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Abstract: Toll-like receptor 9 (TLR9) is an intracellular innate immunity receptor that plays a vital role
in chronic inflammation and in recognizing pathogenic and self-DNA in immune complexes. This
activation of intracellular signaling leads to the transcription of either immune-related or malignancy
genes through specific transcription factors. Thus, it has been hypothesized that TLR9 may cause
glioma. This article reviews the roles of TLR9 in the pathogenesis of glioma and its related signaling
molecules in either defending or promoting glioma. TLR9 mediates the invasion-induced hypoxia
of brain cancer cells by the activation of matrix metalloproteinases (2, 9, and 13) in brain tissues. In
contrast, the combination of the TLR9 agonist CpG ODN to radiotherapy boosts the role of T cells
in antitumor effects. The TLR9 agonist CpG ODN 107 also enhances the radiosensitivity of human
glioma U87 cells by blocking tumor angiogenesis. CpG enhances apoptosis in vitro and in vivo.
Furthermore, it can enhance the antigen-presenting capacity of microglia, switch immune response
toward CD8 T cells, and reduce the number of CD4CD25 Treg cells. CpG ODN shows promise as a
potent immunotherapeutic drug against cancer, but specific cautions should be taken when activating
TLR9, especially in the case of glioblastoma.

Keywords: TLR9; glioma; tumor regression; tumor progression; dichotomic role

1. Introduction

Gliomas are the most prevalent and lethal type of brain tumor [1]. The high incidence
and high mortality rates observed for gliomas, predominantly in developed countries, are
presumably due to an underestimation of glioma cases elsewhere and restricted facilities for
medical care [2–4]. The median survival time is 15 months [2]. Treatment is complex, and
the first-line treatment is aggressive and entails surgery, radiation therapy, and chemother-
apy [5]. Unfortunately, these therapies provide limited overall survival benefits and are far
from satisfactory. Thus, alternative novel therapies that enhance or work in cooperation
with conventional treatments are urgently required. Glioma carcinogenesis is a multistage
process that involves complicated mechanisms. Many factors, such as chronic inflamma-
tion, are inextricably involved in the pathogenesis and progression of glioma. Glioma cells
secrete specific cytokines, thus creating an immunosuppressive environment involving
signal transducer and activator of transcription 3 (STAT3) signaling, which inhibits immune
cells [6–8]. However, the main mechanisms underlying glioma progression remain unclear.

Toll-like receptors (TLRs) recognize particular microbial structures [9]. Toll-like recep-
tor 9 (TLR9) is stimulated by unmethylated cytosine-guanine nucleotide sequences (CpGs)
in bacterial, viral, and fungal DNA fragments, as well as synthetic oligonucleotides [10] or
self-DNA [11]. It has been previously reported that TLR9 is only expressed in some immune
cells, such as plasmacytoid dendritic cells (pDC), and acts as a potent inducer of Interferon
(IFN) secretion to overcome viral infection. However, recent studies, including ours, have
focused on their expression in tumor cells, such as cervical cancer [12–14], postulating their
role in carcinogenesis. TLR9’s function in tumorigenesis is also a double-edged sword,
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and although it has a potential anti-cancer capacity, a pro-tumorigenic relevance is more
likely [15,16].

It is therefore necessary to conduct large-scale studies to assess the significance of
these receptors in specific neoplastic cells. This review focuses on glioma and may reveal
new strategies that would selectively drawback tumor cells and deflect host antitumor
responses regarding the eradication of these deadly cancers and could pave the way for
the development of new immunotherapeutic targets. Here, we hypothesized that TLR9
might play dual roles in cancers such as glioma, and we review and summarize the current
knowledge about TLR9-signaling in the pathogenesis of glioma.

