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Abstract: This manuscript reviews the CYP-mediated production of oxylipins and the current known
function of these diverse set of oxylipins with emphasis on the detoxification CYPs in families
1–3. Our knowledge of oxylipin function has greatly increased over the past 3–7 years with new
theories on stability and function. This includes a significant amount of new information on oxylipins
produced from linoleic acid (LA) and the omega-3 PUFA-derived oxylipins such as α-linolenic acid
(ALA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). However, there is still a lack
of knowledge regarding the primary CYP responsible for producing specific oxylipins, and a lack of
mechanistic insight for some clinical associations between outcomes and oxylipin levels. In addition,
the role of CYPs in the production of oxylipins as signaling molecules for obesity, energy utilization,
and development have increased greatly with potential interactions between diet, endocrinology,
and pharmacology/toxicology due to nuclear receptor mediated CYP induction, CYP inhibition,
and receptor interactions/crosstalk. The potential for diet-diet and diet-drug/chemical interactions
is high given that these promiscuous CYPs metabolize a plethora of different endogenous and
exogenous chemicals.

Keywords: oxylipin; cytochrome P450 (CYP); inflammation; adverse drug reaction; inhibition;
obesity; lipid metabolism; PUFA; hormone; PPAR

1. Introduction
1.1. Background

Dietary lipids provide energy utilization, structure, and signaling. These lipids can
be divided into saturated fatty acids (SAFAs), polyunsaturated fatty acids (PUFAs) and
monounsaturated fatty acids (MUFAs; n-9). The PUFAs can be further divided into n-3
(omega-3) and n-6 (omega-6) fatty acids of which oxylipins are derived. Many of the PUFAs
and their oxylipin derivatives have multiple diverse purposes, including inflammation,
pain, cell adhesion, energy distribution and use, angiogenesis, apoptosis, blood pressure,
hunger, blood coagulation, and more [1–5]. The PUFAs and their oxylipin derivatives
can directly interact with a number of receptors in multiple tissues and enhance lipid
signaling. These functions may be highly specific or relate directly to nutrition by aiding
the distribution and use of fats [2,6,7].

PUFAs can be metabolized to multiple oxylipins by the cyclooxygenase (COX), lipoxy-
genase (LOX), and or cytochrome P450 (CYP) pathways (Figure 1). Products produced
include the thromboxanes, prostaglandins, leukotrienes, lipoxins, and the less studied and
more recently measured CYP-derived oxylipins such as the epoxides and diols produced
from those epoxides by soluble epoxide hydrolase (sEH). These oxylipins may have pow-
erful activity at multiple receptors [3]; however, some oxylipins have little function or no
verified function and the roles of several oxylipins have been poorly defined [1,8].
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Figure 1. PUFAs are primarily metabolized the CYPs, lipoxygenases (LOX), and cyclooxygenases
(COX) with overlapping oxylipin biosynthesis capabilities. LA = linoleic acid (18:2); AA = arachidonic
acid (20:4); ALA = α-linolenic acid (18:3); EPA = eicosapentaenoic acid (20:5); DHA = docosahexaenoic
acid (22:6).

Oxylipins can be derived from n-3 and n-6 PUFAs (Figure 1). The n-3 PUFAs are often
considered anti-inflammatory and the n-6 PUFAs inflammatory, but that is an overly sim-
plistic characterization roughly based on the mostly inflammatory properties of arachidonic
acid (AA) and linoleic acid (LA), their metabolites, and the activity of the non-steroidal
anti-inflammatory drugs (NSAIDs) that primarily inhibit cyclooxygenases and block the
production of prostaglandins produced from arachidonic acid. This is coupled with the
specific activities of several n-3 PUFAs such as docosahexaenoic acid (DHA) and eicosapen-
taenoic acid (EPA) involved in development, vascularization and other biological activity.
In addition, Fat-1 transgenic mice that can convert n-6 PUFAs to n-3 PUFAs show improved
cardiovascular health, insulin sensitivity, and reproduction [9,10]; however, other studies
demonstrate that n-6 fatty acids are also crucial in reproductive health [11,12]. There is
concern that modern diets have increased the ingested ratio of n-6:n-3 PUFAs and in turn
led to increased inflammation, cancer, obesity, cardiovascular disease and other modern
afflictions of over-consumption enhanced by the lack of fresh fruits and vegetables [13,14].

PUFAs, as parent compounds or following oxidative metabolism, can bind to and acti-
vate multiple receptors, including the peroxisome proliferator-activated receptors (PPARs),
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hepatocyte nuclear factors (HNF4α), and a large number of G-protein coupled membrane
bound receptors (GPCRs) [6,8,15–17]. In turn, PUFAs mediate adipocyte differentiation,
lipid uptake, metabolism, or storage depending on the PPAR activated or tissue involved;
non-insulin dependent diabetes and inflammation through HNF4α, and inflammation,
diabetes, obesity, pain regulation, and hypertension through multiple other receptors,
including GPCRs [6,15,18].

This review will focus on the oxylipins derived from detoxification CYPs in fami-
lies 1–3. New analytical techniques have allowed for increased sensitivity and therefore
the measurement of greater numbers of oxylipins, including the CYP-derived oxylipins.
Furthermore, analytical and molecular techniques have allowed for greater mechanistic
understanding of their effects in multiple cells and tissues. Last, these CYPs are highly
inducible, some are gender predominant, and most have multiple functions in the body
such as bile acid, xenobiotic, steroid, and fatty acid metabolism. This can lead to differential
metabolism depending on diet, sex, environmental influences, pharmaceutical use, and
potentially unexpected consequences. Taken together, further study of the detoxification
CYP-mediated oxylipins is needed in order to understand their function and how these
functions might be perturbed.

1.2. CYPs and Changes in CYP Expression and Activity

CYPs are phase I enzymes that mono-oxygenate, reduce, and hydrolyze substrates
thus making active molecules that are often more polar and easier to conjugate by phase II
enzymes for rapid removal from the body [19]. They are often key detoxification enzymes
in the liver and provide protection from xenobiotics and endobiotics. The CYPs are grouped
into families, subfamilies and isoforms. For example, there are 57 human CYPs arranged
into 18 families and 43 subfamilies [20]. Each CYP is named based on its family number
first, followed by a letter to indicate the subfamily, and then a number that indicates the
gene. For example CYP3A4 is a human CYP in the “third” family, “A” subfamily, gene “4”.
It is the CYPs in families 1–3 that contribute the most to the metabolism of environmental
contaminants and pharmaceuticals [21–23].

In general, because the purified CYPs are from human genes our specific knowledge
of oxylipins produced from individual CYPs is best understood in humans. Epidemiolog-
ical data provides some basis for our understanding of the function of the CYP-derived
oxylipins, but often mouse and sometimes rat models inform our understanding of oxylipin
function. Several humanized mouse models have also helped provide key data on the
function of human CYPs in the production and function of oxylipins. When possible this
review focuses mostly on human data but not exclusively. Human data is often presented
in the tables sometimes with evidence from mice in the corresponding paragraphs. CYP
nomenclature is based on homology and therefore most, but not all CYPs have unique
names and thus different names from their homologous families in other mammalian
species [20]. There may be rare cases where it is not clear which species are being discussed
and therefore we provided a table of the common individual isoforms found in each species
(human, mouse, rat) by family (Table 1) [20].

Liver CYP expression is highly variable based on both genetic polymorphisms and
inducibility by diet and chemical exposure [24–29]. Human CYP2D6 and to a lesser ex-
tent CYP2B6 are highly polymorphic with variants that perturb drug (and anandamide)
metabolism [25,30–34]. Several transcription factors are xenosensors that induce CYP ex-
pression in order to acclimate to current levels of xeno- and endobiotic chemicals, including
the Aryl hydrocarbon receptor (AhR), pregnane X-receptor (PXR), constitutive androstane
receptor (CAR), and peroxisome proliferator-activated receptors (PPARs) [19,27,35]. Thus,
drug metabolites, hormones, and oxylipin levels can all be mediated by differences in
expression and activity of these enzymes. This also means that inhibition of CYPs by drugs,
pesticides, dietary sources or other endobiotics can affect metabolism [36–38].
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Table 1. Orthologous detoxification CYP subfamilies between human, rat, and mouse.

