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Abstract: Vertical bone augmentation to create host bone prior to implant placement is one of the
most challenging regenerative procedures. The objective of this study is to evaluate the capacity of a
UV-photofunctionalized titanium microfiber scaffold to recruit osteoblasts, generate intra-scaffold
bone, and integrate with host bone in a vertical augmentation model with unidirectional, limited
blood supply. Scaffolds were fabricated by molding and sintering grade 1 commercially pure titanium
microfibers (20 µm diameter) and treated with UVC light (200–280 nm wavelength) emitted from a
low-pressure mercury lamp for 20 min immediately before experiments. The scaffolds had an even
and dense fiber network with 87% porosity and 20–50 mm inter-fiber distance. Surface carbon reduced
from 30% on untreated scaffold to 10% after UV treatment, which corresponded to hydro-repellent to
superhydrophilic conversion. Vertical infiltration testing revealed that UV-treated scaffolds absorbed
4-, 14-, and 15-times more blood, water, and glycerol than untreated scaffolds, respectively. In vitro,
four-times more osteoblasts attached to UV-treated scaffolds than untreated scaffolds three hours
after seeding. On day 2, there were 70% more osteoblasts on UV-treated scaffolds. Fluorescent
microscopy visualized confluent osteoblasts on UV-treated microfibers two days after seeding but
sparse and separated cells on untreated microfibers. Alkaline phosphatase activity and osteocalcin
gene expression were significantly greater in osteoblasts grown on UV-treated microfiber scaffolds.
In an in vivo model of vertical augmentation on rat femoral cortical bone, the interfacial strength
between innate cortical bone and UV-treated microfiber scaffold after two weeks of healing was
double that observed between bone and untreated scaffold. Morphological and chemical analysis
confirmed seamless integration of the innate cortical and regenerated bone within microfiber networks
for UV-treated scaffolds. These results indicate synergy between titanium microfiber scaffolds and
UV photofunctionalization to provide a novel and effective strategy for vertical bone augmentation.

Keywords: UV photofunctionalization; osteoblasts; osseointegration; bone augmentation; implant

1. Introduction

Titanium is an osteoconductive material routinely used in dentistry and orthopedics as
an implant material in repairs and reconstruction of teeth, joints, and bony sites [1–9]. The
integration of titanium into bone is known as osseointegration, and its strength depends on
the surface texture of the titanium [6,8,10–17]. “Rough” surfaces commonly used in modern
implant therapy are characterized by a three-dimensional (3D) micro-morphology of peaks
and valleys that improve the capability and strength of osseointegration [4–6,13,18–22].
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From the mechanical perspective, surface roughening seems to provide a thin layer of micro-
scaffolding in which de novo bone tissue juxtaposes two-dimensionally with a titanium
surface [10]. Such rough surfaces can achieve rigid bone integration without a tissue gap
or intervening soft tissue [1,2,5,12,16,23–31]. However, a major challenge to successful
implant therapy is overcoming unfavorable host conditions including insufficient width
and height of innate bone to receive an implant [32–40]. To achieve this, the execution and
outcome of vertical bone augmentation require significant improvement [32,41–51].

In addition to increasing interlocking with bone, a biological advantage of micror-
ough titanium surfaces is that they promote the differentiation of adherent osteogenic
cells [1–3,6,8,12,13,15,26,28,29,52,53]. However, this advantage is limited by decreased
proliferation as these cells differentiate [10,14,15,17,54–56]. In addition to reduced prolifer-
ation, the number of cells migrating and attaching to microrough surfaces is lower than on
relatively smooth surfaces [17,21,29]. This is probably less of an issue for the microrough
surfaces of bulk titanium devices, such as titanium implants, because there is ubiquitous
360◦ blood and cellular supply to a large implant area from the bone marrow. When a
scaffold made of titanium or other biomaterials is used to augment bone, however, the
supply of blood and cells is extremely limited and usually only from one or two directions.
It is crucial to optimize the local environment to facilitate blood and cell infiltration into
the scaffold.

