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Abstract: Altered mitochondrial quality and function in muscle may be involved in age-related
physical function decline. The role played by the autophagy–lysosome system, a major component of
mitochondrial quality control (MQC), is incompletely understood. This study was undertaken to
obtain initial indications on the relationship between autophagy, mitophagy, and lysosomal markers
in muscle and measures of physical performance and lower extremity tissue composition in young
and older adults. Twenty-three participants were enrolled, nine young (mean age: 24.3 ± 4.3 years)
and 14 older adults (mean age: 77.9 ± 6.3 years). Lower extremity tissue composition was quantified
volumetrically by magnetic resonance imaging and a tissue composition index was calculated as the
ratio between muscle and intermuscular adipose tissue volume. Physical performance in older partici-
pants was assessed via the Short Physical Performance Battery (SPPB). Protein levels of the autophagy
marker p62, the mitophagy mediator BCL2/adenovirus E1B 19 kDa protein-interacting protein
3 (BNIP3), the lysosomal markers transcription factor EB, vacuolar-type ATPase, and lysosomal-
associated membrane protein 1 were measured by Western immunoblotting in vastus lateralis muscle
biopsies. Older adults had smaller muscle volume and lower tissue composition index than young
participants. The protein content of p62 and BNIP3 was higher in older adults. A negative correlation
was detected between p62 and BNIP3 and the tissue composition index. p62 and BNIP3 were also
related to the performance on the 5-time sit-to-stand test of the SPPB. Our results suggest that an
altered expression of markers of the autophagy/mitophagy–lysosomal system is related to deteriora-
tion of lower extremity tissue composition and muscle dysfunction. Additional studies are needed to
clarify the role of defective MQC in human muscle aging and identify novel biological targets for
drug development.

Keywords: aging; functional decline; intermuscular adipose tissue (IMAT); lysosomes; mitochondrial
dysfunction; mitochondrion; muscle aging; physical performance; sarcopenia; Short Physical
Performance Battery (SPPB)

1. Introduction

The maintenance of physical independence in late life is a public health priority and
a key objective of major research agencies [1]. The physical function of an individual
plays a critical role in maintaining independence. Measures of physical performance
(e.g., walking speed, chair-stand tests) can predict the incidence of mobility disability
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and all-cause mortality, and can therefore be considered metrics of healthy aging [2–7].
Studies have shown that exercise training conveys multiple beneficial effects in older age,
including preservation of mitochondrial mass, dynamics (mitochondrial fusion and fission),
autophagy, and bioenergetics in muscle [8,9]. However, no drug is currently available
to prevent or reverse the loss of physical function in advanced age, mainly because of
insufficient understanding of its underlying mechanisms.

Of the various biological pathways possibly involved in the pathogenesis of age-
related physical function decline, there is increasing evidence that alterations in mitochon-
drial quality and function in skeletal muscle [10–14], along with structural and functional
muscle remodeling [15], may play a central role. A link between muscle iron handling,
mitochondrial dysfunction, and systemic inflammation has recently been described in older
adults [16]. In a later study, labile iron content was found to be increased in muscle of older
adults with low physical performance, which was associated with altered expression of
mitochondrial quality control (MQC) markers and greater mitochondrial DNA damage [17].
These findings suggest that loss of MQC efficiency may contribute to muscle dysfunction
in advanced age.

The autophagy–lysosome system is a pivotal component of MQC. Through this sys-
tem, proteins and organelles are tagged for disposal, engulfed into an autophagosome, and
ultimately delivered to the lysosome for degradation [18]. Preclinical studies have shown
that suppression of the autophagy–lysosome system leads to muscle atrophy, neuromuscu-
lar junction dysfunction, and muscle weakness [19–23]. Furthermore, the accumulation of
nondegradable lysosomal content in the form of lipofuscin has been described in muscles
of old mice and humans [24–26], which might be linked to lysosomal dysfunction and
impairment of cellular quality control systems. In line with these findings, alterations in
autophagy and mitophagy signaling were found to be associated with muscle atrophy and
loss of physical function in older adults [14,21,27,28].