CYP Subfamily Human Mouse Rat

CYP1A CYP1A1, 1A2 Cyp1a1, 1a2 Cyp1a1, 1a2
CYP1B CYP1B1 Cyp1b1 Cyp1b1
CYP2A CYP2A6, 2A7, 2A13 Cyp2a4, 2a5, 2a12, 2a22 Cyp2a1, 2a2, 2a3
CYP2B CYP2B6 Cyp2b9, 2b10, 2b13, 2b19, 2b23 Cyp2b1, 2b2, 2b3, 2b12, 2b15, 2b21

CYP2C CYP2C8, 2C9, 2C18, 2C19
Cyp2c29, 2c37, 2c38, 2c39, 2c40,

2c44, 2c50, 2c54, 2c55, 2c65, 2c66,
2c67, 2c68, 2c69, 2c70

Cyp2c6, 2c7, 2c11, 2c12, 2c13, 2c22,
2c23, 2c24, 2c78, 2c80

CYP2D CYP2D6 Cyp2d9, 2d10, 2d11, 2d12, 2d13,
2d22, 2d26, 2d34, 2d40 Cyp2d1, 2d2, 2d3, 2d4, 2d5

CYP2E CYP2E1 Cyp2e1 Cyp2e1

CYP2J CYP2J2 Cyp2j5, 2j6, 2j7, 2j8, 2j9, 2j11,
2j12, 2j13 Cyp2j3, 2j4, 2j10, 2j13, 2j16

CYP2S CYP2S1 Cyp2s1 Cyp2s1
CYP2U CYP2U1 Cyp2u1 Cyp2u1

CYP3A CYP3A4, 3A5, 3A7, 3A43 Cyp3a11, 3a13, 3a16, 3a25, 3a41,
3a44, 3a57, 3a59

Cyp3a1, 3a2, 3a9, 3a18, 3a23, 3a62,
3a73

Several CYPs are regulated by growth hormone release patterns in a male or female
specific or predominant manner with help from HNF4α including Cyp2b9, Cyp2b10,
Cyp2b13, Cyp3a41, Cyp3a44, Cyp2d9 and others [39–42]. Xenobiotic and diet-mediated
sexually dimorphic induction has also been observed for Cyp2a4, Cyp2c40, Cyp2b9 and
other murine CYPs [41–44], suggesting that the sexually dimorphic expression of CYPs and
subsequent metabolism of endobiotics may play a role in sexually dimorphic disease.

For example, several of the obesogenic or anti-obesogenic effects of CYPs are gen-
der predominant (see below) [44–47]. Androgen-dependent induction of CYP4A8 and
CYP4A12, preferentially in males, leads to increased 20-HETE production from arachi-
donic acid and increased hypertension [48,49]. The female predominant Cyp2c29 in mice
produces 12,13- and 14,15-EET and in turn increases vasodilation, potentially in an estrogen-
dependent manner [50]. Furthermore, increased blood pressure caused by the loss of Cyp2j5
function in -nullizygous mice is female specific and indicates the importance of this enzyme
in the production of EETs in female kidneys [51]. Last, cardiac ischemic injury increases
during peri-menopause in association with significant changes in the oxylipin profile, espe-
cially the 9,10- and 12,13-EpOME/DiHOME ratios [52]. Taken together, changes in CYP
expression including sexually dimorphic CYP expression can effect oxylipin production
and disease progression.

1.3. CYP Expression, Obesity, and Oxylipins

Interestingly, several xenobiotic-metabolizing CYPs are associated with obesity and
related metabolic diseases in mice. For example, Cyp2c-null mice that lack 14 of the
15 Cyp2c isoforms are resistant to high-fat diet induced obesity in males [46]. The loss of
Cyp3a expression, the most highly expressed subfamily of liver CYPs, reduced high-fat
diet induced obesity in female mice only [47]. Cyp3a inhibitors such as grapefruit juice
(naringin) are also associated with reduced adiposity and weight gain in humans and mice
coupled with increased Cpt1a expression, increased Ppara activation and reduced Srebp-1
activity [53,54].

In contrast, Cyp2a5-null mice are more sensitive to diet-induced obesity than WT
mice with Ppara activity associated with greater obesity but lower steatosis [55]. Further-
more, three human CYP2A6 single nucleotide polymorphisms are associated with obesity
providing further evidence that the lack of CYP2A6 is obesogenic [55].

Human CYP2B6 is also inversely associated with obesity as humans with low ex-
pression are more likely to be obese [56]. Further evidence is provided by Cyp2b-null
mice. Mice that lack the three primarily hepatic Cyp2b members, Cyp2b9, Cyp2b10, and
Cyp2b13 (Cyp2b-null or Cyp2b9/10/13-null) show greater susceptibility to high-fat diet
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induced obesity coupled with increased steatosis in males [44,57]. The presence of human
CYP2B6 in Cyp2b-null mice (hCYP2B6-Tg) reduced obesity in the females; however supris-
ingly, human CYP2B6 increased steatosis in association with several oxylipins including
9-HODE and 13-KODE from linoleic acid, and 12,13-DHET, 14,15-EET, and 14,15-DHET
from arachidonic acid [8]. Whether these oxylipins are directly involved in obesity or
steatosis is unknown. In agreement, changes in linoleic acid metabolism in hepatic P450
oxidoreductase-null mice are also associated with steatosis and Cyp2b10 induction [58].
Interestingly, a number of LA and ALA oxylipins are associated with obesity and CYP
induction following a high soybean oil high-fat diet. These include hepatic but not plasma
9,10-,12,13-, and 15,16-oxylipins from ALA and LA [2].

Overall, these data provide examples of changes in CYP expression and metabolism
of PUFAs and subsequent production of oxylipins that are consistent with perturbations in
energy metabolism, lipid metabolism, lipid distribution, metabolic disease, and obesity.

2. Oxylipin Production by CYPs

Oxylipins are derived from PUFAs by the cyclooxygenase (COX), lipoxygenase (LOX),
and or cytochrome P450 (CYP) pathways. Of these, the CYP pathways are dependent and
can be easily altered by diet [44,55,59–61]. In general, CYP2B, CYP2C, and CYP2J subfamily
members are involved in making epoxides; CYP1A, CYP4A, and CYP4F subfamilies are
involved in making omega-hydroxylated products from PUFAs [62]. Synthesis of mid-
chain HETEs or HODEs is primarily LOX-mediated but may be metabolized by CYP1B1,
CYP4A isoforms, or CYP2B members [62,63]. We will take a look at the production of
several oxylipins by the CYPs in families 1–3, their activity, and mechanism when known.
Table 2 outlines the basic types of oxylipins produced from each type of PUFA covered
in this review to provide some basic background before investigating the metabolism of
several PUFAs by CYPs.

Table 2. Primary CYP-mediated oxylipins produced from different PUFAs.

PUFA Abbreviation PUFA Type Oxylipins Produced by CYPs

Linoleic acid LA n-6 EpOME, DiHOME, HpODE, HODE, oxoODE
Arachidonic acid AA n-6 HETE, oxoETE, EET, DiHET

alpha-linolenic acid ALA n-3 EpODE, DiHODE, HpOTrE, HOTrE, oxoOTrE
Eicosapentaenoic acid EPA n-3 EpETE, DiHETE, HEPE
Docosahexaenoic acid DHA n-3 EpDPA, DiHDPA

Epoxyoctadecamonoenoic acid (EpOME), dihydroxyoctadecenoic acid (DiHOME), hydroperoxy-octadecadienoic
acid (HpODE), hydroxy-octadecadienoic acid (HODEs), oxo-octadecadienoic acid (oxoODE), hydroxyeicosate-
traenoic acid (HETE), oxoicosatetraenoic acid (oxoETE), epoxyeicosatrienoic acid (EET), dihydroxyeicosatrienoic
acids (DiHETs), epoxy-octadecadienoic acid (EpODE), dihydroxy-octadecadienoic acid (DiHODE), hydroperoxy-
octadecatrienoic acid (HpOTrE), hydroxy-octadecatrienoic acid (HOTrE), oxo-octadecatrienoic acid (oxoOTrE),
epoxy-eicosatetraenoic acid (EpETE), dihydroxy-eicosatetraenoic acid (DiHETE), hydroxyicosapentaenoic acid
(HEPE), epoxy-docosapentaenoic acid (EpDPA), dihydroxy-docosapentaenoic acid (DiHDPA).