We hypothesized that a scaffold made of titanium microfibers would provide a struc-
ture that enhances bone augmentation [57,58]. Microfibers can create a 3D microrough
environment, with fibers acting as peaks and pores as valleys. Indeed, 50 µm-thick titanium
fiber scaffolds coated with submicron hydroxyapatite (HA) induced bone healing of a
non-critical cranial defect in rats [59,60]. However, HA coating poses a risk of dissociation
and inducing an inflammatory and osteoclastogenic microenvironment. In addition, rel-
atively large 50 µm fibers create pore sizes >100 µm, which may be too porous to retain
10 µm-diameter cells within the fiber network. We previously developed a 20 µm titanium
fiber scaffold and restored bone continuity of segmental, critical-size mandibular defects in
rabbits [61]. However, the osteoconductivity of the scaffold was limited, with <50% bone
formation inside the scaffold despite bilateral blood and cellular supply.

Ultraviolet (UV) light treatment of titanium surfaces, referred to as UV photofunctional-
ization, enhances osteoblast behavior and function and strengthens osseointegration [62–64].
The biological effects of photofunctionalization applied to bulk titanium, experimental
specimens, or titanium implants have been extensively reported in vitro, in vivo, and
clinically [10,32–35,45,62–93]. The UV light cleans the surfaces of chemically deposited hy-
drocarbons, rendering the surfaces superhydrophilic [10,66,94–100], and UV light enhances
osteoblast attachment and spreading behavior on titanium surfaces [10,64,65,74,101–104].
UV treatment is more effective on micro-textured structures [10,64,105], further promoting
osteoblast differentiation and faster osseointegration [2,4,6]. Another notable benefit is
that UV-treated titanium surfaces suppress oral bacterial attachment and biofilm forma-
tion [106–108]. In silico simulations have demonstrated that the blood circulation can be
improved around UV-treated implants [109].

Here, we hypothesized that UV treatment of titanium microfiber scaffolds would be
effective for vertical bone augmentation, including in a model simulating the most difficult
environment of an absence of surrounding innate bone and a limited and unidirectional
blood and cellular supply. We designed a scaffold of 20 µm titanium fibers to produce a
pore size of 20–50 µm to allow cellular infiltration while maximizing retention. We aimed
to analyze fluid absorption into titanium microfiber scaffolds with or without UV treatment
along with osteoblast behavior and function, followed by in vivo assessment of integration
between innate cortical bone and regenerated bone within the scaffold in a challenging
vertical augmentation model in rats.
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2. Materials and Methods
2.1. Titanium Microfiber Scaffold Characterization, UV Photofunctionalization, and
Liquid Infiltration

Titanium microfiber scaffold (Hi-Lex Corporation, Takarazuka, Japan) with 87% poros-
ity was manufactured by molding and sintering grade 1 commercially pure titanium
microfibers (20 µm diameter). The porosity was calculated by the manufacturer based on
the volume and weight of a scaffold and the known density of titanium. Scaffolds in disk
(20 mm diameter, 1.5 mm thick) and plate (5× 3× 1.5 mm) forms were fabricated. The disk
scaffolds were used for in vitro culture experiments and surface morphology evaluation,
while the plate scaffolds were for liquid infiltration tests and in vivo surgery. The surface
morphologies of the titanium microfibers were examined by scanning electron microscopy
(SEM) (Nova 230 Nano SEM, FEI, Hillsboro, OR). The disks and larger plates were used
for in vitro studies, and the small plates were used in vivo. Before use, all scaffolds were
sterilized in an autoclave at 121 ◦C for 15 min.

Titanium microfiber scaffolds were treated with UVC light (200–280 nm wavelength)
emitted from a low-pressure mercury lamp for 20 min using a photo device (TheraBeam
Affiny, Ushio Inc, Tokyo, Japan) immediately prior to use. The UV device uses a low-
pressure mercury lamp emitting UVC rays. The distance between the light source and the
scaffold was approximately 10 mm. Experimental groups to compare were untreated and
UV-treated scaffolds.

