection.

An additional, often neglected factor that also determines the effectiveness of certain
protective interventions, but largely deviates between preclinical and clinical cardiac IRI,
relates to the duration and/or severity of the ischemic insult [108]. Whereas in preclinical
models duration of ischemia is most often between 25 and 50 min with 100% obstructed
coronary flow, in clinical models, the ischemic insult before the start of clinical treatment
commonly lasts between 150 and 250 min of still-lingering (<10%) coronary flow [109–112].
Although for both infarcts, the size amounts to approximately 50% of the area at risk, it is
likely that underlying cellular mechanisms causing cell death differ between short-term
no-flow and long-term low-flow conditions. In addition, the sensitivity of cardioprotec-
tive interventions depending on ischemia duration may differ. For example, reducing
ischemic-induced oxidative stress and boosting eNOS activity mostly provide protection
against the short duration of no-flow ischemia (<30 min), whereas ischemic precondi-
tioning, postconditioning, mPTP inhibition, opioids, sevoflurane, and metoprolol mainly
protect against no-flow ischemia of 30–60 min duration. Conversely, mPTP inhibition and
postconditioning can even increase IRI when applied to combat short no-flow ischemia,
whereas none of these cardioprotective interventions protected against no-flow ischemia of
>60 min [108]. From this perspective, devising a multitarget protective reperfusion strategy
may be optimal [113]. Once an optimal strategy has been developed, step-by-step criteria
for IMproving Preclinical Assessment of Cardioprotective Therapies (‘IMPACT’) should
be met to improve the likelihood of translating novel cardioprotective interventions to the
clinical setting [114].

5. Volatile Anesthetics and Noble Gases for Cardioprotection against IRI
5.1. Volatile Anesthetics

Nowadays, the volatile anesthetics isoflurane, sevoflurane, or desflurane are gener-
ally used for balanced anesthesia in the clinical setting. Cardioprotective properties of
isoflurane were first described by Warltier et al., who showed infarct size reduction in
the dog heart in vivo in the isoflurane-treated group [115]. Subsequently, several studies
demonstrated cardioprotection by isoflurane against IRI by preconditioning and/or post-
conditioning [116–118]. Experimental studies tried to identify potential comorbidities, as
well as concomitant use of medications in their models. Infarct size reduction by isoflu-
rane was shown to be abolished by aging, but protection was restored by employing the
antioxidant TEMPOL. Interestingly, when autophagy and mitophagy were inhibited, the
cardioprotective effect of isoflurane was blocked not only in young rats but also in old rats
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treated with TEMPOL [119]. The importance of mitophagy and autophagy in the context of
cardioprotective interventions in myocardial infarction is not yet clear [120]. The release of
ROS generated after IR is inhibited by mitophagy. Furthermore, mitophagy plays a role in
conditioning strategies but decreases with age, making mitophagy an interesting target for
cardioprotective interventions in the aged myocardium [121]. Isoflurane-induced precondi-
tioning inhibits cardiomyocyte autophagy by phosphorylation of p38 MAPK accompanied
by a decreased expression of nucleotide-binding oligomerization domain containing 2
(NOD2) [122]. Autophagy protects against IRI; however, exaggerated autophagy has a
decisive role in reperfusion injury-mediated myocardial dysfunction [120].

In the past, research on cardioprotection focused on mitochondria as a key element
in the signal transduction pathway of conditioning strategies. Regarding conditioning
effects on mitochondrial function, Xu and colleagues showed, irrespective of mitochondrial
NO production, mitochondrial state 2 respiration uncoupling with diminished state 3
respiration by isoflurane [123]. As a part of the mPTP, Cyclophilin D (CypD) regulates
mPTP by controlling the opening dimension of the pore [124]. In wild-type and CypD
knockout mice, mitochondrial state 3 respiration was blocked by isoflurane, and ADP
consumption was improved [125]. Isoflurane-induced cardioprotective properties were
mediated by microRNA-21 through the signaling pathway containing Protein kinase B
(Akt), NOS, and mPTP [126,127]. In contrast to microRNA-21 upregulation, microRNA-23
was shown to be inhibited by isoflurane [128]. Inhibition of microRNA-23 by isoflurane led
to the protection of cardiomyocytes against oxidative stress [128]. The role of microRNAs
in cardio- protection seems to be diverse and further research is needed to clarify the
particular impact.