2.1. Linoleic Acid Metabolism

• CYPs primarily metabolize LA into the epoxinated EpOMEs that will be further
metabolized by sEH into the DiHOMEs. HpODEs and HODEs may also be produced.

• LA oxylipins activate nuclear and cytosolic receptors such as PPARγ, GPR132, G2A,
and TRPV1.

• In turn, most LA-oxylipins are pro-inflammatory, but anti-inflammatory effects poten-
tially mediated by PPARγ have also been observed.

Linoleic acid (LA; 18:2) is an n-6 PUFA comprised of an 18-carbon chain with two
double bonds. It is the most highly consumed PUFA in the human diet and is considered
an essential fatty acid, meaning humans cannot synthesize it and must consume it [64].
There are a wide variety of sources of LA, but some of the most common foods with
high concentrations in the human diet include vegetable oils, seeds, eggs, nuts, and many
meats [64,65].
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As an essential PUFA, LA can be converted to AA and other n-6 PUFAs [64] or can
be metabolized to a variety of oxylipin metabolites including oxidized LA metabolites
(OXLAMs) [62] and epoxyoctadecamonoenoic acids (EpOMES) [66]. These can be further
metabolized by other reactions including by enzymes such as soluble epoxide hydrolases
(sEH), peroxidases and dehydrogenases [66] (Figure 2). The OXLAMs also include the
metabolites 9- and 13-hydroxy-octadecadienoic acid (HODE) that can be further metabo-
lized by a dehydrogenase to 9- and 13-oxo-octadecadienoic acid (oxoODE or KODE) [67].
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Figure 2. Metabolism of linoleic acid by CYPs produces multiple oxylipins. These oxylipins may be
subsequently metabolized by soluble epoxide hydrolase (sEH) or dehydrogenases. Oxylipins include
9-HODE, 13-HODE, 9-HpODE, 13-HpODE, 12,13-EpOME and others that are not shown.

The first step in LA metabolism to the OXLAMs by CYPs is their metabolism to
hydroperoxy-octadecadienoic acids (HpODEs) by enzymes such as CYP1A2 [68] and
CYP2S1 [69]. This metabolism can occur at the 9 or 13 positions, resulting in the formation
of 9- or 13-HpODE. 9-HpODE has been demonstrated to increase glutathione (GSH) oxi-
dation [70], indicating a possible role in oxidative stress. 13-HpODE also induces cellular
stress such as increasing smooth muscle cytotoxicity by activating NAD(P)H oxidase [71],
or inducing tumor necrosis factor alpha (TNFα), monocyte chemoattractant protein-1
(MCP-1), and granzyme B (GZMB) in Natural Killer (NK) cells [72].

Following the formation of the HpODEs, these oxylipins can be further metabolized by
peroxidases to the HODEs. The HODEs can also be directly synthesized from LA, skipping
the formation of HpODEs by a variety of CYPs, including 1A2, 2B6, 2C9, 2C19, 2E1, 2J2,
and 3A4 [73–76]. For example, Cyp3a subfamily members produce a number of epoxidated
products of linoleic acid and arachidonic acid in human and rodents. CYP3A4 primarily
metabolizes linoleic acid to 11-HODE, and the production of 11-HODE is increased 10X
by dexamethasone (PXR activator and CYP3A inducer) treatment in rats [75]. OXLAMS
are also found in the brain and the production or delivery of OXLAMS without vitamin E
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causes encephalomalacia and ataxia [3]. Increased 13-HODE reduced platelet aggregation,
and beneficially, is involved in early life neuronal morphogenesis during day 0–day 1 in rat
cortical neurons [77]. See Table 3 for a summary of the actions of LA-derived oxylipins.

9-HODE has been shown to act as a ligand for PPARγ2 and stimulate fat accumula-
tion [76]. 9-HODE is also a ligand for other receptors, including GPR132 which is involved
in sensing and responding to oxidative stress [67] and G2A, a oxidative stress-reactive
GPCR found in the skin [78].

13-HODE has been shown to stimulate prostacyclin production by increasing arachi-
donic acid release [79]. 13-HODE can also act as a ligand for PPARγ [80] and regulate
gene expression. Both 9- and 13-HODE regulate fatty acid binding protein 4 (FABP4)
expression in macrophages [67], and both are also found at increased concentrations after
ischemic stroke, possibly promoting increased inflammation for healing [81] although
PPARγ activation is often considered anti-inflammatory. For example, 13-HODE inhibits
Leukotriene B4 (LtB4) secretion from stimulated leukocytes, resulting in a reduced inflam-
matory response [82]. Humanized CYP2B6-Tg mice produce 9-HODE and 13-HODE at
greater levels than Cyp2b-null mice. This is associated with reduced diet-induced obesity,
but also increased steatosis [8]. The level of HODEs has also been shown to decrease in
response to ischemia in wildtype mice and mice that overexpress endothelial CYP2J2 [83],
but the implications of this is not known. Further research is needed to understand an exact
role and mechanism of action for the HODEs. In addition, as the HODEs are also produced
by LOXs, the mechanism for production under differing conditions is often unknown.

Table 3. Metabolism of linoleic acid produces several oxylipins with a diverse set of putative
functions.

Oxylipin CAS Number CYPs/Enzymes References Effects References

9,10-EpOME 6814-52-4 1A2, 2B6, 2C9 [8,84]

• Activate NF-kB and AP-1 in
endothelial cells resulting in
oxidative stress

• Inhibit osteoblast differentiation
through PPARγ2

• Obesity

[2,76,85]

9,10-DiHOME 263399-34-4 sEH • Promotes adipogenesis and inhibits
osteogenesis through PPARγ2

[76]

12,13-EpOME Not found 1A2, 2C9, 2E1, 2J2, [68,84]
• Activate NF-kB and AP-1 in

endothelial cells resulting in
oxidative stress

• Obesity

[2,85]

12,13-DiHOME 263399-35-5 sEH

• Stimulates brown adipose tissue
activity in response to cold
exposure

• Stimulates cell proliferation in
MCF-7 breast cancer cells

• Cause mitochondrial dysfunction
through activation of the
permeability transition

• Increases exercise-mediated fatty
acid uptake

• Increases sensitivity to thermal
pain

• Cardiac/ischemic injury

[7,16,52,86–88]

9-HpODE 63121-49-3 1A2, 2S1 [68,69] • Increases GSH oxidation [70]

9-HODE 98524-19-7
1A2, 2B6, 2C9, 2C19,

2E1, 2J2
Peroxidase

[8,73,75]

• Stimulates fat accumulation
through PPARγ2

• Associated with reduced obesity,
greater glucose sensitivity, but also
liver steatosis

• Decreased in response to ischemia

[8,76,83]
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Table 3. Cont.

Oxylipin CAS Number CYPs/Enzymes References Effects References

9-oxoODE 54232-59-6 Dehydrogenase • May contribute to pain and
hyperalgesia through TRVP1

[89]

13-HpODE 23017-93-8 1A2, 2S1 [68,69]

• Can induce smooth muscle
cytotoxicity by activating
NAD(P)H oxidase

• Induce TNFα, MCP1, and GZMB
in Natural Killer (NK) cells

[71,72]

13-HODE 18104-45-5
1A2, 2B6, 2C9, 2C19,

2E1, 2J2
Peroxidase

[8,75,90]

• Stimulates prostacyclin production
by increasing arachidonic acid
release

• Decreased in response to ischemia
• Can inhibit platelet adhesion to

endothelial cells
• Ligand for PPARγ
• Inhibit LtB4 secretion from

stimulated leukocytes

[79,80,82,83,91]

13-oxoODE 29623-29-8 Dehydrogenase

• Regulates gene expression in
macrophages through PPARγ

• Reduces IL-8 secretion and has
anti-inflammatory effects in colonic
epithelial cells

• Associated with reduced obesity in
females; greater glucose sensitivity
and liver steatosis in male
hCYP2B6-Tg mice

[8,92,93]

The HODEs can then be further metabolized by dehydrogenases to the oxoODEs, but
unlike the HODEs, oxoODEs cannot be directly synthesized by CYPs. 9-oxoODE may
act on transient receptor potential vanilloid type 1 ion channel (TRPV1) to contribute to
pain and hyperalgesia [89]. 13-oxoODE, like 13-HODE, is able to activate PPARγ and
regulate gene expression in macrophages [92]. It also reduces IL-8 secretion through PPARγ
sginaling and has anti-inflammatory effects in colonic epithelial cells [93]. However, the
oxoODEs also have negative consequences. 9- and 13-oxoODE have been implicated in a
variety of pathological diseases including non-alcoholic steatohepatitis (NASH) [94] and
coronary artery disease [95].

