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Abstract: Temperature changes and periods of detrimental cold occur frequently for many organisms
in their natural habitats. Homeothermic animals have evolved metabolic adaptation strategies to
increase mitochondrial-based energy expenditure and heat production, largely relying on fat as a
fuel source. Alternatively, certain species are able to repress their metabolism during cold periods
and enter a state of decreased physiological activity known as torpor. By contrast, poikilotherms,
which are unable to maintain their internal temperature, predominantly increase membrane fluidity
to diminish cold-related damage from low-temperature stress. However, alterations of molecular
pathways and the regulation of lipid-metabolic reprogramming during cold exposure are poorly
understood. Here, we review organismal responses that adjust fat metabolism during detrimental
cold stress. Cold-related changes in membranes are detected by membrane-bound sensors, which
signal to downstream transcriptional effectors, including nuclear hormone receptors of the PPAR
(peroxisome proliferator-activated receptor) subfamily. PPARs control lipid metabolic processes, such
as fatty acid desaturation, lipid catabolism and mitochondrial-based thermogenesis. Elucidating
the underlying molecular mechanisms of cold adaptation may improve beneficial therapeutic cold
treatments and could have important implications for medical applications of hypothermia in humans.
This includes treatment strategies for hemorrhagic shock, stroke, obesity and cancer.

Keywords: lipid metabolism; cold adaptation; membrane fluidity; adiponectin receptor; nuclear
hormone receptors; hibernation; mitochondria

1. Introduction

Environmental cold causes multiple challenges for organisms. Generally, low temper-
ature slows down the rate of molecular processes and enzyme activities that are essential
for survival. Organisms have evolved different adaptation strategies for cold environments.
They either increase thermogenesis to keep their core temperature constant (are endother-
mic) or they are unable to actively regulate their internal temperature and take on the
ambient temperature (are ectothermic). Organisms with a variable internal temperature
have developed protective physiological adaptative responses to survive in cold conditions.
For both cold survival strategies, namely, active temperature regulation through thermoge-
nesis and physiological adaptation due to a variable internal temperature, alterations in
lipid metabolic processes, including lipid catabolism and membrane fluidity regulation,
are essential.

By increasing their lipid-dependent energy expenditure, homeothermic animals, such
as mammals, are able to maintain their core body temperature during cold exposure. Lipids
are primarily stored in the adipose tissue in homeotherms and serve as metabolic fuel.
To preserve their core body temperature in cold environments, homeothermic animals
oxidize lipids in mitochondria predominantly in their brown adipose tissue. During this
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process, referred to as non-shivering thermogenesis, the chemical energy stored in lipids
is utilized to generate heat in mitochondria via uncoupling proteins, which uncouple
the electron transport from the respiratory chain [1,2]. When seasonal temperatures are
decreasing, several orders of mammals are able to lower their internal temperature (become
heterothermic) and hibernate. Hibernating animals have evolved metabolic strategies
to preserve energy and decrease their core body temperature to enter an energy-saving
torpid state, which results in metabolic repression and a shift from carbohydrates to lipid
catabolism [3,4].

Homeothermic organisms predominantly adjust their metabolism to seasonal changes.
However, poikilotherms, which have a variable internal temperature according to the am-
bient temperature, are affected by diurnal temperature fluctuations. Diurnal temperature
changes are metabolically challenging, especially for small poikilotherms or microorgan-
isms. They have evolved physiological adaptation processes primarily for their membranes.
In poikilotherms, the membrane lipid composition is altered to maintain the optimal
membrane fluidity critical for the proper function of membranes in low-temperature condi-
tions [5–7]. Such a conservation process of the physiological state of membranes in cold
environments is known as homeoviscous adaptation and was first identified in bacteria [8].
In addition, homeoviscous adaptation enables low-temperature survival of poikilothermic
species, including nematodes and flies [5,6,9]. It typically leads to an increase of unsat-
urated fatty acids in membrane phospholipids, which promotes membrane fluidity and
counteracts the membrane rigidifying effects of cooling. However, changes in membranes
that increase their fluidity are complex and also depend on the fatty acid composition, their
chain length and modifications of their head groups [10].

Here we review how changes in membrane properties following cold exposure are
detected by membrane fluidity sensors and how such changes are translated into tran-
scriptional outputs altering lipid metabolism. In particular, we focus on the role of the
adiponectin receptor in cold sensing and the downstream functioning nuclear hormone
receptors of the PPAR (peroxisome proliferator-activated receptor) subfamily, which are
master regulators for lipid metabolism. We summarize the literature for regulatory path-
ways that control lipid metabolic remodeling and are mediated by nuclear hormone recep-
tors, along with their implications on hibernation and hibernation-derived therapies for
hemorrhagic shock and stroke. Moreover, the roles of lipid metabolism in mitochondrial-
based thermogenesis and mitochondrial dynamics in response to cold are reviewed and
their impact on human diseases are discussed.

2. Regulation of Membrane Fluidity in Poikilothermic and Cold-Adapted Organisms

A reduction in the environmental temperature has a pronounced effect on the physical
properties of membranes, their functions and, ultimately, on the survival of poikilotherms.
Membrane lipid bilayers are predominantly fluid at physiological temperatures, which
is critical for normal cellular functions [11]. During a temperature decrease, membrane
bilayers can change from a disordered fluid to a gel-like non-fluid state [12]. In the non-fluid
condition, saturated fatty acyl chains of phospholipids are in a closely packed, ordered
arrangement. Consequently, during cold exposure, an excess of saturated fatty acids (SFAs)
in phospholipids rigidifies the membrane due to their straight acyl chains, which are
stabilized by hydrophobic interactions [13]. Higher-ordered fatty acyl chains are usually
in their fully extended conformation, which increases the thickness of the fatty acyl chain
area and the distance between polar head groups of the bilayer [14–16]. Therefore, a
reduced membrane fluidity can result in an elevated membrane thickness under low-
temperature conditions. To maintain fluidity and thickness of the bilayer in an optimal
range, poikilothermic organisms have developed response mechanisms that can activate
lipid desaturases to convert SFAs to unsaturated fatty acids (UFAs). Lipid desaturases
introduce double bonds in fatty acids [17], which generate kinks into otherwise straightened
acyl hydrocarbon chains of phospholipids. Such double bonds, especially cis-double bonds,
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result in looser packing and increased fluidity of membrane bilayers to maintain their
biological functions following temperature downshifts.