X-ray photoelectron spectroscopy (XPS) (PHI Quantera SXM, UPVAC-PHI, Inc, Kana-
gawa, Japan) was performed to determine the atomic distribution of titanium microfibers.
Carbon, oxygen, and titanium were evaluated on scaffolds with or without UV treatment.

The wettability of scaffolds with or without UV treatment was evaluated by measuring
the contact angle of a 3 µL double-distilled H2O (ddH2O) droplet in side-view photographs.
The ability of scaffolds with or without UV treatment to soak up liquid was evaluated
using ddH2O, hypertonic solution, and blood. Liquids were placed into 35 mm petri dishes
on a flat surface, and the undersurface of the scaffold was placed on the liquid surface
and kept in contact for one minute. Then, the scaffold weight, including the liquid, was
subtracted from the original weight to measure liquid absorption into the scaffold per
scaffold volume; 70% glycerol (Wako, Japan) was used as a hypertonic liquid, and blood
was obtained from rats.

2.2. Osteoblast Cell Culture

Primary osteoblasts were cultured from rat bone marrow stromal stem cells as pre-
viously reported [55,110–113]. Femurs were excised aseptically from 8-week-old male
Sprague Dawley rats. Soft tissues and muscles were removed and washed with 1× phos-
phate buffered saline (PBS; Gibco, Carlsbad, CA, USA) several times. Both ends of the femur
bone were carefully severed, and the bone marrow was flushed out using 3 mL of osteoblas-
tic differentiating medium through a 20-gauge needle. The osteoblastic differentiating
medium contained a modified Eagle’s medium, 15% fetal bovine serum (FBS), 50 µg/mL
ascorbic acid, 10−8 M dexamethasone, 10 mM Na-β-glycerophosphate, and antibiotic–
antimycotic solution containing 10,000 units/mL penicillin G sodium, 10,000 mg/mL strep-
tomycin sulfate, and 25 mg/mL amphotericin B. The extracted cells were cultured in
100 mm dishes, and at 80% confluency, the cells were detached using 0.25% trypsin 1 mM
EDTA 4Na and passaged. After 2-time passaging, the cells were finally seeded onto Ti
microfiber scaffold disks (20 mm diameter, 1.5 mm thick) and placed in a 12-well culture
dish at a density of 3 × 104 cells/cm2 for WST-1 and ALP assays. Cells suspended in 1 mL
of culture medium per well were poured along the wall of the well. The culture medium
was renewed every 3 days. Untreated and UV-treated titanium scaffolds were compared.
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2.3. Number of Attached and Propagated Cells, Cell Attachment Assay and Osteoblast Behavior on
Titanium Microfiber Scaffolds

The number of osteoblasts present on the scaffolds was evaluated after 3 h and 24 h of
culture using a WST-1-based colorimetric assay (WST-1, Roche Applied Science, Mannheim,
Germany). WST-1 assay is based on the metabolic activity of cells and used for a wide
range of quantification that includes cell viability, attachment, and proliferation, based on
the assumption that the number of cells is correlated with the amount of their metabolic
activity [54,114–117]. Scaffolds in tissue culture wells were incubated at 37 ◦C for 1 h
with 100 µL of WST-1 reagent. The amount of formazan product was measured with a
multi-detection microplate reader (SynergyTM HT, BioTek Instruments, Inc., Winooski, VT,
USA) at a wavelength of 450 nm. Similarly, the number of propagated cells on day 2 of
culture was measured using WST-1 assay.

Osteoblasts on titanium microfibers were also observed by fluorescence microscopy
on day 2. Cells were fixed in 10% formalin and stained with the fluorescent dye rhodamine
phalloidin (actin filament, red color; Molecular Probes, Eugene, OR) and 4′,6-diamidino-2-
phenylindole (DAPI) (nuclear, blue color; Abcam, Cambridge, UK). Fixing with formalin
was proven effective, particularly for immunostaining combined with fluorescent dye in
our previous studies [52,118,119].