In addition to the OXLAMs, LA can be metabolized into oxylipins called EpOMEs
by CYPs. These compounds are the more canonical pathway for production of oxylipins
by CYPs. The EpOMEs include 9,10- and 12,13-EpOME. 9,10-EpOME can act on several
receptors including PPARγ2 to inhibit osteoblast differentiation [76] and NF-κB and AP-1
to induce oxidative stress in endothelial cells [85]. 12,13-EpOME can also act on NF-κB and
AP-1 in the same way 9,10-EpOME does to induce oxidative stress.

The EpOMEs can be further metabolized by sEH to the dihydroxyoctadecenoic acids
(DiHOMEs), which include 9,10- and 12,13-DiHOME. 9,10-DiHOME can promote adipo-
genesis and inhibit osteogenesis through PPARγ2 [76], similarly to 9,10-EpOME. 12,13-
DiHOME has several known actions, including stimulating brown adipose tissue activity
in response to cold exposure [86], increasing fatty acid uptake in response to exercise [7],
increasing sensitization to thermal pain through TRPV1 [16], cardiac ischemic injury [52],
stimulating cell proliferation in MCF-7 breast cancer cells [87], and causing mitochondrial
dysfunction through activating permeability transition [88]. In summary, the EpOMEs,
DiHOMEs, HODEs, and oxoODES produced from LA activate several different receptors,
including both nuclear and membrane bound receptors such as PPARγ and TRPV1 as well
as other GPCRs, and initiate multiple functions depending on the tissue.

2.2. Arachidonic Acid Metabolism

• AA is metabolized by the CYPs to a number of distinct oxylipins including the HETEs
and the EETs that are subsequently metabolized by sEH into the DiHETs (also seen as
DHETs).

• There are a large number of AA oxylipins that activate a number of GPCRs or act as
second messengers
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• AA-oxylipins are involved in a variety of processes, including inflammation, vascular-
ization, vasoconstriction, oxidative stress, and apoptosis

Arachidonic acid (AA; 20:4) is an n-6 PUFA comprised of a 20-carbon chain with
four double bonds [96]. While AA can be synthesized from LA, it is more commonly
consumed through the diet similarly to LA [97]. Primary sources include meats such as
beef, poultry, pork, and some fish [96,97]. AA is metabolized by CYP enzymes to form
primarily the epoxyeicosatrienoic acids (EETs) that are subsequently metabolized to the
dihydroxyeicosatrienoic acids (DiHETs) by sEHs. Furthermore, hydroxyeicosatetraenoic
acid (HETEs) are formed from LOX and CYP metabolism [98] (Figure 3).

Cells 2023, 12, 82 10 of 31 
 

 

In contrast, some HETEs participate in anti-inflammatory responses. For example, 5-

HETE has been shown to activate Nrf2 [110], which is an important transcription factor 

that regulates anti-oxidant responses [111]. This points to 5-HETE as not only being in-

flammatory but also having a secondary anti-inflammatory role in signaling for protection 

against the oxidative stress produced during the initial inflammatory reactions. 

 

Figure 3. Metabolism of arachidonic acid by CYPs produces multiple products such as the EETs that 

are subsequently metabolized by sEH to a corresponding DiHET. Other metabolites include but are 

not limited to 19-HETE, 9,10-EET, 11,12-EET, and the subsequent sEH DiHET products. 

Platelet aggregation is enhanced by 12-HETE, a ligand of GPR31 [112], while expo-

sure to 19-HETE, produced by CYP2E1, results in activation of the prostacyclin (IP) recep-

tor resulting in reduced platelet aggregation [98]. The activation of the IP receptor by 19-

HETE also reduces vascular constriction [98], which is in direct opposition of the inflam-

matory activity generated by most HETEs. Mid-chain HETEs were decreased in mice 

over-expressing endothelial sEH, but these mice also experienced decreased coronary 

Figure 3. Metabolism of arachidonic acid by CYPs produces multiple products such as the EETs that
are subsequently metabolized by sEH to a corresponding DiHET. Other metabolites include but are
not limited to 19-HETE, 9,10-EET, 11,12-EET, and the subsequent sEH DiHET products.
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AA can be directly metabolized to HETEs by CYPs without the intermediate HpETEs
similar to the HODEs from LA [99]. No studies currently demonstrate that AA is metabo-
lized to HpETEs by the CYPs, only the direct synthesis of HETEs [99]. The most prominent
of the hepatic CYPs, CYP3A4 produces multiple HETEs and EETs. CYP3A4 oxygenates
AA to 13-HETE, 10-HETE, and 7-HETE [75]. The epoxides formed from CYP3A show
stability, but are also metabolized by sEH to diols [100]. Inhibition assays suggest that
a Cyp3a-mediated arachidonic acid EET is in part responsible for relaxation of arterial
endothelium [101].

HETEs can be further metabolized by dehydrogenases to the oxoicosatetraenoic acids
(oxoETEs) (not shown in Figure 3) [102]. While both HODEs produced through CYPs have
a respective oxoODE, only three of the seven HETEs are further metabolized to oxoETE,
5-, 12-, and 15-oxoETE [1]. CYPs can also metabolize AA to the EETs at any of the double
bond positions. Each CYP preferentially produces one or two regioisomers while the
other regioisomers are produced at lower levels [103]. For example, rat CYP2B’s primarily
produces 11,12-EET in the liver but also produces moderate amounts of 8,9-EET and 14,15-
EET [104]. Similarly to the epoxides generated from LA, soluble epoxide hydrolases (sEHs)
can further metabolize EETs to DiHETs [105], although their role in signaling pathways is
not as well established as their predecessors [105].

The HETEs are generally regarded as inflammatory, with many of them contributing
to vasoconstriction and inflammatory pathways. For example, 5-HETE has been shown to
induce neutrophil migration leading to airway constriction [106], which is accompanied by
an increase in intracellular calcium as a result of neutrophil activation [99]. Other HETEs
also contribute to vasoconstriction such as 15-HETE through the PGH2/TXA2 receptors
resulting in increased pulmonary artery tension [107] and 20-HETE that constricts vascular
smooth muscle through blocking activity of the calcium-activated potassium channel and
enhancing the activity of voltage-gated L-type calcium channels [108]. However, 20-HETE,
a ligand of GPR75, that has been well studied for its pro-inflammatory and proliferative
activity is primarily produced by CYP4A and CYP4F members [109]; not the CYP1-3 family
members. See Table 4 for a summary of AA-derived oxylipin actions.

In contrast, some HETEs participate in anti-inflammatory responses. For example,
5-HETE has been shown to activate Nrf2 [110], which is an important transcription factor
that regulates anti-oxidant responses [111]. This points to 5-HETE as not only being
inflammatory but also having a secondary anti-inflammatory role in signaling for protection
against the oxidative stress produced during the initial inflammatory reactions.

Platelet aggregation is enhanced by 12-HETE, a ligand of GPR31 [112], while ex-
posure to 19-HETE, produced by CYP2E1, results in activation of the prostacyclin (IP)
receptor resulting in reduced platelet aggregation [98]. The activation of the IP receptor
by 19-HETE also reduces vascular constriction [98], which is in direct opposition of the
inflammatory activity generated by most HETEs. Mid-chain HETEs were decreased in
mice over-expressing endothelial sEH, but these mice also experienced decreased coronary
reactive hyperemia [113], which indicates the role of HETEs in inflammatory events in the
cardiovascular system may be more complicated than previous studies demonstrate. These
diverging roles in inflammation show the diversity of responses elicited by these oxylipins.

Some of the HETEs are less well-studied, so little is known about their activity. 9-HETE,
for example, acts as a marker for oxidative stress and is elevated in patients with coronary
artery disease [114], but little is known about whether it contributes to a mechanism
responsible for the disease. Another HETE that has been left largely uninvestigated is
18-HETE. One study found it increases vasodilation in rabbit kidney [115]; however, few
other studies have shown biological activity or divulged a mechanism.