Adaptive processes that regulate membrane function were predominantly studied
in mesophilic organisms, which prefer to grow at moderate temperatures in a range from
20 ◦C to 45 ◦C. However, special adaptation strategies have been evolved by microorgan-
isms thriving in permanently cold ecosystems, the deep sea, and polar or glacial habitats.
Such organisms, known as psychrophiles (“cold-loving” organisms), prefer an optimal
growth temperature at ~15 ◦C or below [18] and are often exposed to diurnal tempera-
ture changes and repeated freeze and thaw cycles in terrestrial environments. Therefore,
they have evolved remarkable strategies to maintain their membrane function under ex-
treme temperature conditions. Physiological adaptations of membranes to cold were
comprehensively studied in psychrophilic microorganisms. Psychrophilic bacteria and
cyanobacteria increase the proportion of UFAs and short-chain fatty acids (SCFAs) in their
membranes [10]. In addition, the head groups of phospholipids and the membrane content
of branched-chain fatty acids (BCFAs) are modified to adapt to permanently cold habitats.
UFAs are generated by de novo fatty acid (FA) synthesis. Alternatively, double bonds can
be introduced into SFAs after their biosynthesis [11], which enables a rapid response to tem-
perature downshifts. Swift desaturase-based membrane modifications are also employed
by psychrotolerant bacteria, which have an optional growth temperature of 20 ◦C to 25 ◦C
but can survive at temperatures below 0 ◦C [18,19].

Double bonds are usually introduced into fatty acids in a cis-configuration by desat-
urases. UFAs in phospholipids with double bonds in a cis-configuration elevate membrane
fluidity more efficiently than trans-UFAs because the cis-configuration results in an immo-
bile 30◦ kink in the acyl chain [20,21]. The kink causes steric hindrance within fatty acid
chains and interferes with the lateral packing of acyl chains in the lipid bilayer. Certain
psychrophilic and mesophilic Gram-negative bacteria can regulate an isomerization from
the cis- to the trans-configuration of double bonds in UFAs through a periplasmic enzyme
known as cis–trans isomerase (Cti) [22,23]. The substrate binding of the isomerase appears
to be determined by membrane properties controlling the access of the Cti enzyme to its
cis-FA substrates located in the inner membrane of Gram-negative bacteria [23]. At low
temperatures, the membrane fluidity is reduced, which counteracts an intrusion of Cti into
the membrane. However, when the temperature increases and membranes become more
fluid, Cti might penetrate the inner membrane bilayer and catalyze the cis–trans isomeriza-
tion of acyl chains. This results in an increase in trans-UFAs, which have properties that
resemble SFAs and align more closely with each other. Thus, trans-UFA generation elevates
the viscosity of the membrane to ensure membrane functionality at higher temperatures.
The cis–trans conversion enables a fast adaptive response (e.g., during diurnal temperature
upshifts) and can be employed under growth-inhibiting stress conditions when the fatty
acid composition cannot be changed by de novo synthesis [24].

In addition to their acyl chain properties, phospholipids affect the physical state of
membranes through their head groups [10,25]. The head groups of diverse phospholipids
have different sizes and charges and their acyl chains are differentially modified, which
influences the packing and fluidity of the bilayer. In a previous study in yeast using
shotgun lipidomics, it was found that Saccharomyces cerevisiae alters the proportion of
phospholipids in the membrane when exposed to cold [26]. The degree of unsaturation
of acyl chains is dependent on the phospholipid class under low-temperature conditions.
Such a head-group-specific acyl chain remodeling was recently observed in the Gram-
negative bacterium Methylobacterium extorquens, which has a relatively simple membrane
lipid composition [27]. Following cold exposure of M. extorquens, the phospholipids phos-
phatidylcholine (PC) and phosphatidylethanolamine (PE) display the most pronounced
changes in unsaturation. Moreover, the amount of PC lipids in the bacterial membranes
increases, whereas PE lipids are reduced during cold conditions. A diminished PE level
might counteract the effect of an elevated packing density due to a strong interaction
between PE lipids in bacterial membranes [25,27,28]. Conversely, a higher PC content likely
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improves membrane fluidity at lower temperatures, suggesting that the modulation of
phospholipid levels is essential for membrane adaptation in cold.

Psychrophilic bacteria isolated from permanently cold habitats, such as sea ice or arctic
glaciers, upregulate the proportion of SCFA and BCFA in their membranes [29,30]. An
increase in SCFAs and BCFAs was detected in psychrophilic strains of Bacillus cereus, a food-
borne pathogen, which can grow in refrigerated food at 4 ◦C [31]. Short acyl chains of phos-
pholipids do not reach as far into the hydrophobic area of the membrane bilayer as longer
acyl chains do. Therefore, shorter chains, especially chains with less than 12 carbons, form
weaker hydrophobic interactions with proteins and other lipids, which increases the motion
of free acyl chain ends and promotes membrane fluidity in cold environments [32,33]. Con-
trary to the swift acyl chain remodeling based on desaturation or cis–trans isomerization, the
incorporation of SCFAs is coupled to bacterial growth because it requires de novo synthesis
of fatty acids [32]. De novo synthesis of lipids is also essential for Gram-positive bacteria to
upregulate certain BCFAs in response to cold [34]. Methyl branches on BCFAs are predomi-
nantly located at the penultimate (iso-) or antepenultimate (anteiso-) position of fatty acid
chains. Anteiso-fatty acids in phospholipids have a more pronounced membrane-fluidizing
effect than iso-fatty acids. The methyl branch in anteiso-fatty acids is located further from
the end of the fatty acid, which efficiently reduces the packing order of phospholipids’
acyl chains in the membrane bilayer [11]. Psychrotolerant Gram-positive bacteria, such as
Listeria monocytogenes, increase the proportion of anteiso-BCFA and decrease the amount
of iso-BCFA in the membrane to promote membrane fluidity in response to low growth
temperatures [35–37]. The regulation of BCFA is species- and temperature-dependent and
an upregulation of iso-BCFAs is also observed in Gram-positive bacteria when exposed
to low-temperature stress [34,38]. Many psychrophilic or psychrotolerant bacteria can
replace saturated longer and iso-BCFAs with unsaturated shorter and anteiso-BCFAs to
reduce membrane rigidity as a cold adaptation strategy. Similar responses to cold, namely,
an increase in UFAs, SCFAs and BCFAs in membranes, were observed for mesophilic
bacteria as well, suggesting that both mesophilic and psychrophilic bacteria appear to share
common mechanisms to promote membrane fluidity.