Cardioprotective effects induced by sevoflurane [129,130] are mediated by different
pathways, i.e., Janus kinase (JAK) and signal transducers and activators of transcription
(STAT) [131,132]. Janus kinase (JAK) and signal transducers and activators of transcription
(STAT) are involved in sevoflurane-induced cardioprotection. JAK/STAT belong to the
SAFE pathway. Sevoflurane-induced protection against reperfusion injury influences
apoptosis via the SAFE pathway, and postconditioning by sevoflurane was abolished by a
selective JAK2 inhibitor [133]. Besides effects on apoptosis, sevoflurane was also shown
to have inhibitory effects on autophagy [134], mediated by reducing phosphatidylinositol
3-kinase catalytic subunit type 3 (PI3KC3). Sevoflurane-induced cardioprotection also
restores autophagic flux impaired by IR, and this effect was NO-dependent [135]. The
protective effects were completely abrogated in the presence of the NOS inhibitor L-NAME.
The same results were observed following the administration of chloroquine—a blocker of
autophagic flux [135]. Besides the RISK and/or SAFE pathway, other targets involved in
cardioprotection were identified, i.e., vascular endothelial growth factor receptor (VEGFR),
consisting of three subtypes, namely VEGFR-1, VEGFR-2, and VEGFR-3. VEGFR-1 was
shown to be increased by sevoflurane [136], leading to myocardial preconditioning and
decreased inflammation [136]. Furthermore, a specific inhibitor of VEGF-1, macrophage
migration inhibitory factor-1 (MIF-1), abrogated the protective effect of sevoflurane [136],
similar to isoflurane; in sevoflurane-induced protection microRNAs (miRNA) are also
involved. A decrease in miRNA-155 expression induced by sevoflurane was associated with
an increase in sirtuin 1 (SIRT1), thereby reducing infarct size and inhibiting cardiomyocyte
apoptosis [137].

Notably, many patients that might need perioperative cardioprotection suffer from con-
comitant diseases, i.e., diabetes mellitus. Sevoflurane preconditioning-induced infarct size
reduction was not affected in diabetic mice [138], an effect mediated by an AMP-activated
protein kinase (AMPK)-independent activation of pro-survival mitogen-activated protein
kinase (MAPK) members, whereas in non-diabetic mice, cardioprotection was AMPK-
dependent [129]. Aging blocks sevoflurane-induced preconditioning [139] via activation
of nuclear transcription factor kappa B (NFkB) regulated genes [139]. Promising cardio-
protective effects of volatile anesthetics in diseased myocardium should be followed up by
elucidation of the different and/or impaired underlying mechanisms in future research.
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5.2. Noble Gases

Volatile anesthetics share some common pathways with other gases, e.g., noble gases.
Within the group of six noble gases, xenon and helium have especially gained a great
deal of interest regarding their cardioprotective properties [131,140–144]. Those so-called
“inert” gases display profound biochemical activity and reduce infarct size in a rabbit IRI
model [145]. Noble gases protect the myocardium when given before, during, or even
after ischemia [131,140,143]. In contrast to xenon, helium is not an anesthetic, and thus, the
cardioprotective effects are not linked to a hypnotic effect of the noble gases.

Xenon has direct effects within the myocardium [131], including differential expression
and phosphorylation of a variety of proteins, as well as blockade or activation of various
channels. One major target of xenon-induced preconditioning of the heart is protein kinase
C (PKC). The phosphorylation and subsequent translocation of the isoform PKC-Eis a key
mediator of xenon-induced cardioprotection [146]. Further downstream of PKC-E, the p38
MAPK and MAPK-activated protein kinase 2 (MAPKAPK-2) are regulated by xenon and
connect its preconditioning properties to the cardiac cytoskeleton and actin stress fiber
regulation via the small heat shock protein HSP27 [146,147]. Additionally, in vivo studies
in rats using 3 × 5 min of xenon conditioning before IRI revealed that ERK (p44/42 MAPK)
and the p54/46 MAPK (SAPK/JNK) are differentially regulated by xenon. Only ERK could
be identified as a mediator in the cardioprotection by xenon [148]. The activation of PKC
has been shown to be initiated by the regulation of mitochondrial KATP channels and
PDK-1 in rats and rabbits in vivo [149].

All above-mentioned studies applied early cardioprotection protocols; however, xenon
was also shown to be a potent inducer of late cardioprotection in vivo: xenon inhibited
progressive adverse cardiac remodeling, contractile dysfunction and reduced the expression
of β-myosin heavy chain and periostin proteins up to 28 days after a 60 min coronary artery
occlusion in rats [150]. A total of 90 min of right ventricular ischemia followed by 120 min
of reperfusion in a porcine model, whereby xenon was administered throughout ischemia
and reperfusion, increased right ventricular afterload and myocardial contractility. On
the cellular level, mRNA expression of type B natriuretic peptide (BNP) was hampered
in the remote area of the left ventricle by xenon [151]. Another potential mediator of
xenon-induced late preconditioning was shown in an in vivo late preconditioning model
of rats using the COX-2 inhibitor NS-398: cyclooxygenase 2 (COX-2). Xenon, however, did
not regulate mRNA expression of COX-2 in these animals, suggesting that xenon-induced
late preconditioning is mediated most likely by an increased activity of existing COX-2
rather than a transcriptional upregulation of COX-2 mRNA [152].