To better characterize the association between derangements in MQC and functional
decline in advanced age, in the present study, we explored whether the expression of
proteins pertaining to autophagy, mitophagy, and lysosomal pathways were altered as a
function of age in both men and women. We also explored whether these alterations were
linked to measures of lower extremity tissue composition and physical performance.

2. Materials and Methods
2.1. Participants

This study made use of muscle samples and data collected as part of a Developmental
Project of the University of Florida Claude D. Pepper Older Americans Independence Cen-
ter [13,29,30]. As previously reported, study participants were young (18 to 35 years) and old
(70 years and older), physically inactive community-dwelling men and women [13,29,30].
The project protocol was approved by the University of Florida’s Institutional Review Board
(IRB201300790), and all participants provided written informed consent prior to enrollment.

Eligibility criteria were chosen to minimize the confounding effect of comorbid condi-
tions, medications, and lifestyle habits on biochemical measures and their relationship with
physical performance [16,31]. Individuals were also excluded if they had contraindications
to magnetic resonance imaging (MRI) acquisition.

2.2. Measurement of Lower Extremity Tissue Composition by Magnetic Resonance Imaging

Thigh and calf muscle and intermuscular adipose tissue (IMAT) of the dominant
side were quantified volumetrically by T1-weighted 3-dimensional MRI [29,30]. Images
were acquired on a 3.0-tesla magnet (Philips Medical Systems, Bothell, WA, USA) and
were analyzed using the freely-available software MIPAV 1.3 (Medical Image Processing,
Analysis and Visualization; Center for Information Technology, National Institutes of
Health, Bethesda, MD, USA; http://mipav.cit.nih.gov, accessed on 10 October 2011), as
previously described [29,30]. A lower extremity tissue composition index was subsequently
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calculated as the ratio between muscle volume and IMAT volume and used as an indicator
of fatty infiltration in muscle [32].

2.3. Measurement of Physical Performance

Physical performance was assessed in old participants through the Short Physical
Performance Battery (SPPB) [33]. The SPPB includes three tests: standing balance, gait
speed at usual pace over a short track (e.g., 4 m), and the 5-time sit-to-stand test. Each
of the three SPPB subtasks was scored from 0 (inability to do the test) to 4 (maximum
performance), and the total score ranged from 0 to 12. The 4 m gait speed and the time
needed to complete the 5-time sit-to-stand test were also recorded.

2.4. Collection of Muscle Biopsies

Muscle biopsies were obtained from the vastus lateralis of the dominant side by
percutaneous needle biopsy under local anesthesia, as previously described [30]. Upon
collection, muscle specimens were cleaned of any visible blood and fat, snap-frozen in
liquid nitrogen, and stored at −80 ◦C until analysis.

2.5. Muscle Tissue Processing and Western Immunoblotting

Muscle samples were processed as described elsewhere [34]. Briefly, 15−20 mg of mus-
cle tissue were pulverized under liquid nitrogen. Whole tissue extracts were obtained by
dissolving the powder in 10× w/v Sakamoto buffer (20 mM HEPES, 2 mM ethylene glycol
tetraacetic acid, 1% Triton X–100, 50% glycerol, 50 mM ß-glycerophosphate) supplemented
with phosphatase (Sigma–Aldrich, St. Louis, MO, USA) and protease inhibitors (Roche,
Mississauga, ON, Canada). Samples were rotated end-over-end for 1 h at 4 ◦C, sonicated
on ice (3 s × 3 times), and centrifuged at 14,000× g for 15 min at 4 ◦C. The supernatant was
collected and stored at −80 ◦C until analysis.