2.4. ALP (Alkaline Phosphatase) Activity

ALP activity on day 4 was examined. Cultures were rinsed with ddH2O and 250 mL of
p-nitrophenylphosphate was added; then, the samples were incubated at 37 ◦C for 15 min.
ALP activity was calculated as the quantity of nitrophenol measured at a wavelength of
405 nm using a microplate reader.

2.5. Real-time Quantitative Polymerase Chain Reaction (qPCR)

Gene expression was analyzed by qPCR on day 7. Total RNA was extracted from cells
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and the Direct-zol RNA MiniPrep
kit (Zymo Research, Irvine, CA, USA). Extracted RNA was reverse transcribed into first-
strand cDNA using SuperScript III Reverse Transcriptase (Invitrogen). The quantitative
PCR reaction was performed in a 20 µL volume containing 90 ng cDNA, 10 µL TaqMan
Universal Master Mix II, and 1 µL TaqMan Gene Expression Assay using the QuantStudio 3
Real-Time PCR System (Thermo Fisher Scientific, Canoga Park, CA) to quantify osteopontin
(Spp1), osteocalcin (Bglap), and Runx2 mRNA expression. Gapdh expression was used as the
endogenous control.

2.6. Animal Experiments

Male Sprague–Dawley rats, 12 weeks old, were anesthetized by inhalation of 2–3%
isoflurane. Their right legs were shaved and scrubbed with 10 % povidone–iodine. The
distal aspects of femurs were exposed via a skin incision and periosteum separation. For
the purpose of a vertical bone augmentation model, a plate form of titanium microfiber
scaffolds (5 × 3 × 1.5 mm) was fit and placed on a flat surface of the femur (approximately
7–12 mm from the knee joint), avoiding the distal epiphysis, and fixed with a Ti6Al4V screw
(1.5 mm diameter, 5 mm length) (KLS Martin, Tutllingen, Germany) with bi-cortical support
(Figure 1a). Blood and cells could only be supplied through the screw and unidirectionally.
After 2 weeks of healing, the femurs were removed. After the screw was carefully removed
from the Ti scaffold, the mechanical strength of osseointegration between bone and scaffold
was examined with a testing machine (Instron 5544 Electro-mechanical Testing System,
Instron, Canton, MA, USA) equipped with a 2000 N load cell. A 0.8 mm diameter pushing
rod was used to load the scaffold at 1 mm away from the screw vertically downward at a
crosshead speed of 1 mm/min (Figure 1b,c). The “broken” value between the bone and the
scaffold surface was determined by measuring the peak of the load-displacement curve.
Additionally, after carbon sputter-coating, the contact aspects of the bone and scaffolds were
examined by scanning electron microscopy (SEM) (XL30, Philips, Eindhoven, Netherlands),
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and the elemental composition of the scaffold and connected tissue were analyzed by
energy-dispersive x-ray spectroscopy (EDX).
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Figure 1. (a) Schema of the animal experiments simulating a vertical bone augmentation. A plate-
form scaffold was fit and placed. The scaffold (arrow) was placed on a flat surface of innate cortical
bone and fixed with a titanium screw. Note blood and cells could only gain access to the scaffold
through the screw in one direction; (b) a photograph of the retrieved femur with an integrated
titanium microfiber scaffold; (c) after the screw was removed, the mechanical strength between the
cortical bone and scaffold was measured by vertically pushing down the scaffold (at the indicated
loading point 1 mm away from the screw).

2.7. Statistical Analysis

Culture studies were performed in triplicate (n = 3) for each group (untreated vs.
UV-treated). Four animals in each group were tested in animal experiments (untreated
vs. UV-treated). Differences between untreated and UV-treated groups were compared by
one-way ANOVA after confirming the normal distribution of each group. p-values < 0.05
were considered significant.