Helium is already in clinical use for the treatment of respiratory diseases, and it can be
easily applied to awake patients suffering from IRI. Inhalation of three times five minutes
of 70% helium before IR reduced infarct size in rabbit hearts [145]. In follow-up studies, the
authors administered several different inhibitors blocking a variety of signaling pathways
described to be involved in volatile anesthetic and ischemic preconditioning of the heart.
Phosphatidylinositol-3-kinase (PI3K), mitogen/extracellular signal-related kinase 1 (MEK-
1), the 70-kDa ribosomal protein s6 kinase (p70s6kinase), ROS, KATP channels, and NO
are mediators of helium-induced cardioprotection [145,153,154]. Inhibition of glycogen
synthase kinase-3beta (GSK-3β) activity and activated apoptotic protein p53 degradation in
a model with one, three, or five cycles of helium preconditioning reduced infarct size even
more, suggesting a lowered threshold when these proteins are blocked. Most importantly,
protection was completely reversed by mPTP opening with atractyloside during helium
preconditioning [155]. Cyclosporine A, a selective inhibitor of mPTP, counteracts the
blockade of helium conditioning in the presence of mild acidosis during the reperfusion
in vivo [156]. Furthermore, morphine, in combination with helium, reduces infarct size after
IR, whereby morphine alone had no effect on infarct size in an in vivo rabbit model [157].
As the effect could be inversed by blocking opioid receptors with naloxone, the involvement
of these receptors has been suggested [157]. Even a low concentration of 30% helium in
a singular dose 24 h before an ischemic insult was cardioprotective, and this effect was
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mediated most likely by COX-2 [158]. Regarding helium post-conditioning in healthy
animals, 15 min of helium inhalation already protected the myocardium, but a prolonged
inhalation for up to 60 min had no effect [159].

Most of these early studies on helium-induced cardioprotection did not investigate di-
rect effects on the expression, phosphorylation, or activation of proteins. Oei et al. identified
several important genes that where either up- or down-regulated by 15 min of helium post-
conditioning. The authors used gene expression arrays and found genes regulating necrosis,
apoptosis (pro- and anti-), and autophagy either up- or down-regulated, showing a distinct
pattern of gene regulation in the myocardium during helium postconditioning [160].

The central targets for helium-induced cardioprotection studied are mitochondria and
the mPTP. Heinen et al. focused on mitochondrial calcium-sensitive potassium (mKCa)
channels and changes in mitochondrial respiration by helium [161]. By measuring the
rate of oxygen consumption in isolated mitochondria of young and old rats after helium
conditioning, they showed that helium reduced the respiratory control index (state 3/state
4) only in young animals. Furthermore, the blockade of mKca channels by Iberotoxin
abolished the protective effect of helium on infarct size reduction and respiratory control
only in young animals [161].

In young and old rats, PKA was reported as an upstream target of mKCa channels. In-
terestingly, activation of mKCa channels in both young and old animals by NS1619 reduced
infarct size, pointing to a pivotal role of these channels also in aged myocardium [162].
The adenylyl cyclase activator forskolin in a dosage of 300 µg/kg was only able to reduce
infarct size in young animals. However, a much higher dosage of 1000 µg/kg was effective
even in old rats, suggesting that the upstream regulation of mKCa channels by PKA might
be a critical step for the age-dependent loss of helium-induced cardioprotection [162].

The influence of hypertension on helium conditioning was investigated in sponta-
neously hypertensive rats that were subjected to 25 min of ischemia followed by 120 min
reperfusion using three different conditioning protocols in vivo. One group of animals
received 70% helium post-conditioning (15 min after the index ischemia), one group re-
ceived post-conditioning in combination with helium late preconditioning (application of
helium 24 h before the IR procedure), and the third group received an additional 3 × 5 min
cycle of preconditioning shortly before IR on top of the second group [163]. Only the triple
intervention could effectively protect spontaneously hypertensive rats against IRI.

Diabetic disorders prevent helium-induced early preconditioning and postcondition-
ing [163]. In pre-diabetic obese Zucker rats, no helium-induced mitochondrial uncoupling
could be observed. On the contrary, in the non-diabetic Zucker lean rats, mild mito-
chondrial uncoupling of oxygen consumption was detected [163]. Among the molecular
targets investigated in this study, helium only affected GSK-3β phosphorylation in Zucker
lean animals. Other important targets, such as ERK 1/2 and Akt phosphorylation, were
surprisingly not regulated in both animal types [163].

Helium affects many intracellular proteins without receptor binding in the heart.
Caveolins, small proteins that are embedded in the Caveolae of the cell membrane, are
supposed to be a target for Helium. As Caveolins have a scaffolding domain that has been
described to bind several proteins involved in helium-induced cardiac protection (e.g., Src
kinases, PI3K, eNOS, PKC isoforms, and ERK), a regulation of Caveolins by helium seems
likely [164–166].