Protein concentration was determined using the Bradford method. Twenty–30 µg
of total protein were separated via sodium dodecyl sulphate—polyacrylamide gel elec-
trophoresis and transferred onto nitrocellulose membranes (Bio–Rad). Membranes were
blocked at room temperature for 1 h in blocking solution (0.12% Tris–HCl, 0.585% NaCl,
0.1% Tween 20, 5% w/v skim milk, pH 7.5) and subsequently incubated overnight with
primary antibodies at 4 ◦C (Table 1). The following day, membranes were washed in
wash buffer (0.12% Tris–HCl, 0.585% NaCl, 0.1% Tween 20, pH 7.5) and incubated for 1 h
at room temperature with the appropriate horseradish peroxidase-conjugated secondary
antibody. Finally, the Clarity Western ECL Substrate solution (Bio–Rad) was applied and
the chemiluminescent signal was captured with an Image Station 4000 MM Pro (Care-
stream, Concord, ON, Canada). Spot density of target bands were quantified by the ImageJ
software (National Institutes of Health, Bethesda, MD, USA) and normalized to the density
of glyceraldehyde-3-phosphate dehydrogenase (GAPDH, loading control).

Table 1. Primary Antibodies used for Western Immunoblotting.

Antibody (Manufacturer) Catalogue No. Dilution

BNIP3 (gift) N/A 1:500
GAPDH (Abcam) Ab8254 1:50,000
LAMP1 (Abcam) Ab24170 1:500

p62 (Abcam) Ab56416 1:1000
TFEB (Bethyl) A303-673A 1:750

vATPase B1/2 (Santa Cruz) Sc-55544 1:1000
Abbreviations: BNIP3, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase; LAMP1, lysosomal-associated membrane protein 1; TFEB, transcription factor EB;
vATPase, vacuolar-type ATPase.

2.6. Statistical Analysis

The normal distribution of data was verified via the Kolmogorov–Smirnov test. Com-
parisons between age groups for continuous variables were performed by Student’s t tests
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or Mann–Whitney U tests, as appropriate. Differences in the distribution of categorical
variables between groups were assessed via χ2 statistics. Relationships between variables
were explored by Spearman’s tests. All tests were two-sided, with statistical significance set
at p < 0.05. All analyses were performed using the GraphPrism 5.03 software (GraphPad
Software, Inc., San Diego, CA, USA).

3. Results
3.1. Characteristics of Study Participants

Twenty-three participants were included, nine young (four men and five women;
mean age: 24.3 ± 4.3 years) and 14 older adults (eight men and six women; mean age:
77.9 ± 6.3 years). The main characteristics of study participants according to age groups are
listed in Table 2. The two groups did not differ for sex distribution, body mass index values,
or number of medications. The number of diseases was higher in the old participant group.
In addition, old participants had significantly smaller lower extremity muscle volume,
greater IMAT volume, and lower tissue composition index than their younger counterparts.

Table 2. Characteristics of Study Participants According to Age Groups.

Characteristic Young Participants
(n = 9)

Old Participants
(n = 14) p Value

Age (years), mean ± SD 24.3 ± 4.3 77.9 ± 6.3 <0.0001
Sex (female), n (%) 5 (55.5) 6 (43.0) 0.5518

BMI (kg/m2), mean ± SD 25.5 ± 4.4 27.1 ± 3.3 0.3289
Lower extremity muscle volume (cm3), mean ± SD 366.3 ± 74.8 276.2 ± 61.9 0.0058
Lower extremity IMAT volume (cm3), mean ± SD 61.8 ± 13.8 90.0 ± 25.9 0.0069

Lower extremity tissue composition index, mean ± SD 5.9 ± 0.9 3.4 ± 1.2 <0.0001
Number of diseases *, mean ± SD 0.7 ± 0.5 1.9 ± 1.0 0.0041

Number of medications #, mean ± SD 2.7 ± 2.4 3.5 ± 2.9 0.4615
SPPB summary score, mean ± SD — 10.2 ± 2.4 —
4 m gait speed (m/s), mean ± SD — 1.00 ± 0.19 —

5-time sit-to-stand test (s), mean ± SD — 12.5 ± 3.7 —

Abbreviations: BMI, body mass index; IMAT, intermuscular adipose tissue; SD, standard deviation; SPPB,
Short Physical Performance Battery. * includes hypertension, coronary artery disease, prior stroke, peripheral
vascular disease, diabetes, chronic obstructive pulmonary disease, and osteoarthritis. # includes prescription and
over-the-counter medications, supplements, and pro re nata drugs.