3. Results
3.1. Morphology, Surface Chemistry, Wettability, and Fluid Absorption of Titanium
Microfiber Scaffolds

Low-magnification SEM images of the scaffolds showed even, dense networks of
titanium fibers (Figure 2a). High-magnification images showed that the titanium fibers
were of consistent ~20 µm diameter/thickness (Figure 2b). The pore size (space between
fibers) was 20–50 µm.

XPS revealed significant differences in the carbon peak between untreated and UV-
treated microfibers (Figure 3). There was a high intensity of carbon (C1s) on untreated
Ti microfiber, higher than oxygen (O1s) and titanium (Ti2p) (Figure 3a); ~30, 40, and 20%
carbon, oxygen, and titanium on untreated Ti microfibers. UV treatment decreased the
amount of carbon and increased the amount of oxygen and titanium to ~10, 50, and 30%,
respectively (Figure 3b,c).
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Figure 3. XPS analysis of titanium microfiber scaffolds. XPS spectra of untreated (a) and UV-treated
(b) scaffolds. Carbon is prominent on untreated scaffolds compared with UV-treated scaffolds;
(c) elemental composition by XPS analysis of untreated and UV-treated scaffolds. Oxygen (O1s)
and titanium (Ti2p) are increased on UV-treated scaffolds, whereas carbon (C1s) is reduced on the
UV-treated scaffolds, indicating UV treatment removed carbon on titanium microfiber surfaces.

Water droplets remained on the top of untreated scaffolds and were not absorbed into
the scaffolds (Figure 4a), while water droplets were completely absorbed into UV-treated
scaffolds (Figure 4b). The contact angle between the droplet and untreated scaffold was
approximately 120◦ compared with 0◦ on UV-treated scaffold (Figure 4c). Fluid absorption
of water, glycerol, and blood increased significantly (by 5–7 times) into titanium microfiber
scaffolds after UV treatment (Figure 5a–c).
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Figure 5. Liquid recruiting capability of the scaffold. Photographic images of blood absorption
into untreated (a) and UV-treated (b) scaffolds. Blood adhered to the undersurface of the untreated
scaffold in contact for 1 s, while the blood was absorbed halfway inside the UV-treated scaffold,
indicating that UV treatment enhanced blood recruitment; (c) amount of water, glycerol, and blood
absorbed into untreated and UV-treated scaffolds. All liquids were absorbed considerably more into
the UV-treated scaffolds.

3.2. Osteoblast Attachment and Propagation

The number of osteoblasts attaching to titanium microfiber scaffolds was measured 3
and 24 h after cell seeding. There were more cells on UV-treated microfibers than untreated
ones (Figure 6a). On day 2, the number of propagated osteoblasts was also significantly
greater on UV-treated microfibers (Figure 6b). Fluorescence microscopy on day 2 showed
that more osteoblasts were present on UV-treated titanium microfibers than on untreated
ones (Figure 6c,d).
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and/UV-treated Ti microfiber scaffolds; (a) the number of cells attached to each scaffold with or
without UV treatment at 3 and 24 h was evaluated by the WST-1 assay; (b) the number of osteoblasts
propagated on scaffolds on day. (c,d) visualization of cells on day 2 using fluorescent microscopy,
showing more cells attached to UV-treated titanium microfibers (d) than to untreated ones (c);
* p < 0.05, ** p < 0.01.