Two of the isoforms of Caveolin (Caveolin 1 and 3) are critically involved in helium
postconditioning [167]. After helium administration, an increased level of Caveolin 3 was
found in the plasma of rats. Furthermore, both isoforms were upregulated in the infarcted
area of rat hearts [167]. Short (5 min) administration of helium before cardiac arrest leads
to differential expression patterns of both isoforms in the myocardium and reduced cardiac
apoptosis [168].

Employing isolated Langendorff-perfused mice hearts, cardioprotection by helium
could not be detected [169]. The lack of any circulating blood in the Langendorff system
was assumed to be one explanation for this surprising outcome. In follow-up experiments,
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the membrane fractions showed a decrease in Caveolin 1 and 3 expressions, whereby both
isoforms were elevated in the platelet-free plasma of the mice [169]. Secretion of caveolins
into the blood stream following helium inhalation is suggested.

In isolated neonatal rat cardiac fibroblasts, helium conditioning induces migration of
cardiac fibroblasts and might thereby mediate cardioprotection. However, this effect was
not mediated by an increased release of extracellular vesicles (EV). Helium decreased the
amount of medium EV [170]. The cardioprotective pathways that have been discussed for
helium in this section can be found in Figure 2.
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Figure 2. Schematic overview of Helium-induced cardioprotection: this diagram presents a summary
of the established mechanisms involved in helium-induced cardioprotection, primarily through
the RISK pathway, which is closely associated with changes in Caveolin-related processes. He-
lium is represented by a purple circle (He). Red arrows indicate activation or up-regulation, while
squares denote suppression or down-regulation. Intracellularly, these mechanisms converge on
the mitochondria, inhibiting the opening of the mitochondrial permeability transition pore (mPTP).
Additionally, the potential pathway of “remote conditioning” by helium is illustrated on the left
side of the diagram. Unknown and identified factors (potentially Caveolin, transported via exo-
somes) mediate protection in distant organs and enhance mitochondrial respiration in remote cells.
GPCR = G-protein coupled receptor; MEK-1 = mitogen-activated protein kinase-extracellular signal-
regulated kinase-1; ERK1/2 = Extracellular signal-regulated kinase 1/2; IP3 = inositol triphosphate-3;
DAG = diacylglycerol; PKC-ε = protein kinase C epsilon; GSK3β = glycogen synthase kinase-
3beta; PI3K = hosphatidylinositol-3-kinase; PDK-1 = phosphoinositide-dependent protein kinase-1;
PKB = protein kinase B; mTOR = mammalian target of rapamycin; P53 = Tumor protein P53; mPTP
mitochondrial permeability transition pore; eNOS = endothelial nitric oxide synthase; NO = nitric
oxide; L-NAME = L-NG-nitroarginine methyl ester; PKA = protein kinase A; mKCa = mitochondrial
calcium-sensitive potassium channel; ROS = reactive oxygen species; Pi = inorganic phosphate;
ATP = adenosine triphosphate; and ADP = adenosine diphosphate.

To summarize, convincing evidence supports that the biological ‘inert’ gases xenon
and helium affect several molecular pathways in the heart, which contribute to the observed
cardioprotection against IRI of both gases in the experimental setting.
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6. Translating Preclinical Cardioprotection by Volatile Anesthetics and Noble Gases
into the Clinical Arena

Although experimental findings on volatile anesthetic-induced cardioprotection were
very convincing, clinical evidence for these protective effects is lacking [171–177]. Anes-
thesia with volatile anesthetics was shown to reduce mortality in cardiac surgical patients
but not in patients undergoing non-cardiac surgical interventions [178]. Likhvantsev et al.
compared sevoflurane with propofol in nearly 900 patients undergoing cardiac surgery.
Sevoflurane reduced one-year mortality and length of hospital stay [171]. However, in a
similar patient population, Landoni et al. could not demonstrate any effect on mortality
and/or hospital stay when comparing sevoflurane with propofol [172]. The same author
confirmed his results later in a large multicenter trial including 5400 cardiac surgical pa-
tients showing no benefits on one-year mortality when using isoflurane, sevoflurane, or
desflurane compared to propofol [172]. Furthermore, other outcomes, such as myocardial
infarction, did not differ between the anesthetic regimens [173]. In non-cardiac surgery,
patients with increased cardiovascular risk (n = 385), no protective effect of sevoflurane
versus propofol on myocardial ischemia was observed [174]. Particularly with regard to
patients undergoing cardiac surgery, where balanced anesthesia has been re-commended
for years, current research shows no evidence in favor of volatile anesthetics compared to
intravenous anesthetics.

Similar results were reported for noble gas-induced cardioprotection in the clinical scenario.
In healthy volunteers, employing a forearm blood flow model to investigate endothe-

lial function, helium reduced post-ischemic endothelial dysfunction without affecting
plasma levels of cytokines, adhesion molecules, or microparticles known as mediators of
helium-induced organ protection [179]. In patients undergoing coronary artery bypass
surgery, neither helium pre-conditioning (3 × 5 min helium inhalation before aortic cross-
clamping) nor post-conditioning (helium inhalation at the start of reperfusion) reduced
postoperative troponin release [180]. Even a combination of pre- and postconditioning had
no cardioprotective effect.