3.2. Measurement of Autophagy, Mitophagy, and Lysosomal Markers in Muscle Biopsies

Protein expression levels of the general autophagy marker p62, the mitophagy medi-
ator BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), the lysosomal
markers transcription factor EB (TFEB), vacuolar-type ATPase (vATPase), and lysosomal-
associated membrane protein 1 (LAMP1) were measured in muscle samples of young and
old participants.

The protein content of p62 and BNIP3 was significantly higher in older than in young
adults (Figure 1).

None of the assayed lysosomal markers showed statistically significant differences
between young and old participants (Figure 2).
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Figure 1. Protein content of p62 and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 
(BNIP3) in muscle of young and old participants. Differences between age groups were analyzed 
by Mann–Whitney U statistics. Values are expressed as optical density (OD) and are reported in 
arbitrary units. Box plots represent median values (interquartile ranges). Representative blots are 
shown. Abbreviation: GAPDH, glyceraldehyde-3-phosphate dehydrogenase. * p < 0.05. young 
group (n = 7 for p62, n = 8 for BNIP3), old group (n = 14). 
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between young and old participants (Figure 2). 

 
Figure 2. Protein content of lysosomal markers in muscle of young and old participants. Differences 
between age groups were analyzed by Mann–Whitney U statistics. Values are expressed as optical 
density (OD) and are reported in arbitrary units. Box plots represent median values (interquartile 
ranges). Representative blots are shown. Abbreviations: GAPDH, glyceraldehyde-3-phosphate 
dehydrogenase; LAMP1, lysosomal-associated membrane protein 1; TFEB, transcription factor EB; 
vATPase, vacuolar-type ATPase. young group (n = 7), old group (n = 14). 

3.3. Relationship Between Autophagy, Mitophagy, and Lysosomal Markers and Measures of 
Lower Extremity Tissue Composition and Physical Performance 

Results of correlation analyses between autophagy, mitophagy and lysosomal 
markers and the lower extremity tissue composition index are shown in Figure 3. A 
statistically significant negative correlation was detected between both p62 (r = −0.4481; p 
= 0.0475) and BNIP3 (r = −0.5731; p = 0.0053) and the lower extremity tissue composition 
index. LAMP1 protein levels were negatively correlated with muscle volume (r = −0.4651; 
p = 0.0336) (Figure S1), while those of BNIP3 (r = 0.6454; p = 0.0012) and vATPase (r = 
−0.4857; p = 0.0256) were positively and negatively related with IMAT volume, respec-
tively (Figure S2).  

Figure 1. Protein content of p62 and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3
(BNIP3) in muscle of young and old participants. Differences between age groups were analyzed
by Mann–Whitney U statistics. Values are expressed as optical density (OD) and are reported in
arbitrary units. Box plots represent median values (interquartile ranges). Representative blots are
shown. Abbreviation: GAPDH, glyceraldehyde-3-phosphate dehydrogenase. * p < 0.05. young group
(n = 7 for p62, n = 8 for BNIP3), old group (n = 14).
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Figure 2. Protein content of lysosomal markers in muscle of young and old participants. Differences
between age groups were analyzed by Mann–Whitney U statistics. Values are expressed as optical
density (OD) and are reported in arbitrary units. Box plots represent median values (interquartile
ranges). Representative blots are shown. Abbreviations: GAPDH, glyceraldehyde-3-phosphate
dehydrogenase; LAMP1, lysosomal-associated membrane protein 1; TFEB, transcription factor EB;
vATPase, vacuolar-type ATPase. young group (n = 7), old group (n = 14).