The EETs work through a variety of different mechanisms, and unlike the HETEs
they are generally regarded as anti-inflammatory although they may also demonstrate
pro-inflammatory responses. Several of the EETs signal the same receptors, for example 8,9-,
11,12-, and 14,15-EET all activate the JNK/c-Jun pathway to stimulate pulmonary artery
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endothelial cells proliferation and angiogenesis [116]. The JNK pathway is also associated
with several diseases, including obesity, steatosis, atherosclerosis, and others [8,117].

These oxylipins also act as potentially anti-inflammatory signaling molecules that
decrease epithelial sodium channel activity and reduce sodium reabsorption [118]. This
impairment of sodium reabsorption channels has been shown to contribute to a decrease in
blood pressure [119]. 14,15-EET also suppresses mitochondrial apoptosis during ischemia-
reperfusion injury through the PI3K/AKT/CREB/Bcl-2 signaling pathway [120], which
could possibly reduce the rate of apoptosis seen in muscle cells in response to metabolic
diseases such as dyslipidemia [121]. 5,6-EET does not signal through the previously
mentioned pathways and instead functions to suppress cardiomyocyte shortening [122],
which may be a result of its action as an inhibitor of T-type calcium channels that contribute
to vascular tone [123]. 11,12- and 14,15-EET levels were increased in endothelial CYP2J2-
overexpressing mice, and these mice had improved coronary reactive hyperemia [83].

Murine Cyp2b19 and rat CYP2B12 are primarily found in keratinocytes and important
in 14,15-EET formation, a key factor in epithelial cornification [124–126]. Interestingly,
recent data provides an association between Cyp2b repression (also Cyp2j/4a/2c) and
development of NAFLD during a high-fat diet, putatively due to a lack of arachidonic acid
expoxygenase activity [8,44,127].

The EETs are also considered protective in the brain because of their anti-inflammatory
and anti-thrombotic activities [128–130]. Furthermore, disruption of EET metabolism
altered behavior in sEH knockout mice, but not completely in an expected manner, as these
mice showed improved motor skills but reduced learning capacity for spatial memory [131].

AA and ethanolamine undergo enzymatic reactions to yield an n-6 endocannabinoid,
anandamide (AEA), although this synthesis pathway requires substantial amounts of free
AA [132]. AEA can then be metabolized by CYPs to yield several AEA-derived oxylipins
with similar sites of metabolism to the AA derivatives. Many of these AEA-derived
oxylipins are not well studied, but several have been shown to activate the cannabinoid
(CB) receptors. For example, 5,6-EET-EA is a potent activator of both CB1 and CB2 [133],
while 11,12-EET-EA is only an agonist of CB2 [134]. 20-HETE-EA is also an agonist of
the CBs, but it has a very low binding affinity compared to 5,6- and 11,12-EET-EA [135].
5,6-, 8,9-, and 14,15-EET-EA can activate a different receptor called the GPR119 receptor,
which results in an increase in intracellular cAMP, and a reduction in the innate immune
response [136,137]. CYP3A4 is considered the key CYP in anandamide metabolism with
CYP2D6 and CYP4F2 playing smaller roles [133,138]. This provides further evidence that
loss of Cyp3a activity may perturb endocannabinoid action, alter immune response and
perturb mood.

There is significant competition between linoleic acid and arachidonic acid oxylipins
during inflammation. Under normal conditions the metabolites of linoleic acid dominate
and both EpOMEs and DiHOMEs are measurable probably because of the higher substrate
concentration of LA. Upon inflammation the arachidonic acid metabolites dominate; most
produced by CYP2J and CYP2C members. EETs are not highly stable and therefore some-
times they are not found or measured at low levels. Instead the DiHETs are primarily
measured, which are more likely pro-inflammatory similar to the linoleic acid oxylipins;
and unlike the anti-inflammatory EETs that provide protection from lung or cardiac injuries
following the initial influx of CYP-derived oxylipins. Therefore, inhibition of sEH may
provide benefits for inflammatory resolution [18]. Interestingly, the EPA and DHA derived
oxylipins did not change during inflammatory resolution [18]. Therefore, competition for
CYP metabolism by other PUFAs such as the n-3’s through an improved diet could also
inhibit metabolism of AA to pro-inflammatory oxylipins and improve outcomes.
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Table 4. Metabolism of arachidonic acid produces several oxylipins with a diverse set of putative
functions.

Oxylipin CAS Number CYPs/Enzymes References Effects References

5-HETE 330796-62-8 1B1, 2B6 [139,140]

• Activates Nrf2
• Stimulate neutrophils to increase

intracellular calcium
• Induce airway contraction through

induction of neutrophil migration

[99,106,110]

9-HETE 79495-85-5 2B6 [140] • Marker for oxidative stress [114]

12-HETE 71030-37-0 1B1, 2B6 [8,139,140] • Contributes to platelet aggregation [112]

15-HETE 71030-36-9 1B1 [139] • Can increase pulmonary artery tension
through PGH2/TXA2 receptors

[107]

18-HETE 133268-58-3 2E1 [141] • Induces vasodilation in rabbit kidney [115]

19-HETE 79551-85-2 2E1, 2U1 [141,142]
• Activates the prostacyclin (IP) receptor,

inhibiting platelet aggregation and
reducing vascular constriction

[98]

20-HETE 79551-86-3 2U1 [142]

• Acts as a participant in
tubuloglomerular feedback response in
the kidney

• Promotes salt excretion through
inhibition of the Na+-K+-ATPase and
Na+-K+-2Cl− cotransporters

• Constricts vascular smooth muscle
through blocking activity of the
calcium-activated potassium channel
and enhancing the activity of
voltage-gated L-type calcium channels

[108,143,144]

5,6-EET 81246-84-6 2B6, 2D6, 2J2, 3A4 [8,138,145,146]
• Can suppress cardiomyocyte shortening
• Inhibits T-type calcium channels which

may contribute to vascular tone

[122,123]

8,9-EET 184488-44-6 1A2, 2B6, 2C9, 2D6,
2J2 3A4 [8,138,140,145–148]

• Inhibits B-cell proliferation and survival,
possibly through inhibition of Nf-κB

• Stimulates pulmonary artery
endothelial cells proliferation and
angiogenesis through the JNK/c-Jun
pathway

• Decreases epithelial Na+ channel
activity to reduce sodium reabsorption

[116,118,149]

11,12-EET 200960-01-6 2C8, 2C9, 2D6, 2J2,
2S1, 3A4, 2B [104,138,145,148,150]

• Stimulates pulmonary artery
endothelial cells proliferation and
angiogenesis through the JNK/c-Jun
pathway

• Decreases epithelial Na+ channel
activity to reduce sodium reabsorption

• Activates the α and β1 subunits of
mitochondrial BK channels to promote
pulmonary vasoconstriction

• Increased following eschemia in
endothelial CYP2J2-overexpressing
mice

[83,116,118,151]

14,15-EET 197508-62-6 2C8, 2C9, 2D6, 2J2,
2S1, 3A4 [138,145,148,150]

• Stimulates pulmonary artery
endothelial cells proliferation and
angiogenesis through the JNK/c-Jun
pathway

• Decreases epithelial Na+ channel
activity to reduce sodium reabsorption

• Increased following eschemia in
endothelial CYP2J2-overexpressing
mice

• Suppresses mitochondrial apoptosis
through the PI3K/AKT/CREB/Bcl-2
signaling pathway in
ischemia–reperfusion injury

[83,116,118,120]

5,6-EET-EA * N/A 2D6, 2J2, 3A4 [152,153] • Potent agonist of CB1 and CB2
• Weak agonist of GPR119 receptor

[133,137]

8,9-EET-EA * N/A 2D6, 2J2, 3A4 [152,153] • Agonist of GPR119 receptor [137]

11,12-EET-EA * N/A 2D6, 2J2, 3A4 [152,153] • High-affinity agonist of CB2 [134]

14,15-EET-EA * N/A 2D6, 2J2, 3A4 [152,153] • Weak agonist of GPR119 receptor [137]

19-HETE-EA * N/A 2D6, 3A4 [152,153] • Unknown
20-HETE-EA * 942069-11-6 2D6, 3A4 [34,152,153] • Low affinity binding of CB [135]

* denotes an oxylipin derived from anadamide (AEA).
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2.3. α–Linolenic Acid Metabolism

• ALA is metabolized by the CYPs into a number of distinct oxylipins including the
EpODEs and HOTrEs

• Less is known about the individual CYPs responsible for metabolism of ALA
• There are several ALA-derived oxylipins about which little is known or little confir-

mation of its activity.