Contrary to hypothermia alone, xenon, in addition to hypothermia, attenuated my-
ocardial damage in patients after out-of-hospital cardiac arrest and ROSC [181]. In addition,
xenon combined with hypothermia was associated with greater recovery of left ventricular
systolic function in comparison with hypothermia alone, indicating some cardioprotective
properties of xenon in this clinical setting [182].

A multicenter, international, and randomized clinical trial assessed the cardioprotec-
tive effects of xenon anesthesia in patients undergoing coronary artery bypass graft surgery
as compared to sevoflurane- or propofol-based anesthesia [176]. In 492 patients receiving
either propofol, sevoflurane, or xenon, a reduction in troponin I release was shown between
the xenon and propofol and between the sevoflurane and propofol group. The difference
in troponin release was small, and no conclusion can be drawn whether the observed effect
is clinically relevant.

To summarize, similar to volatile anesthetics, a clinically relevant cardioprotective
effect of helium or xenon is absent.

It has to be mentioned, however, that also other medical gases have been investigated
for their cardioprotective effects. Amongst these, NO and also Hydrogen (H2) gas have been
found effective in protecting against IRI of the heart in different animal studies [183–187].
In a double-blind, randomized, placebo-controlled phase II trial, the impact of inhaling
80 ppm NO as an adjunctive therapy before percutaneous coronary intervention was
investigated. The effects of NO were observed for up to 4 h following reperfusion. While
the inhalation of NO did not show a significant reduction in infarction size (measured by
magnetic resonance) between 48 and 72 h compared to the placebo group, a trend towards
improved left ventricular (LV) functional recovery was observed with NO inhalation [188].
Furthermore, experimental studies have investigated the role of hydrogen gas in preventing
ischemia/reperfusion injury of the heart and other organs [187] for a recent review in this
area [189]. Ohsawa et al. discovered that hydrogen gas has a selective antioxidant effect
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that helps to scavenge harmful ROS, such as hydroxyl radicals (OH·), while preserving the
beneficial signaling functions of other ROS [190]. These features help to reduce oxidative
stress and limit damage to cardiac tissues. Additionally, hydrogen gas was proven to
suppress the inflammatory responses by modulating pro-inflammatory cytokines and,
therefore, can help prevent further damage to the heart during ischemia/reperfusion
injury [189].

The pathways per drug group that have been shown to be involved in preventing IRI
of the heart have been summarized in Table 1.

Table 1. Promising drugs/compounds to reduce cardiac IRI and endothelium damage.

Drugs/Compounds Mechanism Setting = > Phase II Trial?
Heart

NAD+ precursors
(NR, NMN) restoring NAD levels preclinical models of acute

cardiac IRI No

Malonate reducing ROS at early reperfusion preclinical models of acute
cardiac IRI No

NLRP3 inflammasome
inhibitors

preventing inflammasome
complex formation preclinical models of cardiac IRI No

Caspase-1,4 inhibitors
(VRT, emricasan) pyroptosis inhibition preclinical models of acute

cardiac IRI No

Calpain inhibitors proteolysis and
pyroptosis inhibition preclinical models of cardiac IRI No

Volatile anesthetics/
Helium/Xenon

activation of Survival pathways
(RISK/SAFE), Caveolin 1/3,
mitophagy, and autophagy

preclinical models of cardiac IRI Yes

Volatile anesthetics
reduced microRNAs

(miRNA-155), induction
of VEGFR1

preclinical models of cardiac IRI No

Endothelium

Sevoflurane activation of survival pathways
(RISK/SAFE)

preclinical CPB models
cardiac surgery patients with CPB Yes

Nitric oxide donors reducing oxidative stress preclinical CPB models
cardiac surgery patients with CPB Yes

Lidoflazine calcium channel blocker patients undergoing multiple
aorta-coronary bypass grafting Yes

Doxycycline inhibition matrix
metalloproteinases cardiac surgery patients with CPB Yes

(Indirect) Endothelial
receptor activators strengthening endothelial barrier preclinical CPB models

cardiac surgery patients with CPB Yes, but not all

NAD = nicotinamide adenine dinucleotide; NR = nicotinamide riboside; NMN = nicotinamide mononucleotide;
IRI = ischemia-reperfusion injury; NLRP3 = NOD-like receptor family pyrin domain containing 3; ROS = reactive
oxygen species; VRT = active component of the caspase-1/4 inhibitor VX-765; RISK = reperfusion injury salvage
kinase; SAFE = survivor activating factor enhancement; VEGFR1 = vascular endothelial growth factor-receptor 1;
and CPB = cardiopulmonary bypass.