Certain psychrophilic organisms modify their membrane phospholipid pool by in-
creasing the amount of lysophospholipids (LPLs), which are altered phospholipids (PLs)
lacking one of their acyl chains. Antarctic psychrophilic yeast strains naturally synthesize
increased levels of lysophosphatidylethanolamine (LPE) and lysophosphatidylcholin (LPC)
compared with mesophilic yeast S. cerevisiae [39]. Membrane LPLs can be generated via
hydrolysis of an acyl chain in PLs through the enzymatic activity of phospholipases as part
of the de-acylation/re-acylation cycle (Lands’ cycle [40]) or via de novo synthesis of PLs.
LPLs were found in membranes of animals in relatively low quantities, e.g., in insects only
around 1% of total PLs are LPLs [41,42]; however, their proportion can increase during cold
exposure. LPLs have an inverted conical shape and hence disrupt the packing order of PLs’
acyl chains in membranes, which increases membrane fluidity [9]. Elevated LPL levels were
detected in Drosophila in response to low temperatures and during cold acclimation [41,43].
In addition, LPLs are upregulated during seasonal acclimatization of the bug Pyrrhocoris
apterus [42]. These studies suggest that LPLs are essential components in membranes for
shaping thermal responses. The specific functions of LPLs in cold adaption have only been
studied in a small number of organisms so far and are still poorly understood, but might
be relevant for cold-related responses of many species in their natural habitats.

3. Sensing Membrane Rigidification Is Essential for Membrane Fluidity Maintenance
in Cold Adaptation

Poikilothermic organisms can sense a decrease in membrane fluidity and have evolved
feedback mechanisms to maintain membrane homeostasis. Membrane-bound sensors
that detect membrane rigidification were initially identified in bacteria. Bacteria such as
Bacillus subtilis and cyanobacteria use an ancient kinase-based sensing system composed
of a sensory kinase and a cognate response regulator, which can alter the biophysical
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properties of membranes by promoting the expression of acyl lipid desaturases [44,45]. In
the cyanobacterium Synechocystis sp. PCC 6803, the histidine kinase Hik33 was identified
as a transmembrane cold sensor that signals to a transcriptional response regulator. Hik33
phosphorylates and activates the response regulator and induces the expression of fatty
acid desaturases, which act as membrane fluidizers following a reduction in the ambient
temperature [44,46]. The discovery of this two-component sensory system in cyanobacteria
demonstrated that the membrane can be the primary site of temperature perception. How-
ever, additional studies are needed to further investigate how Hik33 senses changes in the
thickness of the lipid bilayer or alterations in the physical motion of membrane lipids when
the temperature is reduced.

One of the best-investigated system for cold perception and associated transcriptional
responses was characterized in Bacillus subtilis, which senses changes in bilayer viscosity
through the transmembrane cold sensor DesK. DesK is a multi-pass transmembrane protein,
which possesses both a histidine kinase and a phosphatase activity and controls a response
regulator for the synthesis of UFA [47,48]. Upon decreasing ambient temperature and the
rigidification of membranes, a kinase-dominant state of DesK is promoted, resulting in
the phosphorylation and activation of the transcriptional response regulator DesR [49,50].
DesR initiates the transcription of a ∆5 acyl lipid desaturase, which, in turn, causes an
increase of desaturated acyl chains in the phospholipids of membrane bilayers [49,51]. A
higher proportion of UFA in membranes might trigger a feedback mechanism since an
increase in fluidity appears to promote a phosphatase-dominate state of DesK, which causes
the dephosphorylation and inactivation of DesR and the termination of lipid desaturase
transcription [49,50]. The ability of the cold sensor to switch its activity from a kinase to
a phosphatase and vice versa is based on conformational changes and provides a rapid
mechanism to adjust membrane properties through fine-tuning the expression of an acyl
lipid desaturase when the ambient temperature is fluctuating. The temperature-sensing
mechanism of DesK was comprehensively studied. Initially, it was proposed that the
transmembrane protein DesK detects changes in the thickness of membranes [52–54].
However, in addition to detecting alterations in the bilayer thickness, other membrane
properties, such as fluidity, rigidity or permeability to water, might be sensed by DesK [55].

Membrane fluidity sensors were also identified in the nematode C. elegans. C. elegans
is a poikilothermic organism that is approximately 1.3 mm in length, and thus, has a
small body volume. A drop in environmental temperature rapidly affects its membrane
properties. In worms, the membrane bilayer fluidity is monitored by the multi-pass
transmembrane protein PAQR-2, which is a progestin and adipoQ receptor-like protein that
is homologous to the mammalian adiponectin receptor AdipoR2 [56]. PAQR-2 is required
for cold adaptation and can sense membrane rigidification [57]. Similar to bacterial Hik33
and DesK, PAQR-2’s cold-sensing activity promotes the expression of acyl lipid desaturases,
such as ∆9 desaturases, in C. elegans [57]. As possible transcriptional regulators for ∆9
desaturases, the HNF4 and PPARα homolog NHR-49 (Figure 1a) and the sterol regulatory
element-binding protein/SREBP homolog SBP-1 were suggested to function in a genetic
pathway with PAQR-2 [56,57]. SBP-1 and NHR-49 interact with the mediator subunit
MDT-15, which is a transcriptional coactivator that associates with RNA polymerase II
and is required for ∆9 desaturase expression [58,59]. Gain-of-function alleles of nhr-49 and
mdt-15, as well as sbp-1 overexpression, were identified as suppressors of paqr-2 loss-of-
function phenotypes, suggesting that these regulators might be part of a cold adaptation
pathway with PAQR-2 as an upstream cold sensor that controls membrane fluidity via
fatty acid (FA) desaturation [57]. In addition, Svensk and colleagues found that paqr-2
loss-of-function phenotypes are suppressed by a reduction of phosphatidylcholine (PC)
synthesis, which, in turn, causes the activation of SBP-1 [60]. Thus, low PC synthesis may
indirectly activate SBP-1 to promote ∆9 desaturase expression, causing FA desaturation
and cold adaptation [57].