Alpha-linolenic acid (ALA; 18:3) is an n-3 PUFA comprised of an 18-carbon chain with
three double bonds [154]. Like LA, ALA is an essential fatty acid, meaning it cannot be
synthesized by humans and must be consumed through diet [154]. It is found in several
plant-based oils as well as nuts and some leafy vegetables [155].

ALA can be converted to eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA),
although this conversion seems to be limited in humans [121]. ALA is metabolized
by CYPs to form epoxy-octadecadienoic acids (EpODEs) or potentially hydroperoxy-
octadecatrienoic acids (HpOTrEs), which like their LA derivatives can be further metabo-
lized by sEH or peroxidases to dihydroxy-octadecadienoic acids (DiHODEs) or hydroxy-
octadecatrienoic acids (HOTrEs), respectively [1]. HOTrEs can then be metabolized by
dehydrogenases to oxo-octadecatrienoic acid (oxoOTrEs) [1] (Figure 4). The CYPs responsi-
ble for ALA metabolism have not been well established. HOTrE and HpOTrE metabolism
is carried out by LOX, but a recent paper shows that ALA is a preferred PUFA substrate
for CYP2B6 with oxidative preference at the 9- and 13- positions. 9-HOTrE also activates
PPARα [8].

Cells 2023, 12, 82 14 of 31 
 

 

octadecatrienoic acids (HpOTrEs), which like their LA derivatives can be further metabo-

lized by sEH or peroxidases to dihydroxy-octadecadienoic acids (DiHODEs) or hydroxy-

octadecatrienoic acids (HOTrEs), respectively [1]. HOTrEs can then be metabolized by 

dehydrogenases to oxo-octadecatrienoic acid (oxoOTrEs) [1] (Figure 4). The CYPs respon-

sible for ALA metabolism have not been well established. HOTrE and HpOTrE metabo-

lism is carried out by LOX, but a recent paper shows that ALA is a preferred PUFA sub-

strate for CYP2B6 with oxidative preference at the 9- and 13- positions. 9-HOTrE also ac-

tivates PPARα [8]. 

 

Figure 4. Metabolism of a-linolenic acid a produces multiple products such as the EpODEs that are 

subsequently metabolized by sEH to a corresponding DiHODEs. Other metabolites include but are 

not limited to HOTrEs and HpOTrEs. Recent research with CYP2B6 provides a preferred metabo-

lism of PUFAs, especially ALA, in the 9 or 13 positions. 

Very little is known about the effects of ALA-derived oxylipins (Table 5). While con-

centrations of these oxylipins have been associated with a variety of conditions, little is 

known about whether these oxylipins are involved in the mechanism of these effects or 

diseases. For example, DiHODE concentrations in hyperlipidemic men were decreased 

compared to normolipidemic men [156], but no follow up on this study has been com-

pleted. EpODE concentrations have been shown to be significantly increased in male rats 

upon treatment with ibuprofen [157]; however, the cause or effects of this change in ox-

ylipin profile have yet to be investigated. Several of these oxylipins have been associated 

with pregnancy and gestation. 9,10- and 15,16-DiHODE have been found at higher con-

centrations in the corpus lutea in pregnant cattle [158], and lower levels of 9,10-DiHODE 

have been associated with an increase in preterm delivery prior to 34 weeks [159], but the 

implications of this have not been determined. 

13-HpOTrE and 13-HOTrE both inactivate the NLRP3 inflammasome [160] that is 

responsible for the release of the pro-inflammatory cytokines IL-1β and IL-18 [161]. This 

Figure 4. Metabolism of a-linolenic acid a produces multiple products such as the EpODEs that are
subsequently metabolized by sEH to a corresponding DiHODEs. Other metabolites include but are
not limited to HOTrEs and HpOTrEs. Recent research with CYP2B6 provides a preferred metabolism
of PUFAs, especially ALA, in the 9 or 13 positions.
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Very little is known about the effects of ALA-derived oxylipins (Table 5). While concen-
trations of these oxylipins have been associated with a variety of conditions, little is known
about whether these oxylipins are involved in the mechanism of these effects or diseases.
For example, DiHODE concentrations in hyperlipidemic men were decreased compared to
normolipidemic men [156], but no follow up on this study has been completed. EpODE
concentrations have been shown to be significantly increased in male rats upon treatment
with ibuprofen [157]; however, the cause or effects of this change in oxylipin profile have
yet to be investigated. Several of these oxylipins have been associated with pregnancy and
gestation. 9,10- and 15,16-DiHODE have been found at higher concentrations in the corpus
lutea in pregnant cattle [158], and lower levels of 9,10-DiHODE have been associated with
an increase in preterm delivery prior to 34 weeks [159], but the implications of this have
not been determined.

13-HpOTrE and 13-HOTrE both inactivate the NLRP3 inflammasome [160] that is
responsible for the release of the pro-inflammatory cytokines IL-1β and IL-18 [161]. This
suggests they play a role in reducing inflammation. Both 9- and 13-HOTrE have been shown
to reduce lipid droplet accumulation in 3T3-L1 adipocytes [162], but a mechanism for this
has not been determined. 13-HOTrE has recently been shown to increase gene expression
of the Sterol regulatory-element binding factors (SREBFs) as well as fatty acid synthase
(FASN) in murine skeletal muscle cells [163], which may indicate a role in signaling for
lipid metabolism and biosynthesis. Further research into ALA-derived oxylipins is needed
to enhance understanding of their involvement in these effects, as the current literature
is lacking.

Table 5. Metabolism of α-linolenic acid produces several oxylipins with a diverse set of putative
functions.

Oxylipin CAS Number CYPs/Enzymes References Effects References

9,10-EpODE N/A 2B6 [8] • Significantly increased in male
rats treated with ibuprofen

[157]

12,13-EpODE N/A unknown • Significantly increased in male
rats treated with ibuprofen

[157]

15,16-EpODE N/A 2B6 [8] • Significantly increased in male
rats treated with ibuprofen

[157]

9,10-DiHODE N/A sEH [1]

• Found at decreased
concentrations in
hyperlipidemic men vs.
normolipidemic men

• Lower levels in pregnant
women have been associated
with increase in preterm
delivery before 34 weeks

• Higher in corpus lutea in
pregnant cattle

[156,158,159]

12,13-DiHODE N/A sEH [1]

• Found at decreased
concentrations in
hyperlipidemic men vs.
normolipidemic men

[156]



Cells 2023, 12, 82 15 of 30

Table 5. Cont.

Oxylipin CAS Number CYPs/Enzymes References Effects References

15,16-DiHODE N/A sEH [1]

• Found at decreased
concentrations in
hyperlipidemic men vs.
normolipidemic men

• Higher in corpus lutea in
pregnant cattle

[156,158]

9-HpOTrE 111004-08-1 2B6 [8] • unknown

13-HpOTrE 67597-26-6 2B6 [8] • Inactivate the NLRP3
inflammasome

[160]

9-HOTrE 89886-42-0 2B6 [8]

• Increased concentrations in
patients with perioperative dry
eye syndrome

• Reduced lipid droplet
accumulation in 3T3-L1
adipocytes

[162,164]

13-HOTrE 87984-82-5 2B6 [8]

• Inactivate the NLRP3
inflammasome

• Increased concentrations in
patients with perioperative dry
eye syndrome

• Reduced lipid droplet
accumulation in 3T3-L1
adipocytes

• Increase SREBF1, SREBF2, and
FASN gene expression in
C2C12 murine skeletal muscle
cells

[160,162–164]

9-oxoOTrE 125559-74-2 dehydrogenase [1] • Shows antimicrobial activity in
plants

[165]

13-oxoOTrE N/A dehydrogenase [1] • unknown

2.4. Eicosapentaenoic and Docosahexaenoic Acid Metabolism

• DHA and EPA are metabolized by CYPs, including CYP2C, CYP2J, and CYP3A sub-
family members. EPA is metabolized into the HEPEs, epoxidated to the EpETEs and
in turn the diols, DiHETEs (DHETEs) by sEH; DHA is metabolized to the epoxidated
EpDPAs and in turn the DiHDPAs by sEH.

• DHA and EPA often function as anti-inflammatory and perceived as beneficial; how-
ever there are examples of negative effects of their oxylipins, especially DHA.