7. The Endothelium as Target to Protect against IRI during Cardiac Surgery with
Cardiopulmonary Bypass

One of the most common surgical interventions in which global cardiac ischemia
is induced is cardiac surgery. During cardiac surgery, cardiac ischemia is induced by
cross-clamping of the aorta, as most surgeons prefer a non-beating heart with a blood-free
operating field. During cross-clamping of the aorta, coronary artery perfusion is ceased,
and ischemia is induced. To maintain systemic blood circulation, blood is transferred to a
heart-lung machine, e.g., by extracorporeal cardiopulmonary bypass (CPB).

Since the start of cardiac surgery in the 1950s, considerable research has been per-
formed to reduce the damaging effects of aorta cross-clamping during cardiac surgery.
Cardioplegic strategies have been the subject of many recent reviews [191,192], but also
anesthetic agents, as discussed above, have been shown to protect the heart against IRI.
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Myocardial IRI is mainly characterized as a disease of cardiomyocytes, but other cellu-
lar compartments, such as the vasculature, also play a role. Most of the non-cardiomyocyte
cells consist of endothelial cells [193]. Endothelial cells constitute the inner lining of arteries,
veins, and capillaries and form a barrier between vessels and tissue, regulate blood flow,
and are essential for tissue delivery of oxygen and nutrients. Cardiomyocytes have received
the most attention as they are more sensitive to IRI compared to endothelial cells; however,
with increasing knowledge of cardiac cellular composition, it has become evident that
crosstalk between cardiomyocytes and endothelial cells is crucial for cardiac function [194].
Besides myocardial IRI, also endothelial dysfunction is a well-known phenomenon in
cardiac surgery patients. Patients undergoing cardiac surgery with CPB have disturbed
capillary perfusion [195], resulting in hypoxia and ischemia. This is, among other causes,
due to a systemic inflammatory response and activation of the endothelium, leading to
increased permeability of the endothelium, fluid accumulation, and tissue edema [196],
thereby hampering oxygen exchange. A healthy endothelium is important for cardiac func-
tion [197], and endothelial cells can improve cardiomyocyte survival after ischemia [198].
Moreover, pharmacological targeting of the endothelium might be an effective way to
protect the heart during IRI, given its capacity to release protective factors [199].

7.1. Oxidative Stress

The systemic inflammatory response during CPB is associated with increased oxida-
tive stress and ROS formation [200]. Used antioxidants during CPB are, among others,
L-arginine and N-acetyl-cysteine (NAC). Supplementation of L-arginine, a precursor for
NO synthesis, in cardioplegia solution, increased NO levels and attenuated ROS radical-
mediated myocardial injury in patients undergoing CABG with CPB [201]. NAC admin-
istration reduced ROS formation and creatine kinase-MB in cardiac surgery patients on
CPB [202], whereas, in another study in the same patient population, NAC decreased
oxidative stress substantially; however, it did not improve cardiac troponin I level [203]. Al-
though promising results, the cardioprotective effects of antioxidants via reducing oxidative
stress need further investigation.

Administration of NO, NO donors, or drugs that enhance NO release prior to ischemia
protects against myocardial IRI. Drugs that enhance NO release are statins, calcium antago-
nists, angiotensin-converting enzyme (ACE) inhibitors, and dexamethasone, which are not
discussed as these drugs are already used in the clinical setting. Supplementation of the
NO donor S-nitroso human serum albumin prevented eNOS uncoupling and improved
myocardial perfusion and function in a pig CPB model [204]. However, this drug has not
been studied in the clinical setting. Interestingly, the NO donor Nicorandil protected the
heart via the reduction in oxidative stress in a rabbit CPB model [205] and reduced inflam-
mation and troponin T levels in patients undergoing cardiac surgery with CPB [206,207].
In addition, nitroglycerin administration in cardioplegia solution increased NO levels and
decreased troponin T levels in CABG patients [208]. In contrast, treatment with glyceryl
trinitrate did not affect cardiac troponin T levels and even abrogated the cardioprotective
effect of RIPC in cardiac surgery patients [209]. Taken together, NO donors seem promising
in protecting the heart via the vasculature during CPB; however, it should be taken into
account that most NO donors have platelet inhibitory properties and might therefore have
clinical consequences in terms of postoperative bleeding [210].

7.2. Glycocalyx

The surface of the vascular endothelium is covered by a gel-like layer called the
endothelial glycocalyx, which regulates vascular resistance, permeability, and leukocyte
recruitment. IR severely damages the endothelial glycocalyx, which can be detected by
increased circulating levels of its principal constituents, syndecan-1 and heparan sul-
fate [211,212]. Degradation of the glycocalyx can result in myocardial edema and microvas-
cular obstruction in patients following myocardial infarction [213]. Glycocalyx damage
is also reported following aortic cross-clamping in rats [214] and in cardiac surgery pa-
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tients [215,216]. During remote ischemic conditioning, glycocalyx thickness was improved
in patients after myocardial infarction [217], and anesthetic conditioning protects the glyco-
calyx layer. In isolated pig hearts, sevoflurane protected the post-ischemic heart against
endothelial dysfunction by reducing glycocalyx degradation [218]. Sevoflurane decreased
glycocalyx degradation in patients undergoing heart valve surgery with CPB compared
to propofol anesthesia [219]. Thus, pharmacological conditioning might preserve the
endothelial glycocalyx.