2. Glioma

Gliomas, the most recurrent type of primary brain cancer, arise from the glial tissue of
the central nervous system (CNS). The adult CNS comprises three types of glial cells that
give rise to astrocytes, oligodendrocytes, and ependymal cells. The most frequent tumors
are astrocytomas, originating from astrocytes or their precursors. Established on morphol-
ogy and malignant behavior features, and as reported by the World Health Organization
(WHO) criteria, glioma tumors are histologically divided into Grades I and IV. Malignant
gliomas constitute a range of clinicopathological features, from low-to-high-grade ma-
lignancies; roughly all low-grade tumors ultimately progress to high-grade malignancy.
Grade I tumors are commonly benign and have a good prognosis, and radical surgical
excision generally results in healing. These tumors regularly appear in children [17,18],
and histological examination of Grade II tumors is marked by hypercellularity and has
a median survival of approximately 5–8-year median survival [19,20]. Grade II tumors
show a proportion of recurrence and an increase in grade. Grade III gliomas exhibit hy-
percellularity, nuclear atypia, prominent mitotic figures, and a 3-year median survival [21].
Glioblastomas (GBMs) are the most common and detrimental cancers among a broad
range of glial brain tumors. The histological characteristics of Grade IV gliomas include
hypercellularity, nuclear atypia, mitotic figures, and angiogenic and/or necrotic features.
GBM is intrusive and can be diagnosed atrociously. Chemotherapy and irradiation are far
from potent, with an average survival time of approximately 15 months.

It is now fully understood that the knowledge of molecular alterations has greatly
expanded. In the WHO 2016 revised reclassification, molecular markers are increasingly
and newly included in combination with a classical histological cancer diagnosis. Isocitrate
dehydrogenase (IDH) mutation and 1p/19q co-deletion are the most common genetic alter-
ations analyzed in these tumors [22]. Moreover, comparative genomic research has shown
that gains or losses of several chromosomes containing either oncogenes or tumor sup-
pressor genes are common to all GBM tumors and stratified GBM into many subtypes [23].
However, the major roles of immune-associated molecules in the overthrow or progression
of glioma are yet to be fully elucidated.

3. TLR9 Overview
3.1. TLR9 Discovery, Structure, Ligands

TLR9 is an intracellular endosomal receptor. It was first cloned in 2000, and its gene
is located on 3p21.3 [24]. This receptor is involved in the recognition of unmethylated
CpG-DNA of bacterial, viral, and parasitic origin [25], but also of self-DNA in immune com-
plexes [26]. TLR9 ligands, B/K-type and A/D-type, are two subtypes of CpG oligodeoxynu-
cleotides (CpG-ODNs). The pure phosphorothioate backbone B/K-type CpG-ODNs lead to
B cell proliferation and dendritic cell (DC) maturation. TLR9 is first expressed by B cells and
plasmacytoid DCs (pDCs) [27]. TLR9 is a type I transmembrane protein composed of three
domains: an N-terminal extracellular domain composed of leucine-rich repeats (LRRs), a
hydrophobic transmembrane domain, and a cytoplasmic Toll/interleukin 1 receptor (TIR)
domain [28].

TLR9 is an intracellular receptor and its cytoplasmic localization is required to over-
come self-host nucleic recognition and avoid autoimmune diseases [29]. The capacity
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to distinguish between self- and non-self-nucleic acids relies on molecular recognition.
Instead, the capacity to bind nucleic acids has been tightly linked to a unique localization
and regulatory program. TLR9 is synthesized and localized in the endoplasmic reticulum;
they translocate to the endosome upon ligands stimulation. Several key molecules are
required for the trafficking and activation of nucleic acid-sensing toll-like receptors in endo-
somes, such as the transmembrane protein: the uncoordinated 93 homolog B1 (UNC93B1).
TLR9 interacts with UNC93B in the endoplasmic reticulum, facilitates loading into COPII
vesicles, and is transported to the Golgi [30,31]. UNC93B1 and TLR9 traffic together to
the surface and, through its recruitment of AP-2-mediated internalization, reach endocytic
compartments [32]. Upon the entry of TLRs into the endocytic pathway, additional sorting
to specific signaling compartments, from which IRFs or NF-κB can be activated, is required.

Further compartmental specialization is generated by adapter-related protein complex-
3 (AP-3), which interacts with TLR9 and directs the receptor to the endosomal compart-
ments dedicated to type I interferon signaling [33]. The brain and DC-associated LAMP-like
molecules (BAD-LAMP/LAMP5) control TLR9 trafficking to LAMP1+ late endosomes in
human plasmacytoid dendritic cells (pDC), leading to NF-κB activation and tumor necrosis
factor (TNF) production upon DNA detection [34].

Other accessory molecules are required for transport trafficking and activation of
nucleic acid-sensing toll-like receptors in endosomes; the master chaperone 96 kDa glyco-
protein (gp96), the solute carrier protein superfamily member Slc15a4, and the proteins
associated with the toll-like receptor (TLR) 4, PRAT4A [35–37].