3.3. Osteoblast Differentiation

ALP activity was significantly higher in osteoblasts grown on UV-treated microfibers
than untreated microfibers (Figure 7a). Osteocalcin gene expression was significantly
greater in osteoblasts on UV-treated Ti than untreated Ti (Figure 7c), although there were
no significant differences in osteopontin and Runx2 expression (Figure 7b,d).
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Figure 7. Osteoblastic differentiation evaluated by ALP activity and gene expression analysis by
qPCR. ALP activity of osteoblasts in the UV-treated scaffold was significantly greater than that in the
untreated scaffold (a). There was no difference in gene expression of osteopontin and Runx2 between
the two groups (b,d), while expression of osteocalcin in the UV-treated scaffold was significantly
greater than that in the untreated scaffold (c). ** p < 0.01.
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3.4. Mechanical Strength of Osseointegrated Scaffold and Interfacial Tissue Morphology

Load-displacement curves from shear testing at week 2 of healing (Figure 8a,b) re-
vealed that the mean strength of the microfiber scaffold–bone interface for UV-treated
microfibers was approximately twice that of untreated ones (Figure 8c).
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Figure 8. Biomechanical strength of the connection between scaffold and bone in a vertical bone
augmentation model. Representative load-displacement curves are shown (a,b). The average loading
force to break the titanium microfiber scaffold from the surface of cortical bone was approximately
4 N for untreated scaffold and 8 N for UV-treated scaffold (c); * p < 0.05.

Regarding the result, let us hypothesize that the scaffold-to-bone interfacial strength
was enhanced because of the de novo bone ingrowth into the scaffold integrating the
innate cortical bone surface and scaffold. Therefore, the interfacial tissue morphology and
chemistry between the innate femoral cortical bone and microfiber scaffolds were observed
by SEM and EDX, respectively (see representative images, Figure 9). SEM images showed
that most of the individual microfibers in the untreated group were identifiable and were
not covered with de novo tissue (Figure 9a). Biological tissues seamlessly occupied the
spaces between microfibers in the UV-treated group, with pre-existing pores extensively
filled (Figure 9b). We also noted the presence or absence of a gap between the innate
cortical bone and scaffolds: there was a clear, large gap along the entire untreated scaffold
interface, whereas the gap was narrower and almost absent at the UV-treated scaffold
interface (Figure 9a,b).

EDX mapping for elemental Ti showed that titanium microfibers were more masked
in the UV-treated group than the untreated group (Figure 9c,d). Magnified SEM images
confirmed the presence of large gaps between the untreated scaffold and innate bone
(Figure 9e), whereas new bone infiltrated the microfiber network in the UV-treated group
(Figure 9f).
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Figure 9. Morphological and chemical analysis of the titanium microfiber scaffold and cortical bone
interface after a 2-week healing in a vertical bone augmentation model. A clear gap is visible between
the bone and untreated scaffold (a), while the gap between the bone and the UV treated scaffold
is unclear (b). EDX of Ti showed a relatively clear border between the bone and titanium fibers (c)
compared with the UV-treated scaffold (d), in which titanium fibers apparently infiltrate into the
bone. The bone tissue is sparsely formed on the untreated Ti microfibers with no connection to the
bone (e), while UV-treated Ti microfibers apparently connect to the bone tissue (f).
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4. Discussion

Here, we report that UV treatment enhances osteoblast behavior and osteoconductivity
of titanium microfibers and their scaffolds in a vertical augmentation model with very
limited blood and cellular supply from around a screw. Titanium surfaces lose osteocon-
ductivity over time due to the progressive accumulation of hydrocarbons on their surfaces,
which is also known as “biological aging” of titanium [62,94,97,98,116]. This accumulation
of hydrocarbons can be cleaned by UV treatment [10,82,96,120–122]. Here we confirm
that UV light can also decarbonize a 3D network of titanium microfibers and rejuvenate
superhydrophilicity of the microfibers. Even a highly hypertonic liquid infiltrated into
UV-treated, superhydrophilic scaffolds, while untreated, hydrophobic Ti microfiber scaf-
folds repelled the liquids and prevented absorption. Culture medium easily infiltrated into
UV-treated scaffolds, permitting osteoblasts to be attracted and attach to the microfibers.
Osteoblasts attach on flat titanium surfaces within 24 h [13,101,102,123], where they spread,
proliferate, and develop a mature cytoskeleton. This study demonstrated that osteoblasts
can settle and proliferate even on the thin, 20 mm microfibers with an aid of UV treatment.
Given that osteoblasts commonly spread as wide as 50-100 mm on culture dishes or bioma-
terials, the successful and rapid attachment of osteoblasts with robust osteogenic function
on 20 mm fibers is highly significant. It was even more notable that cells were detected
on the scaffolds even 3 h after seeding. Our previous studies demonstrated a 3 h culture
was sufficient for the attachment and initiation of the spread of osteoblasts on UV-treated
titanium disks and was validated as an effective time point to show a contrast between
untreated and UV-treated groups [74,76,78,101]. Based on the experience, we attempted a
challenging time point of 3 h in addition to 24 h. Considering the WST-1 values on day 2
ranging from 0.05 to 0.09 (Figure 6b) which was accompanied with the clear visualization of
cells by fluorescent microscope, we believe that WST-1 values ranging from 0.01 to 0.04 at 3
and 24 h are valid to indicate the presence of cells on the scaffolds. UV treatment converts
the electrostatic Ti surface from a negative to a positive charge and probably promotes
helping to recruit and retain cells [70,74].