Research on the effects of pharmacological conditioning on the glycocalyx during
cardiac surgery is sparse. Lidoflazine, a calcium-channel blocker, preserves the glycoca-
lyx and protects cardiac function in patients undergoing multiple aorta-coronary bypass
grafting [220]. Although it has been known for many years that reperfusion results in
cardiomyocyte calcium overload, as described above [221], calcium-channel blockers have
not been followed up in the clinical setting. However, from a vasculature perspective,
combination therapy with a calcium channel blocker could be of interest.

More recently, matrix metalloproteinases have been shown to be commonly upregu-
lated in cardiac surgery patients with CPB [222] and are suggested as a potential mechanism
triggering glycocalyx damage. Prophylactic treatment with doxycycline reduced glycocalyx
damage in cardiac surgery patients with CPB by inhibiting matrix metalloproteinases [223];
however, it did not ameliorate cardiac mechanical dysfunction following reperfusion [224].

Other pharmacological means to reduce glycocalyx degradation during cardiac surgery
have been explored in the context of CPB coating and priming fluids. Interestingly, the
glycocalyx layer was better preserved when the CPB circuit was coated with heparin
compared to phosphorylcholine in cardiac surgery patients [225]. In contrast, glycocalyx
degradation did not differ between priming the CPB circuit with human albumin or gelofu-
sine in rats [226]. Unfortunately, the above-mentioned studies did not investigate whether
the protection of the endothelial glycocalyx reduced myocardial IRI. Interestingly, treat-
ment with recombinant syndecan-1 reduced glycocalyx damage and partly ameliorated
cardiomyocyte damage in mice with myocardial IRI [227], linking endothelial glycocalyx
and cardiomyocytes during myocardial IRI.

7.3. Endothelial Barrier Function

Endothelial cells form a unique semi-permeable barrier for the transfer of solutes.
Endothelial barrier function is regulated by cell–cell and cell–matrix adhesion, as well
as endogenous mediators. Endothelial cells are joined together by adherens junctions,
tight junctions, and gap junctions, and are anchored to the basement membranes via trans-
membrane receptors. Several types of endothelial receptors have been associated with the
regulation of endothelial barrier function, such as VEGFR, sphingosine-1-phosphate (S1P)
receptor, tyrosine-protein kinase (Tie2) receptor, and protease-activated receptor (PAR),
and targeting them may open new therapeutic approaches to protect against myocardial
IRI [228].

The involvement of VEGFR in cardioprotection was already suggested in the ex-
perimental setting during ischemic [229,230] and anesthetic conditioning [136,231]. The
relationship between VEGF-A and the heart is interdependent as VEGF-A can activate
cardiomyocytes, but upon inflammation, cardiomyocytes produce VEGF-A [232]. In a CPB
rat model, VEGF protein is increased, especially following cardioplegia reperfusion [233].
In contrast, circulating VEGF-A levels decreased after CPB in cardiac surgery patients [234].
Interestingly, infusion of VEGF was protective for kidneys in beagles in CPB through the
improvement in renal perfusion [235], but no studies have been performed yet on the effect
on the heart during cardiac surgery.

Additionally, S1P signaling is well known in IRI [236]. Targeting this signaling path-
way not only protects the heart but also the vasculature. In isolated rat hearts, S1P decreased
infarct size and myocardial edema [237]. Reduction in myocardial water content could not
be explained by protection of the endothelial glycocalyx nor hemodynamic changes, but by
the involvement of S1P in endothelial permeability. However, S1P receptor subtypes have
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contrasting effects. Subtype 1 (S1P1) is required in the protection of endothelial barrier
function, whereas the activation of S1P2 and S1P3 receptors disrupts the endothelial barrier.
Pharmacological activation of the S1P1 receptor with FTY-720 and SEW2871 preserved
vascular function in rats on CPB [238] and might be an interesting target to protect both the
vasculature and the heart as low circulating levels of S1P were found in cardiac surgery
patients [239].

The endothelial angiopoietin/Tie2 system is one of the most important mechanisms
in the regulation of endothelial barrier function and is dysregulated in cardiac surgery
patients [240,241]. In short, angiopoietin-1 binds to the Tie2 receptor, thereby maintain-
ing endothelial barrier function, whereas angiopoietin-2 binds antagonistically to Tie2,
increasing endothelial permeability. Targeting Tie2 has been proposed as a promising
strategy to improve vascular function, due to its key position in the regulation of endothe-
lial barrier function. Indeed, pharmacological activation of Tie2 by vasculotide protected
the vasculature in a CPB rat model [242]. The Tie2 antagonist angiopoietin-2 was highly
expressed in endothelial cells at the infarct border zone after myocardial infarction in
mice [243]. Moreover, endothelial-derived angiopoietin-2 was involved in vascular leakage
and glycocalyx degradation, thereby worsening myocardial hypoxia [243]. Inhibition of
angiopoietin-2 substantially ameliorated postischemic cardiovascular remodeling [243].
Furthermore, inhibition of angiopoietin-2 in cultured cardiomyocytes enhanced the car-
dioprotective effects of fibroblast growth factor 2 [244]. Taken together, these data suggest
that combination therapy of angiopoietin-2 inhibition together with Tie2 activation has the
potential to reduce myocardial IRI.