Contrary to DesK, whose ability to sense membrane viscosity depends on its structural
domains, PAQR-2 requires the coregulator IGLR-2 (immunoglobulin domain and leucine-



Cells 2023, 12, 1353 6 of 22

rich repeat-containing protein 2) for detecting membrane rigidification (Figure 1a) [61].
IGLR-2 is a single-pass transmembrane protein and associates with PAQR-2 when mem-
brane fluidity is reduced under low-temperature conditions. Membrane rigidification and
thickness might result in local clusters of PAQR-2 and IGLR-2 in the lipid bilayer [62]. Such
clusters of PAQR-2-IGLR-2 transmembrane proteins with an inflexible length appear to
be thermodynamically more favorable if the membrane is thicker and rigid. A thicker
membrane is only deformed at the protein cluster site by transmembrane proteins with an
inflexible length and does not need to be deformed multiple times for each transmembrane
protein locally when transmembrane proteins are distributed unclustered over the mem-
brane. IGLR-2 primarily interacts with transmembrane domains of PAQR-2, which might
cause conformational changes in PAQR-2′s N-terminal cytoplasmic domain (Figure 1a) [63].
Based on crystal structures of human AdipoR1,2 [64] and a PAQR-2 structural prediction by
the AlphaFold protein structure database [65,66], PAQR-2′s transmembrane domains form
a barrel structure with an opening facing the cytosolic side. Busayavalasa and colleagues
propose a model suggesting that the regulatory N-terminal cytoplasmic domain of PAQR-2
usually blocks access to the opening and PAQR-2′s catalytic site (Figure 1a) [63]. In a thicker
membrane with reduced fluidity, the association of IGLR-2 with PAQR-2 is stabilized and
the cytoplasmic inhibitory domain of PAQR-2 might be displaced by IGLR-2 to allow
access to the catalytic site of PAQR-2. Thus, when IGLR-2 activates PAQR-2, PAQR-2′s
hydrolyzing activity can convert more substrate to potential signaling products. In yeast,
PAQR-2 receptor-like proteins can hydrolyze ceramides through their ceramidase activity
to generate free FAs and sphingoid bases [67]. Sphingoid bases act as second messengers
and might activate kinases implicated in signal transduction. In summary, PAQR-2 and
its binding partner IGLR-2 are thought to act as fluidity sensors and detect membrane
rigidification during temperature downshifts. Activated PAQR-2 might initiate a signal
transduction cascade to its putative transcriptional response regulators, such as NHR-49
and MDT-15, which control fatty acid desaturase expression and are critical for balancing
membrane homeostasis.
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(a) PAQR-2 and its binding partner IGLR-2, which is a transmembrane protein, act as sensors for low
membrane fluidity caused by cold exposure or dietary saturated fatty acids (SFAs). In a proposed
model by Busayavalasa and colleagues, PAQR-2′s regulatory domain blocks access to the catalytic site
of PAQR-2 in fluidized membrane conditions (i) [63]. Rigidification and thickening of the membrane
stabilize the interaction of PAQR-2 with IGLR-2, which, in turn, results in a displacement of the
regulatory domain and enables access of a PAQR-2 substrate to PAQR-2′s catalytic site (ii). PAQR-2
has a putative ceramidase activity and might catalyze ceramides to sphingosines. It still needs to
be determined whether sphingosine 1-phosphate (S1P), which is generated by the phosphorylation
of sphingosine, induces NHR-49. NHR-49 associates with MDT-15 and promotes ∆9 desaturase
expression and membrane fluidity. The model for PAQR-2′s membrane-sensing function was adapted
from Busayavalasa and colleagues [63,68]. (b) A glucose-restricted diet activates a neuronal AMPK
variant, resulting in neuropeptide release and activation of NHR-49. NHR-49 function requires PAQR-
2 activity in a glucose-restricted dietary regimen to induce membrane fluidity via ∆9 desaturases [69].
Red-colored phospholipids indicate phospholipids with double bonds in their acyl chains. PAQR-
2, progestin and adipoQ receptor-like protein; IGLR-2, immunoglobulin domain and leucine-rich
repeat-containing protein 2; NHR-49, nuclear hormone receptor-49; MDT-15, subunit of the Mediator
complex; PL, phospholipids; UFA, unsaturated fatty acids.

4. Mammalian Adiponectin Receptors Signal to Downstream Lipid Regulators

Adiponectin receptors (AdipoRs) are transmembrane receptors and were initially iden-
tified as receptors for the adipokine adiponectin in mammals [70]. Adiponectin is expressed
and secreted by the adipose tissue [71,72]. It promotes fatty acid catabolism, increases
insulin sensitivity in the liver and inhibits hepatic gluconeogenesis [73–75]. Adiponectin lev-
els are decreased in mouse models for obesity and type 2 diabetes, whereas administration
of adiponectin is considered as a therapeutic treatment strategy for the metabolic syn-
drome associated with obesity [76,77]. Cold exposure of mice and humans elevates plasma
adiponectin concentrations, and adiponectin is essential for subcutaneous adipose brown-
ing in mice [78–80]. Moreover, adiponectin is involved in thermogenesis and core body
temperature regulation in cold environments, although conflicting results were obtained
for body temperature control in adiponectin knock-out mouse models [81,82]. Mammalian
adiponectin exerts its functions via binding to the seven-transmembrane adiponectin recep-
tors, namely, AdipoR1 and AdipoR2 [70]. AdipoR1 is relatively ubiquitously expressed
throughout all tissues and most abundant in skeletal muscle, whereas AdipoR2 is predom-
inantly expressed in the liver [70,77]. Double knock-out of both AdipoR1 and AdipoR2
abrogates adiponectin binding in mice, suggesting that adiponectin receptors are essential
for mediating adiponectin’s function in mammalian lipid and glucose metabolism [83].

Adiponectin receptors additionally act as membrane fluidity sensors in mammalian
cells. Cell-culture-based knock-down of both adiponectin receptors, namely, AdipoR1
and AdipoR2, causes an accumulation of SFAs in membrane phospholipids and a rigidi-
fication of the membrane bilayer [84]. AdipoR2 deficiency has a more pronounced effect
on membrane fluidity than the depletion of AdipoR1. This reflects the situation in C. ele-
gans, which has two partially redundant AdipoR homologs, namely, PAQR-1 and PAQR-2;
however, only PAQR-2 plays a dominant role in cold adaptation and membrane home-
ostasis. Similar to C. elegans PAQR-2, a loss of AdipoR2 results in a reduced expression
of fatty acid desaturases, including fatty acid desaturases 1 and 2 (FADS1, FADS2) and
stearoyl-CoA desaturases (SCDs) [85]. In addition to regulating FA desaturation, a loss of
AdipoR2 affects the transcription of genes controlling cholesterol biosynthesis and acyl
chain remodeling of phosphatidylcholines for maintaining membrane homeostasis when
cells are challenged with SFAs, such as palmitic acid (Figure 2). Membrane-rigidifying
effects of AdipoR2-deficient cells can be reversed by supplementing membrane-fluidizing
monounsaturated fatty acids (MUFAs) or polyunsaturated fatty acids (PUFAs), suggesting
that the primary function of AdipoR2 is to detect and antagonize membrane rigidity [85,86].
Interestingly, a glucose-rich diet for C. elegans promotes the saturation of fatty acids and,
therefore, increases membrane rigidity [61,68]. Under such a dietary condition, PAQR-
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2 is required to readjust membrane fluidity to alleviate the membrane rigidifying and
toxic effect of glucose. Conversely, a glucose-restricted diet based on an E. coli glucose-
depleted mutant improves C. elegans healthspan by promoting membrane fluidity [69].
The beneficial effect of a glucose-restricted diet is mediated by a neuronal version of the
AMP-activated protein kinase (AMPK) and requires PAQR-2 and its downstream effector
NHR-49 (Figure 1b). Neuronal AMPK functions non-cell autonomously via a putative neu-
ropeptide to promote NHR-49 and ∆9 desaturase activities to enhance membrane fluidity.
These data illustrate that the adiponectin receptor PAQR-2 and its downstream functioning
nuclear hormone receptor NHR-49 are essential to integrate dietary impacts for balancing
membrane homeostasis.
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Figure 2. Adiponectin receptor signaling regulates lipid metabolism through PPAR nuclear hormone
receptors. The adiponectin receptor AdipoR2 senses membrane rigidification and converts ceramide
(Cer) to sphingosine (Sph) via its intrinsic ceramidase activity. Sphingosine is phosphorylated by
sphingosine kinases (Sphks) to generate sphingosine 1-phosphate (S1P), which acts as a signaling
molecule and induces PPARγ. PPARγ transcriptionally activates stearoyl-CoA desaturases (SCDs) to
increase fatty acid desaturation and membrane fluidity. In addition, AdipoR2 can promote PPARα
function to enhance fatty acid (FA) catabolism. Upon treatment with saturated fatty acids, AdipoR2
affects the expression of enzymes involved in acyl chain remodeling, UFA synthesis and cholesterol
biosynthesis. However, it is not known yet whether these processes are regulated indirectly or by
signaling pathways and transcriptional regulators downstream of AdipoR2. P, phosphate; PPARα,
peroxisome proliferator-activated receptor-α; PPARγ, peroxisome proliferator-activated receptor-γ;
SREBP1, sterol regulatory element-binding protein-1; TF, transcription factor; UFA, unsaturated
fatty acid.