It has been suggested that rapid osteoblast attachment accelerates the development of
their activity and mineralization [87,121]. We found that the ALP activity of osteoblasts in
UV-treated scaffolds was double that of cells in untreated scaffolds. Furthermore, the ex-
pression of osteocalcin—a late-stage differentiation marker associated with cell cycle arrest
in osteoblasts [124,125]— was significantly higher in cells in UV-treated scaffolds. Because
there is an inverted relationship between osteoblastic differentiation and proliferation, the
more proliferation, the slower the differentiation [17]. Generally, osteoblasts tend to start
functioning when they stop proliferating, although both proliferation and mineralization
need to be balanced for effective bone engineering. Indeed, Hirota et al. [126] reported that
hydroxyapatite (HA)-coated thin Ti fibers accelerated osteoblast differentiation, whereas
osteoblasts attached to untreated thin Ti fibers proliferated more. This study consistently
showed that UV treatment increased the number of osteoblasts on the scaffolds, and there-
fore, we postulate that osteoblasts grew more rapidly to form colonies and clusters on
UV-treated scaffolds, increasing the cell-to-cell interaction, and as a secondary consequence,
resulted in accelerated differentiation. Potential effects of increased cell-to-cell interaction
on UV-treated microfibers on the osteoblastic differentiation is of interest in future studies.

The expression of osteocalcin and Runx2 was not modulated by UV treatment. Os-
teopontin, a mid-stage marker of osteogenic differentiation, shows a two-phasic pattern
of expression with an early and late upregulation and a dip in between. This study ex-
amined the gene expression at only the time point of day 7, and a further study with an
analysis at multiple time points is necessary. Runx2 is an essential transcription factor
for osteoblastic differentiation. Runx2 promotes the early differentiation from mesenchy-
mal stem cells to osteogenic progenitor cells, and the continuous expression of Runx2
maintains the osteogenic progenitor cells in their immature stage [127–129]. Afterward,
along with the downregulation of Runx2, osteoblasts differentiate to more mature stages,
and Runx2 is no longer necessary [129]. As shown in the robust osteocalcin expression,



Cells 2023, 12, 19 12 of 18

osteoblasts examined in the present study were assumed to be in the mature stage, when
the role of Runx2 was nearly complete, resulting in the un-modulated expression by UV
treatment. Again, a study to examine an earlier stage gene expression will provide us
with more information. Given that osteoblasts are not expected to proliferate effectively
on thin microfibers due to the limited surface area, the number of initially attaching cells
may determine the quantity and quality of final matrix mineralization. In this context,
the carbon-free, superhydrophilic status of the scaffold obtained by the UV treatment that
recruited more cells was a significant advantage.