The ectodomain of toll-like receptor 9 is cleaved to generate a functional receptor. TLR9
requires compartmentalized proteolytic processing to initiate the signaling process upon
translocation to the endolysosomes. The cleavage site in the ectodomain of TLR9 is likely
in the region encompassing amino acids 378–475 of TLR9 receptor requiring asparagine
endopeptidase (AEP) or cathepsin family members. General regulatory strategy for all TLRs
involved in nucleic acid recognition. TLR9 contains a large non-conserved Z-loop between
LRR14 and LRR15 that is susceptible to cathepsin-mediated proteolysis [38–40] (Figure 1).
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transcription factors such as mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1), 
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Figure 1. An overview of TLR9 trafficking and signaling pathway. TLR9s are synthesized in the ER to
access the cell surface. They require chaperone molecules UNC93B1 to facilitate loading into COPII
vesicles and transport to the Golgi. Then, reaching the Surface TLRs Trafficking to endosomes in
DCs depends on AP 2, gp96, Slc15a4, and Slc15a4, accessory proteins needed for TLR9 transport.
Upon entry into this compartment, TLR9 is proteolytically cleaved by cathepsins and AEP to generate
a mature form. It is in this compartment that signaling leads to activation of the NF-κB pathway
through (BAD-LAMP/LAMP5), controlling TLR9 trafficking or AP-3 to type I interferon signaling.
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The activation of TLR9- IRAK- TRAF signaling pathway triggers in turn the stimulation of transcrip-
tion factors such as mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1), and the
nuclear factor NF-Kb. TLR9-IRAK1-TRAF3 signaling cascade leads in turn to type I interferon.

3.2. TLR9 Signaling Pathway

Once the ligand binds to the cleaved TLR9 receptor, the TLR9/ligand complex activates a
downstream pathway that initiates the activation of various intracellular signaling molecules
and transcription factors to elicit an immune response against the recognized pathogen [9].
The TIR domains of TLR9 and MYD88 interact. Activated MYD88 interacts with interleukin-1
receptor-associated kinase (IRAK1) and IRAK4 via its death domain, contributing to the
involvement of TNF receptor-associated factor (TRAF3) and TRAF6. The activation of the
TLR9-IRAK-TRAF6 signaling pathway triggers the stimulation of transcription factors such as
mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1), and the nuclear factor
NF-κB. NF-κB phosphorylation initiates the activation of several genes, including cytokines,
chemokines, addressing molecules, and costimulatory molecules such as CD80 and CD86 [41].
TLR9-IRAK1-TRAF3 signaling cascade leads to type I interferon stimulation by activating
transcription factor interferon regulatory factor 7 (IRF7). TLR9 stimulation also induces the
activation of natural killer cells, T cells, B cells, and pDCs, thereby enhancing pro-inflammatory
and T Helper 1 (Th1) cytokines such as IL12 stimulation and CTL cytotoxicity capable of
eliminating viral pathogens and cancer [42].

3.3. TLR9 Expression on Immune Cells

In humans, the expression of TLRs depends on the immune cell type. Among human
antigen-presenting cells (APCs), TLR9 is expressed predominantly on plasmacytoid den-
dritic cells but not on myeloid-derived DCs (mDCs) [43] monocytes and macrophages also
express TLR9 [44]. In the human adaptive immune system, TLR9 is expressed in activated
T cells and memory B cells [45,46].

In B-cells, CpG-ODNs induce secretion of several cytokines such as IL6, IL10 CCL3
(MIP1α), and CCL4 (MIP1β), preventing apoptosis triggered by surface antigen-receptor
cross-linking or other apoptotic agents). CpGs were reported to upregulate TRAIL on B
cells in PBMC, thereby enhancing their ability to kill tumor cells and promote Ig secretion
and TLR expression on immune cells, which generally supports the therapeutic purpose of
its ligands [47–49].

3.4. TLR9 Critically Bridges Innate and Adaptative Immunity: How Does the TLR9-MyD88
Pathway Promote Adaptive Immune Responses?

Research conducted on TLR9-deficient mice demonstrated the role of TLR9 not only
in the secretion of pro-inflammatory cytokines but also in the induction of CD4 T helper 1
(Th1)-biased immune response and the proliferation of B cells [24,50].