Adiponectins, which are the proposed activating ligands of adiponectin receptors,
were increased in the serum of mice during a 4 ◦C cold challenge [87] and in human plasma
when healthy male individuals were exposed to cold conditions for 2 h [78]. However,
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recent cell-culture-based studies indicated that adiponectin is not required for AdipoR-
mediated membrane fluidity maintenance [86]. Similarly, an adiponectin homolog has
not been found in C. elegans yet, and genetic screens for the suppressors of paqr-2 loss-of-
function phenotypes failed to identify ligands for PAQR-2 [86]. Taken together, nematode
and mammalian adiponectin receptors are crucial regulators for membrane fluidity, but it
appears that they might mediate their sensing function for membrane rigidification without
binding to adiponectin.

The signaling pathways downstream of AdipoRs were comprehensively investigated
in mouse models. Studies in knock-out mice suggested that AdipoR1 mediates its metabolic
effects in mouse liver via AMP-activated protein kinase (AMPK) stimulation, whereas the
peroxisome proliferator-activated receptor α (PPARα) functions downstream of AdipoR2
(Figure 2) [83,88]. AdipoR1 activates the AMPK pathway to suppress lipid synthesis, and
AdipoR2 promotes PPARα activity to stimulate fatty acid oxidation [83]. The AdipoR2–
PPARα signaling axis is potentially conserved from mammals to nematodes, as the C.
elegans adiponectin receptor PAQR-2 acts in a cold adaptation pathway, along with NHR-49,
which has functions similar to mammalian PPARα and HNF4α (hepatocyte nuclear factor
4α). This suggests that the nuclear hormone receptor PPARα might be a crucial regulator for
cold adaptation in response to adiponectin receptor-mediated cold sensing. PPARα controls
diverse processes in lipid metabolism, including the transport of FAs and their degradation
through mitochondrial and peroxisomal fatty acid oxidation [89]. The overexpression of
AdipoR2 in mouse liver and muscles transcriptionally upregulates PPARα and its targets,
such as an acyl-CoA oxidase, which catalyzes the first step in peroxisomal β-oxidation, and
an uncoupling protein (Ucp) [83,90]. Mitochondrial Ucps reside in the inner membrane of
mitochondria and can mediate a controlled discharge of a proton gradient linked to the
oxidation of metabolic fuels. This energy-dissipating process is essential for heat production
during thermogenesis when an organism is exposed to cold or hibernates.

Based on structural data, AdipoR1/2 receptors contain an intrinsic ceramidase ac-
tivity and are able to hydrolyze ceramides to generate free fatty acids and sphingosine
(Figure 2) [91]. Sphingosine can be phosphorylated by sphingosine kinases (Sphks) to
produce the signaling molecule sphingosine 1-phosphate [92]. The ceramidase activity of
an AdipoR2-like receptor was initially described in yeast [67].

In a recent study, it was demonstrated that the ceramidase activity of mammalian Adi-
poR2 initiates a sphingosine 1-phosphate-based signaling pathway to activate the nuclear
hormone receptor PPARγ and the sterol regulatory element-binding protein-1 (SREBP1) [93]
(Figure 2). Membrane rigidification promotes AdipoR2′s ceramidase activity, which, in
turn, results in the production of the signaling molecule sphingosine 1-phosphate. Sphin-
gosine 1-phosphate stimulates PPARγ and SREBP1 activity and their transcriptional target,
namely, a stearoyl-CoA desaturase, to promote the generation of UFAs and membrane
fluidity. These findings, along with previously published C. elegans studies, suggest that
mammalian AdipoR2 and an AdipoR2-like receptor in nematodes function as membrane
fluidity sensors and signal to downstream nuclear hormone receptors, such as PPARγ
and PPARα, to control lipid metabolism, including fatty acid desaturation for balancing
membrane fluidity.