• Some of DHA and EPA’s beneficial effects are probably due to competitive inhibition
of AA metabolism.

Eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6) are n-3
PUFAs comprised of 20 and 22 carbons, respectively. EPA and DHA can be synthesized
from ALA, an essential PUFA; however, they are more commonly consumed through the
diet such as salmon, trout, tuna, cod, oysters, flaxseed, walnuts, and soybeans. EPA is
primarily metabolized by CYP enzymes to form the epoxides EpETEs such as 5,6-EpETE,
8,9-EpETE and others. These are then metabolized by sEH to produce the DiHETEs. Other
CYP-derived oxylipins from EPA include the HEPEs such as 18-HEPE, 19-HEPE, and 20-
HEPE (Figure 5). DHA is primarily metabolized across its double bonds to the epoxidated
EpDPAs such as 13,14-EpDPA or 17,18-EpDPA with subsequent sEH-mediated hydrolysis
to their respective diols, 13,14-DiHPDA or 17,18-DiHPDA (Figure 6).
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The serum levels of the n-3 PUFAs mimic the consumption patterns of n-3 PUFAs
and this is also true for their oxylipins. In turn, the many anti-inflammatory and anti-
proliferative effects of oxylipins are provided by eating better diets [166]. Diets high in
EPA and DHA increased EPA and DHA-derived oxylipins [167,168], and decreased AA-
derived oxylipins, possibly through direct inhibition of CYP-mediated metabolism. A
recent manuscript evaluated the production of 17,18-EpETE, an EPA oxylipin, from each
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of the murine CYPs. 17,18-EpETE was produced from EPA by Cyp1a, 2a, 2b, 2c, 2j, 3a,
4a, 4f, 26, and 46 members with Cyp4a12a > 1a2 > 4f18 > 4a12b > 2c50 > 2c38 > 2b10
in production of this oxylipin [169]. Further metabolite analysis showed that Cyp1a2
produced 18-HEPE and 19-HEPE, Cyp2c50 produced a large number of EPA oxylipins,
and Cyp4a12a and Cyp4f18 produced 18-HEPE, 19-HEPE, and 20-HEPE (Cyp4a12a only).
Human CYP1A2 produced similar metabolites as murine Cyp1a2. Human CYP4, CYP1A,
and CYP2C members are typically considered important in the metabolism of n-3 fatty
acids [170,171].

Many investigators believe that the association between n-3 PUFAs and better health
outcomes is caused by the formation of the n-3 oxylipins [167,168]. For example, 19,20-
EpDPA produced from DHA and to a lesser extent 14,15-EET produced from AA are
CYP-mediated oxylipins that lower blood pressure caused by angiotensin II [171]. Omega-3
PUFAs are also anti-obesogenic and have anti-cancer properties probably because of their
anti-inflammatory and anti-oxidant effects [172]. The EPA and DHA oxylipins 17,18-EpETE
and 19,20-EpDPE, respectively, activate GRP120 and AMPKa and in turn increase brown
adipose tissue thermogenesis and increase the beiging of white adipose tissue [173]. Both
of these increase metabolism and can decrease obesity. DHA oxylipins are associated
with better cardiovascular outcomes, reduced cardio-toxicity caused by LPS, reduced lung
cancer colonies, reduced metastasis, lower blood pressure in the obese, and improved fatty
liver indices (Tables 6 and 7) [169,170,174–178].

Table 6. Metabolism of eicosapentaenoic acid produces several oxylipins with a diverse set of putative
functions.

Oxylipin CAS Number CYPs/Enzymes References Effects References

5,6-EpETE N/A 2C9, 2J2 [179] • unknown

8,9-EpETE 851378-93-3 1A2, 2C9, 2C19,
2E1, 2J2, 3A4 [179] • unknown

11,12-EpETE 504435-15-8
1A2, 2C8, 2C9,
2C19, 2E1, 2J2,

3A4
[179]

• Higher levels are associated
with lower blood pressure in
obese children

[180]

14,15-EpETE 131339-24-7
1A2, 2C8, 2C9,
2C19, 2E1, 2J2,

3A4
[179] • unknown

17,18-EpETE 131339-23-6
1A1, 1A2, 2C8,
2C9, 2C19, 2D6,

2E1, 2J2, 3A4
[179]

• Activated the prostacyclin
receptor and sensitize TRPV1
and TRPA1 in sensory neurons

• Acute injection can reduce the
ability to induce atrial
fibrillation in mice

• Increase brown adipose tissue
thermogenesis

[173,181,182]

5,6-DiHETE 845673-97-4 sEH [183]

• Inhibits endothelial calcium
elevation during inflammation
to inhibit vascular
hyperpermeability

• TRPV4 antagonist to promote
healing of colitis

[184,185]

8,9-DiHETE 867350-87-6 sEH [183]
• Exacerbated palmitic

acid-induced cell death in
HepG2 cells

[186]

11,12-DiHETE 867350-92-3 sEH [183]
• Associated with the liver

fibrosis stage of nonalcoholic
steatohepatitis

[187]
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Table 6. Cont.

Oxylipin CAS Number CYPs/Enzymes References Effects References

14,15-DiHETE N/A sEH [183]

• Negatively correlated with
fatty liver index, adiposity, and
metabolic syndromes in young
adults

[174]

17,18-DiHETE N/A sEH [183]

• Negatively correlated with
fatty liver index, adiposity, and
metabolic syndromes in young
adults

[174]

18-HEPE 141110-17-0 CYP2C, 1A2,
2B [169]

• Reduced the number of lung
cancer colonies in mice when
used as a pretreatment for
injected B16-F0 cells, through
suppression of CXCR4

[175]

However, negative outcomes occur as well. For example, diets high in EPA, DHA,
EPA + DHA, or none of the n-3’s were provided and several inflammatory biomarkers
were measured. EPA produced positive health outcome associations between oxylipins,
IL-6, and bronchoalveolar lavage fluid as did the EPA + DHA group. However, DHA alone
increased CYP and LOX derived oxylipins as well as increased IL-6 and bronchoalveolar
lavage. Therefore, several DHA oxylipins may be pro-inflammatory in the lung [168]. Other
negative effects of n-3 oxylipins include association with increased seasonal depression,
liver fibrosis, and soybean oil induced obesity [2,187,188].

Table 7. Metabolism of docosahexaenoic acid produces several oxylipins with a diverse set of putative
functions.

Oxylipin CAS Number CYPs/Enzymes References Effects References

7,8-EpDPA 895127-66-9 1A2, 2C9, 2C19,
2J2, 3A4 [179] • Increased in hemodialysis

patients
[189]

10,11-EpDPA 895127-65-8 1A2, 2C8, 2C9,
2C19, 2J2, 3A4 [179] • Increased in hemodialysis

patients
[189]

13,14-EpDPA 895127-64-7 1A2, 2C8, 2C9,
2C19, 2J2, 3A4 [179]

• Activates large-conductance
calcium-activated potassium in
smooth muscle in coronary
arteries

• Increased in hemodialysis
patients

[189,190]

16,17-EpDPA 155073-46-4 1A2, 2C8, 2C9,
2C19, 2E1, 3A4 [179]

• Inhibits VEGF-induced
angiogenesis and significantly
reduces metastasis

• Increased in hemodialysis
patients

[177,189]
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Table 7. Cont.