3.3. Relationship between Autophagy, Mitophagy, and Lysosomal Markers and Measures of Lower
Extremity Tissue Composition and Physical Performance

Results of correlation analyses between autophagy, mitophagy and lysosomal mark-
ers and the lower extremity tissue composition index are shown in Figure 3. A sta-
tistically significant negative correlation was detected between both p62 (r = −0.4481;
p = 0.0475) and BNIP3 (r = −0.5731; p = 0.0053) and the lower extremity tissue com-
position index. LAMP1 protein levels were negatively correlated with muscle volume
(r = −0.4651; p = 0.0336) (Figure S1), while those of BNIP3 (r = 0.6454; p = 0.0012) and vAT-
Pase (r = −0.4857; p = 0.0256) were positively and negatively related with IMAT volume,
respectively (Figure S2).
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Figure 3. Correlation analyses between autophagy, mitophagy, and lysosomal markers and the
lower extremity tissue composition index. Correlations were explored via Spearman’s statistics. The
content of protein markers is expressed as optical density (OD) and is reported in arbitrary units.
The lower extremity tissue composition index was calculated as the ratio between lower extremity
muscle volume and intermuscular adipose tissue volume. Abbreviations: BNIP3, BCL2/adenovirus
E1B 19 kDa protein-interacting protein 3; LAMP1, lysosomal-associated membrane protein 1; TFEB,
transcription factor EB; vATPase, vacuolar-type ATPase.

Because most participants scored 11 or 12 on the SPPB, correlation analyses were run
using actual values of 4 m gait speed and time to complete the 5-time sit-to-stand test. None
of the assayed markers showed significant correlation with the 4 m gait speed (Figure 4).
The content of p62 and BNIP3 were positively correlated with the time needed to complete
the 5-time sit-to-stand test (Figure 5).
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Figure 4. Correlation analyses between autophagy, mitophagy, and lysosomal markers and 4 m
gait speed. Correlations were explored via Spearman’s statistics. The content of protein markers
is expressed as optical density (OD) and is reported in arbitrary units. Abbreviations: BNIP3,
BCL2/adenovirus E1B 19 kDa protein-interacting protein 3; LAMP1, lysosomal-associated membrane
protein 1; TFEB, transcription factor EB; vATPase, vacuolar-type ATPase.



Cells 2023, 12, 183 7 of 12

Cells 2023, 12, x FOR PEER REVIEW 7 of 13 
 

 

BCL2/adenovirus E1B 19 kDa protein-interacting protein 3; LAMP1, lysosomal-associated 
membrane protein 1; TFEB, transcription factor EB; vATPase, vacuolar-type ATPase. 

 
Figure 5. Correlation analyses between autophagy, mitophagy, and lysosomal markers and the 5-
time sit-to-stand test completion time. Correlations were explored via Spearman’s statistics. The 
content of protein markers is expressed as optical density (OD) and is reported in arbitrary units. 
Abbreviations: BNIP3, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3; LAMP1, 
lysosomal-associated membrane protein 1; TFEB, transcription factor EB; vATPase, vacuolar-type 
ATPase. 

4. Discussion 
In recent years, the biological pathways underpinning age-associated muscle and 

functional decline have been actively investigated in both preclinical models and humans. 
MQC consists of coordinated processes including mitochondrial dynamics, mitochondrial 
biogenesis, and mitophagy [35]. Notably, mitochondrial dysfunction and mitophagy 
alterations are acknowledged as hallmarks of aging [36]. Furthermore, inefficient disposal 
of dysfunctional mitochondria may trigger pro-inflammatory pathways, thereby 
contributing to inflamm-aging and further amplifying mitochondrial deficiency [37–42]. 
Previous studies have provided initial evidence of the possible involvement of 
dysfunctional MQC in age-related muscle atrophy and loss of physical performance 
[13,14,43]. Lower protein expression levels of mitochondrial sirtuin 3, peroxisome 
proliferator-activated receptor-γ coactivator-1α, and the mitochondrial fusion protein 
optic atrophy 1 were found in skeletal muscle of physically inactive older adults relative 
to young controls [13]. Furthermore, reduced levels of the autophagy mediator 
microtubule-associated protein 1 light chain 3B were observed in skeletal muscle of older 
adults with sarcopenia compared with non-sarcopenic peers [27]. 