5. Lipid Bilayer Stress in the Endoplasmic Reticulum Induces the Unfolded
Protein Response

The endoplasmic reticulum (ER) is a central organelle regulating protein and lipid
homeostasis in eukaryotes. Proteotoxic and lipid-related perturbations disturb ER function
and homeostasis. Aberrant ER function results in ER stress and activation of an ER stress
response pathway known as the ER unfolded protein response (UPRER). The UPRER is
induced not only by unfolded proteins but also via an aberrant ER membrane composi-
tion [94]. In metazoans, ER stress is detected by three ER stress sensors: Inositol-requiring
enzyme-1 (IRE1), protein kinase RNA-like ER kinase (PERK) and activating transcrip-
tion factor-6 (ATF6). Activation of these UPRER transducers can result in translational
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attenuation or transcriptional activation of factors that control ER protein folding and
degradation [95–97]. UPRER stress sensors respond to an accumulation of unfolded pro-
teins; however, IRE1 and PERK additionally sense atypical lipid compositions in the ER
membrane, which is referred to as lipid bilayer stress. Both IRE1 and PERK are activated
by elevated levels of SFA within the ER lipid bilayer [98]. IRE1 can detect additional mem-
brane perturbations, such as an altered PC-to-PE ratio, depletion of inositol and elevated
sterol levels [99–101]. To sense lipid bilayer stress, the transmembrane domains of IRE1
and PERK are essential [98]. The luminal domain, facing the ER lumen, is dispensable
to sense an aberrant ER membrane lipid composition. The luminal domain is usually
required to sense proteotoxic stress caused by an overload of unfolded proteins in the ER
lumen. In a previous study, a potential bilayer stress-sensing mechanism for yeast IRE1
was identified [102]. In the proposed model by Halbleib and colleagues, increased lipid
order, which is linked to lipid bilayer stress, promotes oligomerization and activation of
IRE1. An elevated lipid order or membrane rigidity is associated with the cold exposure
of an organism and might be sensed by IRE1. In a recent study, IRE1 was found to be
activated in neurons under extremely cold conditions to control lipid composition and
cold adaptation in C. elegans [103]. Similarly to previous studies, the luminal domain of
C. elegans’ IRE1 was dispensable; however, the transmembrane and cytosolic domains of
IRE1 were essential to confer cold stress resistance. Moreover, signaling mediated by the
adiponectin receptor AdipoR2 might affect the functionality of ER membranes as well.
AdipoR2 deficiency combined with exposure to SFA results in an upregulation of ER stress
response genes [85]. The effect of impaired AdipoR2 activity on ER stress is likely indirect.
Membrane perturbations and increased membrane rigidity caused by AdipoR2 deficiency
might affect ER membrane properties and induce the UPRER. These findings suggest that
AdipoR2-mediated signaling likely influences ER integrity indirectly via an impaired lipid
membrane homeostasis during SFA-induced lipid stress or cold exposure.

6. PPARα Regulates Lipid and Ketone Metabolism in Heterothermic
Hibernating Animals

Hibernating mammals are able to decrease their core body temperature (become
heterothermic) and enter an energy-conserving torpid state when ambient temperatures
drop and environmental food resources are limited. Smaller mammalian hibernators, in-
cluding ground squirrels and bats, can drastically reduce their body temperature close to
ambient conditions during bouts of extended torpor, whereas large hibernators, such as
black bears, only moderately diminish their body temperature down to 30–36 ◦C [104].
In addition, hibernating mammals can lower their metabolic rate and undergo metabolic
reprogramming [105,106]. During bouts of torpor, lipid stores become the primary fuel
source due to a metabolic switch toward lipid utilization in the absence of feeding [3].
Fat-storing hibernators, which do not depend on food caches, accumulate a large amount
of lipids in their white adipose tissue prior to the onset of hibernation by going through a
hyperphagic period, resulting in a massive weight gain at the end of the summer season.
A shift in fuel utilization to catabolize triglyceride stores during torpor is likely mediated
by nuclear hormone receptors [107]. One of the prime nuclear hormone receptors that
control lipid metabolic reprogramming is PPARα [89]. PPARα might promote a shift in
fuel utilization from both glucose and fatty acids in regular metabolic conditions toward
predominantly fatty acids during hibernation, which resembles metabolic changes similar
to fasting [108]. However, it needs to be determined whether PPARα is primarily activated
by cold or by the starved condition of hibernating animals. A key regulator for a shift in
fuel selection from glucose to fat is pyruvate dehydrogenase kinase 4 (PDK4) (Figure 3).
PDK4 is a downstream target of PPARα and is transcriptionally upregulated in hibernating
ground squirrels [3,4,109,110]. PDK4 phosphorylates and inhibits pyruvate dehydrogenase
activity, and thus, promotes a switch from glucose toward fatty acid oxidation [111]. The
metabolic rewiring mediated by PDK4 is accompanied by an upregulation of fatty acid
β-oxidation during hibernation. Several genes that encode enzymes for peroxisomal and
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mitochondrial β-oxidation are transcriptionally upregulated in the torpid state [112–117].
An increase in lipid catabolism appears to be largely mediated by PPARα since PPARα
transcriptionally controls almost all enzymes implicated in the mitochondrial uptake and
oxidative breakdown of fatty acids [89], and thus, might represent a crucial regulator of tor-
pid lipid metabolism (Figure 3). PPARα, as well as PPARγ, which is another member of the
PPAR nuclear hormone receptor subfamily, are induced along with their shared coactivator
PGC-1α (PPARγ coactivator-1α) during hibernation [116,118]. Nuclear hormone receptors
(NHRs) typically associate with coactivators and corepressors. Upon stimulation of NHRs,
corepressors are replaced by transcriptional activators, which initiate the expression of
NHR target genes. PGC-1α is a cold-inducible transcriptional coactivator and activates
PPARα to promote adaptive thermogenesis and fatty acid oxidation [119,120].
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Figure 3. PPARα induces a metabolic shift toward lipid oxidation and ketogenesis in hibernating
animals. PPARα promotes lipid catabolism through transcriptionally activating pyruvate dehydroge-
nase kinase 4 (PDK4), which inhibits the pyruvate dehydrogenase complex (PDC). Suppression of
the PDC complex adjusts fuel selection away from glucose and toward fatty acid oxidation. PPARα
responds to fasting and β-adrenergic signaling and activates fatty acid (FA) uptake into mitochondria,
FA catabolism and Ucp1-mediated thermogenesis. In addition, PPARα induces fibroblast growth
factor 21 (FGF21) to promote ketogenesis and torpor. Ketone bodies are elevated during torpor
and are an essential fuel source, predominantly for the brain. PPARα directly controls ketone body
formation and their transport across the blood–brain barrier through upregulation of the monocar-
boxylate transporter 1 (MCT-1). BAT, brown adipose tissue; Pgc-1α, PPARγ coactivator-1α; PPARα,
peroxisome proliferator-activated receptor-α; Ucp1, uncoupling protein-1.