Oxylipin CAS Number CYPs/Enzymes References Effects References

19,20-EpDPA N/A

1A1, 1A2, 2C8,
2C9, 2C11,
2C18, 2C19,

2D6, 2E1, 2J2,
3A4

[179,191]

• Potent vasodilators in
microcirculatory vessels

• Protects cardiac cells against
lipopolysaccharide-induced
toxicity through activation of
Sirtuin 1 which positively
regulates LXR

• Inhibits VEGF-induced
angiogenesis

• Increased in hemodialysis
patients

• Increase brown adipose tissue
thermogenesis

[173,177,178,
189,192]

7,8-DiHDPA 168111-93-1 sEH

• Lower concentrations found in
the brains of G-protein coupled
receptor 39-knock out mice fed
a high fat diet

[193]

10,11-DiHDPA 1345275-22-0 sEH • unknown

13,14-DiHDPA 1345275-24-2 sEH
• Negatively correlated with

atherosclerotic cardiovascular
disease risk

[176]

16,17-DiHDPA 1345275-27-5 sEH

• Increased concentrations found
in patients with seasonal
depression during winter
months

[188]

19,20-DiHDPA N/A sEH
• Reduced concentrations found

in mice treated with fenofibrate,
a PPARα activator

[194]

Neovascularization of the retina is a cause of blindness. Omega-3 fatty acids can reduce
the vascularization; however, some CYP-mediated oxylipins promote ocular pathological
angiogenesis. In the retina, CYP2C metabolizes AA to 14,15-EET and DHA to 19,20-EpDPA
that are subsequently metabolized to 14,15-DiHET and 19,20-DiHDPA by sEH. Inhibition
of CYP2C by the CYP2C8 inhibitor, montelukast significantly reduces pathological blood
vessel formation. Inhibition of sEH increases ocular neovascularization indicating the the
14,15-EET and 19,20-EpDPA metabolites are responsible for inducing neovascularization
and promoting the pathological blindness. Furthermore, direct treatment with 19,20-EpDPA
overcame CYP2C inhibition leading to neovascularization. Thus, specific AA and DHA
epoxy—oxylipins are critical in ocular neovascular disease progression and blindness [195].

Exercise increases serum oxylipin levels from fasted athletes of several PUFAs, espe-
cially AA, DHA, and EPA from CYPs. This also includes the LA-derived HODEs that could
be produced from LOX or CYP activity. Interestingly, providing carbohydrates immediately
after the exercise reduced oxylipin production with the reduction of CYP-mediated oxylip-
ins most prominent [196]. The mechanism is not known, but may involve the influx of
insulin and in turn the repression of lipase activity leading to reduced substrate levels. The
benefits of post-workout carbohydrates may be reduced inflammation from a reduction
in AA-based oxylipins such as the HETEs and an increase in EETs caused by a drop in
sEH activity. Furthermore, few pro-resolvin mediators were not measured immediately
post-exercise [196]. The mechanism for CYP activity repression is not known, but hypothe-
ses include reduced insulin or fatty acid mediated induction [44,58,197]. However, not all
PUFAs are equal as most induce CYP activity such as LA [58,198–201], which was released
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early into the serum during this exercise study. However, other PUFAs are inhibitors of
CYP induction. For example, DHA directly inhibits CAR-regulated CYP induction [202].

Interestingly, the endocannabinoid derivatives of the n-3 oxylipins often have stronger
physiological effects than their precursors [166]. A recent review summarizes their anti-
inflammatory, anti-cancer, anti-obesity, energy sensing capabilities, as well as role in food
intake [172]. Other studies have demonstrated significant anti-inflammatory properties,
anti-cancer, and anti-anxiety or anti-depression [203]. However, there has been much less
study of the n-3 endocannabinoids and therefore more research is necessary [204–206].

3. Discussion—Potential Interactions

Several different CYPs are key contributors to PUFA metabolism with CYP4A and 4F
playing prominent roles in omega-oxidation of AA. However, many other CYPs are also in-
volved in PUFA metabolism and the formation of oxylipins. Several of these are in the CYP
familes 1–3; the same families involved in detoxification of endo- and xenobiotics. These
detoxification CYPs are often highly inducible through the activation of xenosensors such
as AhR, CAR, PXR, and others [19]. PPARs can also induce several CYP subfamilies; most
prominently the CYP4A subfamily important in omega hydroxylation of fatty acids [207].
The CYP4A subfamily does not fit under the detoxification CYPs and part of this review,
but they are inducible and important in PUFA metabolism, especially AA.

Chemicals that activate AhR, CAR, and PXR are likely to increase oxylipin formation.
A great example is dioxin, a crucial inducer of CYP1A members that also significantly
increases PUFA metabolism to oxylipins [208]. Quercetin activates CAR, increases omega-
oxidation of multiple PUFAs and reduces serum lipids [209]. Overall, these changes most
likely lead to downstream effects that probably vary based on the diet. For example, a diet
rich in n-6 fatty acids would certainly be more pro-inflammatory that an n-3 diet. Thus,
oxylipin metabolism and effects are dependent on chemical exposure and diet.

Serum oxylipins such as 15-HETE, 12-HEPE, 17-hDHA, and 5,6-DHET were increased
by airborne particular matter. The CYPs responsible for these products under these condi-
tions are not known. As most of these are considered pro-inflammatory, specific oxylipins
may provide information about the health of our environment; diet, chemical exposure,
etc. [210]. PM and the PAHs that may be present within them are likely CYP inducers and
in turn support an unhealthy, pro-inflammatory internal environment that is more prone to
obesity, diabetes, and cancer.

DHA acts as an inhibitor of CYP2B6, CYP2C8, CYP3A4 and other CYPs as do several
other PUFAs with EC50s in the low micromolar range (1–10 µM). EPA, DHA, and AA
have greater inhibitory capacity than LA and ALA for most CYPs [36,183,211]. With a
EC50 in the low micromolar range, most inhibition would occur directly after a meal, after
pharmacological treatment with a PUFA, in the presence of high amounts of free fatty acids
such as in a steatotic condition, or with a mixture of other PUFAs. DHA inhibits AA oxylipin
formation and has the benefit of being a n-3 PUFA with reasonably strong inhibition of
most CYPs including CYP3A4 [36,183]. A diet rich in n-3 PUFAs may also provide reduced
inflammation through competition for CYP metabolism and ultimately inhibition.

DHA has been used to inhibit the CYP3A-mediated metabolism and increase the
retention of some drugs, including midazolam and cyclosporin [212,213]. DHA also
represses the translocation of CAR, a key nuclear receptor involved in the induction of
CYP2B and to a lesser extent CYP3A enzymes. This may provide another mechanism by
which DHA can repress CYP activity [202]. Taken together, DHA and potentially other
PUFAs can cause drug-drug or diet-drug interactions and potentially used to beneficial
effects [29,36,202].

Drugs can also be used to inhibit adverse effects from CYP-mediated PUFA metabolism.
Inhibition of CYP2C metabolism of DHA and AA can have pharmacological effects
and improve pathological neovascularization [195]. Inhibition of CYP3A4 and perhaps
CYP2J members by ketoconazole reduces the production of HODES and potentially 12,13-
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DiHOME responsible for dental pain [16,214]. A diet high in n-3 fats may provide health
benefits alone and/or be used to potentiate the effects of some drugs (see above).

Several genetic, biochemical, and environmental effects can effect the abundance
and type of oxylipins produced. These include (1) diet, especially PUFA type in the
diet. (2) Liver steatosis or steatohepatitis, which leads to induction or repression of CYP
expression, respectively. (3) Chemical exposure as several environmental chemicals such as
pesticides, plasticizers, fire retardants, and many more induce CYPs through AhR, CAR,
PXR, etc., and in turn may increase oxylipin production; another potential mechanism by
which environmental chemicals could cause oxidative stress or inflammation. (4) Several
phamaceuticals are CYP modulators through the same mechanisms mentioned above for
environmental chemicals and may cause drug-drug interactions because of these effects (5)
Hormones and bile acids may also alter CYP expression through PXR, CAR, or FXR. (6)
Last, polymorphisms such as those in CYP2B6 or CYP2D6 disrupt endocannaboid oxylipin
production [34]. Taken together, oxylipins are often present in the serum at ratios similar to
the diet and produced by a variety of CYPs whose expression may not be stable. Therefore,
oxylipin levels are contingent on our diet and CYP activity, which are altered by a variety
of environmental factors.

4. Conclusions

The production of oxylipins occurs through multiple pathways, is inducible, and can
have both positive and negative consequences. Our understanding of the role of CYPs in
the production of oxylipins is growing, but the role of specific CYPs is still understudied.
Our knowledge of the individual CYP-derived oxylipins is also growing; however, there are
many oxylipins that have not been investigated or mechanistic studies are lacking. Further
study of the function of CYP-derived oxylipins will increase our understanding of oxylipin
signaling and the interaction between our diet, environment, and sex. Understanding
the role of the specific CYPs will help us understand and provide mechanisms by which
modulation of CYPs will alter oxylipin production and effect. More importantly, dietary or
pharmacological interventions may be available to enhance the desired effects and inhibit
the negative effects of oxylipins. Overall, our diet, environment, age, pharmaceutical
treatments, etc., are likely to affect our oxylipin production, their ratios, and their effects;
both negative and beneficial.
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