In the present investigation, we found that the expression of the autophagy protein 
p62 and the mitophagy-targeting protein BNIP3 was higher in older adults than in young 
controls (Figure 1). These findings suggest that mitophagy might be upregulated in the 
aged muscle, possibly as a compensatory response to cope with increased levels of 
mitochondrial dysfunction. This view is consistent with previous observations in old 
rodents showing higher basal mitophagy flux in skeletal muscle [24,44]. Our correlation 
analysis revealing a negative association between protein expression levels of p62 and 
BNIP3 and the lower extremity tissue composition index supports the hypothesis of a 
compensatory upregulation of mitophagy in the setting of deterioration of tissue 
composition (Figure 3). 

Figure 5. Correlation analyses between autophagy, mitophagy, and lysosomal markers and the 5-time
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BNIP3, BCL2/adenovirus E1B 19 kDa protein-interacting protein 3; LAMP1, lysosomal-associated
membrane protein 1; TFEB, transcription factor EB; vATPase, vacuolar-type ATPase.

4. Discussion

In recent years, the biological pathways underpinning age-associated muscle and
functional decline have been actively investigated in both preclinical models and humans.
MQC consists of coordinated processes including mitochondrial dynamics, mitochondrial
biogenesis, and mitophagy [35]. Notably, mitochondrial dysfunction and mitophagy
alterations are acknowledged as hallmarks of aging [36]. Furthermore, inefficient disposal of
dysfunctional mitochondria may trigger pro-inflammatory pathways, thereby contributing
to inflamm-aging and further amplifying mitochondrial deficiency [37–42]. Previous
studies have provided initial evidence of the possible involvement of dysfunctional MQC
in age-related muscle atrophy and loss of physical performance [13,14,43]. Lower protein
expression levels of mitochondrial sirtuin 3, peroxisome proliferator-activated receptor-γ
coactivator-1α, and the mitochondrial fusion protein optic atrophy 1 were found in skeletal
muscle of physically inactive older adults relative to young controls [13]. Furthermore,
reduced levels of the autophagy mediator microtubule-associated protein 1 light chain
3B were observed in skeletal muscle of older adults with sarcopenia compared with non-
sarcopenic peers [27].

In the present investigation, we found that the expression of the autophagy protein
p62 and the mitophagy-targeting protein BNIP3 was higher in older adults than in young
controls (Figure 1). These findings suggest that mitophagy might be upregulated in the aged
muscle, possibly as a compensatory response to cope with increased levels of mitochondrial
dysfunction. This view is consistent with previous observations in old rodents showing
higher basal mitophagy flux in skeletal muscle [24,44]. Our correlation analysis revealing a
negative association between protein expression levels of p62 and BNIP3 and the lower
extremity tissue composition index supports the hypothesis of a compensatory upregulation
of mitophagy in the setting of deterioration of tissue composition (Figure 3).

The activity of the mitophagy–lysosome system is regulated, among other factors,
by mitochondrial bioenergetics [24,34,44,45]. A decline in mitochondrial oxidative capac-
ity can trigger TFEB expression and lead to upregulation of autophagic and lysosomal
proteins [24,34,44,45]. This signaling pathway enables degradation of dysfunctional or-
ganelles through the autophagy–lysosomal system to maintain tissue homeostasis. In
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contrast to what has been observed in preclinical models [24,44], in our study, the protein
content of the lysosomal mediators TFEB, vATPase, and LAMP1 was not different between
age groups (Figure 2). This result, in conjunction with the increased expression of p62
and BNIP3 in old participants (Figure 1), suggests that MQC might be impaired in muscle
with age.

If MQC works properly, mitochondrial tagging and autophagosome formation are
followed by mitochondrial clearance through the lysosomal system. The loss of coordina-
tion along this pathway results in mitophagy “clogging” and accumulation of intracellular
waste [46]. Therefore, upregulation of upstream autophagy and mitophagy proteins in
muscle of older adults not accompanied by increased expression of lysosomal markers may
indicate greater autophagic signaling with no actual disposal of damaged mitochondria.
This view is consistent with the identification of undigested lysosomal content in the form
of lipofuscin granules in muscles of old rodents and humans [25,26]. It is noteworthy
that lipofuscin-loaded cells often contain a high number of dysfunctional mitochondria
with low membrane potential [47]. The accumulation of undegraded cellular waste and
damaged mitochondria eventually impacts tissue homeostasis, resulting in the appearance
of aging phenotypes, including muscle decay [47].