Additionally, PPARα induces the expression of a key regulator for torpor, namely, the
fibroblast growth factor 21 (FGF21). FGF21 functions as an endocrine hormone, stimu-
lating torpor and reducing the core body temperature in fasted mice [121]. Remarkably,
FGF21 has an important impact on metabolism during fasting and torpor since it promotes
ketogenesis (Figure 3). Ketogenesis is a metabolic prosses that catalyzes the formation
of ketone bodies, which are largely generated by breaking down fatty acids in the liver.
Blood and tissue concentrations of ketone bodies are significantly elevated during torpor
in various studied species [122–124] and serve as an alternative fuel source for prolonged



Cells 2023, 12, 1353 12 of 22

fasted or starved animals. As glucose levels are limited during starvation or torpor, ketone
bodies are an essential energy source, especially for the brain, which only poorly utilizes
fatty acids as fuel [108,125]. Ketogenesis is also promoted by FGF21′s upstream regulator
PPARα. PPARα controls both the formation of ketone bodies and their transport during
fasting and hibernation. A rate-limiting mitochondrial enzyme in ketone body synthesis,
namely, hydroxymethylglutaryl coenzyme A synthase 2 (Hmgcs2), is upregulated during
hibernation [126]. Hmgcs2 is a target of PPARα and can be induced during fasting or via
PPARα agonists, along with additional enzymes for ketogenesis [89]. Ketone bodies are
produced in the liver and distributed to various tissues through the blood circulatory
system. Monocarboxylate transporters (MCTs) facilitate the transport of ketone bodies
and other monocarboxylic acids across biological membranes. The PPARα target mono-
carboxylate transporter 1 (Mct-1) is induced at the blood–brain barrier in torpid animals.
This suggests that in addition to PPARα’s role in ketone body production, PPARα is also
able to promote the uptake of ketones into tissues by upregulating their transporter MCT-1
(Figure 3) [127,128]. Studies in hibernating ground squirrels demonstrated that the ketone
D-β-hydroxybutyrate (BHB) is a preferred energy substrate for the hibernating brain, which
is usually highly dependent on glucose [127]. Glucose is a relatively limited metabolic
fuel during hibernation. The major source of carbon for gluconeogenesis is amino acids
in starvation and torpor conditions [122,129]. Thus, a switch from glucose to fat-derived
ketone body utilization protects against an extensive erosion of protein mass during hi-
bernation. Moreover, the metabolic shift from glucose toward ketone catabolism in torpor
limits lactic acid production in the brain [106]. Carbons from ketones, such as BHB, en-
ter the tricarboxylic acid (TCA) cycle without producing lactic acid. This might protect
against tissue damage from lactic acidosis during periods of diminished blood flow in
hibernating animals.

Tissues in hibernating animals are remarkably resistant to damage caused by fast
rewarming and reinitiation of the blood flow. Animals in torpor substantially reduce
their body temperature and their blood flow; however, they periodically undergo rapid
rewarming and restoration of the blood flow during interbouts, which would induce
massive damage to tissues under unprotected conditions in non-hibernating species similar
to ischemia-reperfusion injury. The protective effect on the tissues of hibernating animals is
linked to their altered metabolism largely relying on ketone bodies, such as BHB, and has
potential medical implications. A BHB-based therapy was developed for the treatment of
hemorrhagic shock in rats [130]. Based on the beneficial impact of BHB and the antioxidant
melatonin during torpor and interbout transition, a resuscitation therapy was tested in
ischemia-reperfusion animal models of rats and pigs [131–134]. The use of BHB and
melatonin resulted in a significant decrease in mortality following severe hemorrhagic
shock, illustrating that the development of hibernation-derived therapies could improve
medical treatment strategies for stroke and hemorrhagic shock in the future.

7. Mitochondrial Function in Thermogenesis

Thermogenesis in endotherms is an energy-consuming process to maintain the core
body temperature in response to cold conditions. Mitochondria are essential for heat
production in adaptive thermogenesis. The oxygen consumption rate in mitochondria is
proportional to the amount of heat released (as described by Thornton’s rule) because the
net chemical reaction for respiration can be considered equivalent to the combustion of
organic compounds [135]. According to Thornton’s rule, the heat or energy production of
combusted organic compounds is remarkably constant when expressed as energy per mole
of oxygen consumed [136]. Fat as an organic compound has a high energy density and
produces about twice the heat of carbohydrates when oxidized to carbon dioxide and water.
Therefore, lipids serve as an ideal storage and fuel depot in the adipose tissues of animals.
Thermogenesis predominantly occurs in brown adipose tissue (BAT) or white adipose
tissue (WAT), which undergoes “browning” when exposed to cold. White adipocytes
mainly act as a storage depot for triacylglycerols, whereas brown adipocytes or induced
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“brown like” (beige) adipocytes oxidize lipids in mitochondria to generate heat. Activated
beige adipocytes are formed in the WAT during chronic cold conditions. The browning
of white adipocytes is promoted by the adipomyokine irisin, which acts in both adipose
and muscle tissue, and induces thermogenesis by WAT browning [137,138]. “Classic” or
developmentally programmed brown adipocytes originate from a subset of multipotent
stem cells, which can differentiate into a skeletal muscle lineage. However, the expression
of certain transcriptional regulators, including early B cell factor-2 (EBF2) and PR domain
containing 16 (PRDM16), stimulates the differentiation of myoblast progenitor cells toward
the brown adipocyte lineage [139–141]. Taken together, beige and brown adipocytes are
distinct cell types with different origins, although they both play critical roles in cold-
induced thermogenesis.

Heat production in brown or beige fat, also known as non-shivering thermogenesis,
is mediated by uncoupling protein-1 (Ucp1) in mitochondria. Mitochondria convert the
chemical energy of nutrients into electrical voltage. The electrical voltage gradient is
primarily established across the inner mitochondrial membrane (IMM) [142]. Ucp1 enables
the diffusion of protons across the IMM and thus uncouples the proton gradient from ATP
synthesis. Consequently, Ucp1 activity increases the conductance of the IMM to induce
heat generation in mitochondria rather than ATP production [1,2].

To promote non-shivering thermogenesis in brown or beige fat during chronic cold
stress, mitochondria are highly abundant and larger in brown or beige adipocytes and
display a packed laminar cristae structure [143]. Mitochondria in thermogenic adipocytes
have an elevated oxidative capacity and contain increased levels of enzymes for fatty acid
metabolism, the citrate cycle and oxidative phosphorylation [144]. In addition, pyruvate
dehydrogenase kinase 4 (PDK4) was found as a highly abundant enzyme in BAT mitochon-
dria. PDK4 is one of the inhibiting kinases for the pyruvate dehydrogenase complex and
induces a switch from glucose toward fatty acid oxidation [111].