Surface topography of titanium also influences osteoblast function. For example,
micro-scale roughness produced by acid etching accelerates osteoblast differentiation and
mineralization compared to relatively smoother titanium surfaces, such as a machine-
milled surface [12,17]. In addition, the hardness and stiffness of mineralized tissue formed
on micro-roughened titanium surfaces are increased compared to those on machined sur-
faces [8,12,17]. Therefore, we considered roughening microfiber surfaces in the present
study. However, acid etching of titanium fibers was expected to reduce the fiber diame-
ter, which significantly reduces the surface area available for osteoblasts to inhabit. We
also found that subtractive roughening, such as acid-etching, on 20 mm thin titanium
microfibers was technically near impossible. Therefore, we used the microfiber scaffolds as
made without surface roughening as shown in the SEM images (Figure 2b). The present
study demonstrated that osteoblasts were well differentiated even on the smooth-surfaced
microfiber scaffolds, as shown in the osteocalcin expression, with an aid of UV treatment.
More importantly, as we mentioned in the Introduction, 3D architecture made of fibers
and pores may have served a micro-rough configuration mimicking the acid-etch-created
microrough surface.

The osseointegration of the UV-treated scaffold was significantly greater than that
of the untreated scaffold. A clear gap was observed between untreated scaffold and
bone tissue, and the mechanical strength of the connection between the bone and the
untreated scaffold (~4 Ncm) was less than half of that of the UV-treated scaffold (~10 Ncm),
indicating that the untreated scaffold rarely connected to the bone, but there was new
bone formation in the UV-treated scaffold due to osseo-infiltration. In the present model,
osteoblast recruitment may have been hampered (1) because the scaffold may not be
rigidly immobilized due to a single screw used to fix the scaffold, and (2) blood and cells
supply was unidirectional and could only gain access to the scaffold from around the screw
(Figure 1a). Even under this challenging condition, the bone tissue infiltrated into the
UV-treated scaffold, suggesting a synergy effect between the titanium microfiber scaffold
and the UV photofunctionalization on vertical bone augmentation.

Regarding the experimental design, we considered including a well without a titanium
scaffold as a control. However, the scaffold disk (20 mm in diameter) used in this study
was smaller than a well (22 mm in diameter) of 12-well culture plates, which makes the
comparison difficult. More importantly, in our preliminary study, remarkably fewer cells
attached to the scaffold than to a culture dish. When the assay protocols, such as WST-1
and ALP detection, were optimized to the culture dish control, the experimental groups
of untreated and UV-treated scaffolds remained below the detection limit. Therefore,
considering the sensitivity and validity of the method, we focused on the comparison
between the untreated and UV-treated scaffolds.

Osteoconductivity has been shown to be improved by surface curvature [55,56,130],
and laser-treated gyroid Ti scaffolds enhance osteoconduction [131], which may be an ad-
vantage of using the fibered titanium instead of flat titanium. Pore size or porosity are likely
to affect bone formation in the scaffold [132,133]. The present scaffold had 87% porosity,
which produced favorable osteoblastic behavior [134]. Further in vivo investigations of
bone ingrowth into UV-treated thin microfiber scaffolds, including histological assessment,
are needed to explore optimal microfiber scaffold configurations and applications. Clinical
application of bone engineering remains in its infancy. Based on the present results, future
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studies on the application of UV-treated titanium microfiber scaffolds which have more
complicated 3D structures will be planned.

5. Conclusions

UV treatment of Ti microfiber scaffolds enhanced osteoblast recruitment and attach-
ment, which allowed osteoblasts to proliferate and express genes related to bone formation
within the scaffold. UV-treated microfiber scaffolds promoted ALP activity and rapid osteo-
calcin expression compared with untreated scaffolds. In a vertical augmentation model in
rats, osteoconductivity was enhanced by UV treatment, and the biomechanical strength of
integration between the innate cortical bone and regenerated bone inside the scaffold was
twice that of bone forming in untreated scaffolds. This study established proof-of-concept
of the synergy between titanium microfiber scaffolds and UV photofunctionalization to
vertically augment bone, and further studies are now warranted to optimize the scaffold
and UV treatment conditions for better outcomes.
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