The negative correlation identified between protein levels of p62 and BNIP3 and
the lower extremity tissue composition index (Figure 3) supports the idea of inefficient
autophagy/mitophagy as a possible factor in muscle aging. In this regard, it should be
noted that the extent of fat infiltration into muscle (myosteatosis) is proposed to be a more
relevant indicator of age-related muscle dysfunction than the degree of muscle atrophy [48].
The hypothesis of MQC impairment as a possible mechanism in muscle dysfunction is
further supported by the association found between greater protein expression of p62 and
BNIP3 and worse performance on the 5-time sit-to-stand test (Figure 5). The latter is a
well-known and easy-to-implement test to assess lower extremity muscle strength and
power [49,50].

Although reporting novel findings, our study has limitations that deserve discussion.
First, the cross-sectional design does not allow inferring on the time course of changes
in the expression of autophagy, mitophagy, and lysosomal markers and those in lower
extremity tissue composition or physical performance. Likewise, causality between those
phenomena cannot be established. Second, available muscle specimens were frozen which
did not allow mitochondrial functional assessments, measurement of mitophagy flux, or
mitochondrial imaging to be conducted. Third, being the study a corollary of a two previous
investigations [13,30], the limited amount of residual muscle tissue imposed assigning
a certain level of priority among the autophagy, mitophagy, and lysosomal markers to
be assayed. For the same reason, no markers of mitochondrial dynamics or biogenesis
were measured, which prevented from obtaining a more comprehensive appraisal of MQC.
Fourth, the sample size was small and included multiple comparisons. Therefore, some
of the statistically significant findings may have been due to chance, while comparisons
that did not reach statistical significance may have lacked statistical power. Fifth, although
all participants were physically inactive, no objective measure of physical activity was
obtained. Therefore, no information is available on the possible effects of varying levels
of physical activity on the expression of autophagy, mitophagy, and lysosomal markers or
indices of muscle quantity and lower extremity tissue composition. Finally, the content of
GAPDH has been found to decrease in muscle with aging and its use as a loading control
in Western immunoblotting experiments involving comparisons between young and older
adults has been questioned [51]. However, in our study, protein levels of GAPDH did not
differ between young and old participants.

Our study has also several strengths. Ours is among the few studies that have quanti-
fied biochemical markers pertaining to the autophagy–lysosomal system in human muscle.
Our findings add to a growing literature pointing to dysfunctional MQC as a central mech-
anism in muscle loss during normal aging and across a wide spectrum of pathological
conditions (e.g., sarcopenia, physical frailty, disuse muscle atrophy, chemotherapy-induced
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muscle wasting, cachexia) (reviewed in [52–55]). From this perspective, the assessment of
MQC markers may serve the dual purpose of (1) helping untangle the events underpinning
age-related functional decline and disease-associated muscle wasting, and (2) contribute to
define the repertoire of geroscience markers to establish metrics of biological aging and
efficacy endpoints for intervention studies. Circulating markers either as free molecules
or associated with extracellular vesicles are actively investigated as proxy of biological
processes in muscle [56,57]. Their validation could allow muscle-specific pathways to be
explored noninvasively, which would facilitate the implementation of MQC assessments in
research and clinical practice. Participants were recruited and characterized by established
investigators in the fields of aging and muscle physiology. Tissue composition of lower
extremities was carefully quantified via 3-dimensional MRI. Physical performance in older
adults was assessed through the SPPB, one of the most used and informative functional
tests in this age group.

5. Conclusions

Results of the present investigation suggest that the expression of selected markers of
the autophagy/mitophagy–lysosomal system is altered in muscle of older adults, which
might contribute to deterioration of lower extremity tissue composition and muscle dysfunc-
tion. Additional studies are needed to further elucidate the role of defective MQC in human
muscle aging with the aim of identifying novel biological targets for drug development.
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