Adipose tissue is controlled by the sympathetic nervous system. Both BAT and WAT
are innervated by sympathetic nerve fibers, which can be tracked back to neuronal circuits
that originate from the hypothalamus and the brainstem [145]. Defined hypothalamic
sites, including the preoptic area and the dorsomedial hypothalamus, balance different
aspects of thermoregulation in BAT for body temperature control or the fever response
through downstream innervation circuits [146]. Sympathetic nerve fibers, which innervate
adipocytes, release catecholamine, especially norepinephrine, to stimulate β-adrenergic
receptor (β-AR) signaling in adipocytes. β-AR signaling activates lipolysis in WAT and
induces mitochondrial-based thermogenesis in BAT during cold exposure [147–150]. A
master regulator downstream of β-AR signaling is the transcriptional coactivator PGC-1α,
which induces the expression of Ucp1 and other thermogenic regulators, such as respi-
ratory chain proteins and fatty acid oxidation enzymes [119,151]. PGC-1α is activated
by the p38 mitogen-activated protein kinase (p38 Mapk) via phosphorylation (Figure 4)
and can be transcriptionally upregulated dependent on the p38 Mapk function and cold
exposure [152,153]. Phosphorylated PGC-1α associates as a coactivator with nuclear hor-
mone receptors, such as PPARγ and PPARα, and activates thermogenic genes, including
Ucp1, in brown adipocytes, as already mentioned above [119,154,155]. In addition, β-AR
stimulation in WAT results in elevated lipolysis and increased levels of circulating free fatty
acids, which can be taken up by brown and beige adipocytes. In thermogenic adipocytes,
free long-chain fatty acids can bind to mitochondrial Ucp1s and increase their proton trans-
port activity (Figure 4) [156]. Taken together, mitochondrial Ucp1 function in thermogenesis
is controlled via PGC-1α-mediated transcriptional regulation and by direct stimulation of
Ucp1 activity through the binding of free fatty acids.
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PPAR nuclear hormone receptors. Following stimulation of the β-adrenergic receptor (AR) with
catecholamines (CAs), a PKA–p38-Mapk-based signaling pathway induces the transcriptional coacti-
vator Pgc-1α via phosphorylation. Pgc-1α promotes PPARα and PPARγ function in lipid catabolism,
ketogenesis and Ucp1-mediated thermogenesis in mitochondria. FA, fatty acid; P, phosphate; p38
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Cold exposure and the browning of WAT alter the mitochondrial architecture and
their interaction with cellular organelles. Cold exposure and adrenergic stimulation of
thermogenic adipocytes cause mitochondrial fission [157]. Mitochondrial fission is medi-
ated by dynamin-related protein 1 (Drp1), which is phosphorylated and activated through
protein kinase A (PKA) functioning downstream of the β-adrenergic receptor. Drp1 stimu-
lation occurs along with cleavage of the mitochondrial dynamin-like GTPase Opa1 (optic
atrophy protein 1), resulting in a simultaneous decrease in mitochondrial fusion upon
adrenergic stimulation. Elevated mitochondrial fission and accumulation of mitochondria
might improve the accessibility of Ucp1 to certain free fatty acids for Ucp1 activation [157].
Thus, mitochondrial fission likely promotes uncoupling and heat production in brown
adipocytes. Intriguingly, mitochondrial dynamics and morphology is controlled by inter-
organelle communication with peroxisomes. Peroxisomes are highly abundant in BAT [158]
and their number and enzymatic activities increase in a PGC-1α-dependent manner during
cold exposure [159,160]. Peroxisomes regulate mitochondrial architecture and their role
in thermogenesis via plasmalogens, which are partially synthesized in peroxisomes [161].
Plasmalogens are a sub-class of glycerophospholipids and are present in various cellular
membranes, including membranes of mitochondria. Impairment of peroxisomal biogene-
sis and peroxisomal plasmalogen synthesis results in a fused mitochondrial morphology
associated with mitochondrial dysfunction in thermogenesis, whereas dietary supplemen-
tation of plasmalogen precursors can restore the mitochondrial architecture and activity in
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brown and beige adipocytes [161]. Although the mechanism of how plasmalogens regulate
mitochondrial functions still needs to be determined, plasmalogens might protect mito-
chondria through their antioxidative properties [162], and thus, prevent polyunsaturated
phospholipids from peroxidation.

8. Conclusions and Future Perspectives

Organisms have evolved diverse lipid-metabolism-based strategies to adapt to cold
environments. Poikilotherms, which are unable to maintain their internal temperature, rely
on sensing changes in membrane rigidity with sophisticated membrane fluidity sensors and
can readjust membrane properties to ensure survival during cold exposure. Homeotherms
keep their core body temperature constant by inducing thermogenesis in specialized
fat tissues to facilitate the oxidation of lipids and heat generation in mitochondria. As
an additional adaptation strategy, some species can enter a torpid state to repress their
metabolism during periods of limited food supply and cold temperatures. Mechanisms
that mediate low-temperature adaptation are linked to very basic animal biology and
metabolism; however, they are also highly relevant for a deeper understanding of several
human diseases and the design of therapeutic interventions for lipid-related metabolic
disorders. Several human disease states are associated with defects in the membrane
composition of tissues. Diabetic patients have rigid cellular membranes enriched with
saturated fatty acids [163–165], likely contributing to the pathophysiology of the disease.
Diabetes is also linked to obesity, which is characterized by an imbalance of energy intake
and consumption. Thus, targeting BAT to increase energy expenditure by promoting
lipid oxidation in obese patients via artificial cold treatment is a promising approach.
However, the underlying mechanism of BAT thermogenesis needs to be investigated in
more detail because, in addition to cold-induced thermogenesis, an infection-stimulated
fever thermogenesis was linked to BAT activity [166–168]. It is still under debate whether
the febrile response following infection is caused by thermogenesis in BAT, although
recent studies suggested that Ucp-1-mediated BAT thermogenesis is dispensable for a
lipopolysaccharide (LPS)-induced febrile response in mouse models [169,170]. Hence,
for future therapeutic approaches, a more comprehensive understanding of cold versus
fever thermogenesis is needed, as well as knowledge of how they could interfere with
each other to avoid potential health risks for obese patients treated with artificial cold or
thermogenesis-inducing drugs.

In recent studies, the activation of BAT- and Ucp-1-based thermogenesis through cold
treatment provided an alternative approach to cancer therapy. Exposure of mice to cold
conditions and stimulation of BAT reduced the growth of solid tumors [171]. The tumor-
inhibiting effect of BAT activation was further supported by a human pilot study [171].
Individuals exposed to mild cold revealed an elevated BAT function. Reduced glucose
uptake into the tumor tissue was observed in a cancer patient following BAT stimulation.
This suggests that glucose is predominantly consumed in cold-activated BAT and glucose
consumption interferes with the glucose availability for the tumor tissue. For future thera-
peutic strategies, mild cold exposure of patients or drug-based activation of thermogenesis
in BAT could be combined with established anticancer drugs to increase the efficiency of
cancer treatments. In conclusion, an improved understanding of mechanisms involved in
response to cold stress will be crucial for the development of cold-based therapies and the
design of therapeutic interventions for diseases, such as obesity and cancer.
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