Another pharmacological agent with protective effects on endothelial barrier func-
tion is imatinib mesylate [245]. Imatinib is a tyrosine kinase inhibitor developed to treat
Bcr/Abl-expressing leukemias, but Abl kinases are also involved in endothelial barrier
regulation [246]. In a CPB model, imatinib prevented endothelial barrier dysfunction and
attenuated pulmonary and renal injury [247]. Unfortunately, the heart was not studied, but
in a rat model of acute myocardial infarction, imatinib reduced microvascular injury and
myocardial infarct size [248]. As cardiotoxic effects are reported following treatment with
another tyrosine kinase inhibitor [249], future research on the effect of several generations
of tyrosine kinase inhibitors on IRI is required.

During cardiac surgery, CPB is associated with the generation of thrombin. Thrombin
has adverse effects on the endothelium and on cardiomyocytes, independent of its proco-
agulant effects, and has therefore emerged as a possible mediator of IRI [250]. Thrombin
can induce endothelial hyperpermeability via activation of the PAR1 thrombin receptor.
During cardiac surgery, patients receive antifibrinolytics such as aprotinin or tranexamic
acid. Aprotinin can, amongst others, prevent activation of the PAR1 receptor. In a rat CPB
model, aprotinin preserved endothelial integrity and reduced edema in the kidney, but
the effects on the heart were not studied [251]. In a CPB pig model, aprotinin preserved
the loss of coronary adherens junctions, which resulted in the preservation of the endothe-
lial barrier and reduced myocardial edema [252]. This was confirmed in cardiac surgery
patients, were aprotinin showed cardioprotective effects [253,254]. However, contradic-
tory results on the heart have also been reported [255]. Nowadays, the most commonly
used antifibrinolytic is tranexamic acid. In a recent review and meta-analysis, the authors
concluded tranexamic acid administration was associated with less myocardial injury in
cardiac surgery patients [256]. These results suggest that direct thrombin inhibitors might
be novel pharmacological agents to protect the heart. Indeed, one study showed cardiopro-
tective properties during myocardial IRI [257], but future studies are needed to investigate
these agents during cardiac surgery. A summary of the possible new therapeutics targeting
the vasculature and thereby protecting the cardiomyocyte is given in Table 1 and Figure 3.
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Figure 3. Overview of possible new therapeutics targeting the endothelium and thereby protecting
the cardiomyocyte. Crosstalk between cardiomyocytes and endothelial cells is crucial for cardiac
function. Endothelial cells constitute the inner lining of arteries, veins, and capillaries and form a
barrier between vessels and heart. During cardiopulmonary bypass, the endothelium can be activated,
leading to increased permeability of the endothelium (see top part of the schematic vessel), fluid
accumulation, and tissue edema, thereby hampering oxygen exchange. Within the circulation, several
proteins are up- or down-regulated during cardiopulmonary bypass. These circulating proteins can
interfere with their receptors on the endothelium and also (in)directly affect the cardiomyocyte. They
are, therefore, targets of interest to therapeutically protect the heart against IRI. VEGF-A = vascular
endothelial growth factor A; VEGF-R2 = VEGF-receptor 2; S1PR1 = sphingosine-1-phosphate receptor
1; Tie2 = tyrosine kinase receptor; PAR1 = protease-activated receptor 1; WPB= Weibel–Palade bodies;
Ca = calcium.

Although the role of the vascular endothelium as a dynamic regulator of tissue re-
sponses is increasingly recognized, the relation between vascular conditioning in the
ischemic heart is underappreciated. The cross-talk between endothelial cells and cardiomy-
ocytes provides an access point for therapeutic targeting and may be a promising approach
to protect the heart against IRI.

The pathways per drug group that have been shown to be involved in preventing IRI
of the endothelium are summarized in Table 1.

8. Conclusions

In conclusion, while there are promising pharmacological approaches demonstrated in
experimental studies for protecting the heart against IRI, there are challenges in translating
these findings into the clinical setting. Several potential confounders have been identi-
fied within the last decennia, such as co-morbidities, co-medication, peri-operative care,
and ischemic duration, and future studies should focus on understanding the underlying
pathways involved in cardiac ischemia-reperfusion damage in order to evaluate the effec-
tiveness of combination therapies targeting different cell types, such as endothelial cells
and damage pathways. Overall, continued research in this area is critical for improving the
outcomes of patients at risk of cardiac IRI.
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