Indeed, infection model studies support the crucial role of the TLR9-MyD88 pathway
in the induction of adaptive immune responses to infections, such as in fighting herpes
simplex virus 1 and 2, murine cytomegalovirus, and adenovirus infections. TLR9 can also
recognize bacterial DNA, such as Mycobacterium tuberculosis, Brucella, Streptococcus
pneumoniae, Helicobacter, and Cryptococcus neoformans [51–56].

The activation of adaptive immunity is dictated by the activation of innate immunity.
Adaptive immunity is characterized by the clonal expansion of antigen-specific T and B
cells. Dendritic cells (DCs) are cells of the innate immune system that bridge the innate and
adaptive immune responses [57].

TLRs expressed on DCs are critically involved in the maturation of immune cells and
initiate the activation of adaptive immunity [58]. Upon DC stimulation by CpG-DNA, it
produces pro-inflammatory cytokines such as TNF-α/β, IL-6, and IL-12, and upregulates
the surface expression of costimulatory molecules such as CD40, CD70, B7-1 (CD80), B7-
2 (CD86), and major histocompatibility complex (MHC) class II. Upon antigen capture,
immature DCs become licensed and activate naïve T cells [59,60]. T-cell activation and
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differentiation into effector cells occur after naïve T cells receive multiple signals from DCs,
including antigen presentation via the T-cell receptor (TCR) of naïve T cells through CMHII,
co-stimulation (signals 1 and 2), and other signals such as the cytokine milieu promoting
the differentiation of T lymphocytes into cytotoxic effector cells. DCs are implicated in the
cross-presentation of MHC-I molecules. CD4 T-cell engagement induces surface expression
of the CD40 ligand, stimulating CD40 signaling in DC [61,62]. The costimulatory molecule
CD70 is also implicated in the priming of CD8 T cells upon DC-TLR activation [63].

In addition, upon TCR ligation, CpG-ODNs can induce IL2 receptor and IL2 secretion
and increase the cytolytic activity of T cells [64]. NK cells are strongly activated by CpG-
ODNs. NK cell activation depends on the secretion of cytokines by DCs, which are IL12,
TNF, and IFN. IFNs are primordial for the induction of an efficient immune response
to tumors [65]. Therefore, the activation of the TLR-IFN type I signaling pathway is
of therapeutic importance because it eliminates DC-induced tolerance and generates an
antitumor response. Additionally, DCs activated by TLRs can mediate antitumor responses
by presenting antigens, thereby initiating a T-cell response and inducing cytotoxicity in
tumor cells. IFN can regulate the functions of natural killer cells (NK) and is very important
for the modulation of tumor growth [66]. Furthermore, TLR9 agonists can exert antitumor
effects by suppressing angiogenesis, blocking tumor growth through cell cycle arrest, or
inducing autophagy. TLR-induced interferon plays an important role because it reduces
angiogenesis and metastasis [67].

Depending on the context of Ag presentation, pDCs lead to immunity by stimulating
T-cell priming or promoting the induction of T-cell tolerance. pDCs can promote tolerance
by presenting antigens to CD4+ T cells and inhibiting their activation or inducing regulatory
T cells (Tregs), which promotes tumor progression in several solid tumors [68,69] (Figure 2).
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Figure 2. Cross-talk between innate and adaptive immune cells. Upon DC stimulation by CpG-
DNA, production of TNF-α/β, IL-6, and IL-12, and upregulation CD40, CD70, B7-1 (CD80), B7-2
(CD86), and major (MHC) class II accrue. Upon antigen capture, immature DCs become licensed
and activate naïve T cells. DCs are implicated in the cross-presentation of MHC-I molecules. CD4
T-cell engagement induces surface expression of the CD40 ligand, stimulating CD40 signaling in DC.
The costimulatory molecule CD70 is also implicated in the priming of CD8 T. NK cells are strongly
activated by CpG-ODNs. Depending on the context of Ag presentation, pDCs lead to immunity by
stimulating T-cell priming or promoting the induction of T-cell tolerance by inducing regulatory T
cells (Tregs), which promotes tumor progression in several solid tumors.
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3.5. The Expression of TLR9 in Cancer Cells Can Corrupt the Process

TLR9 stimulation demonstrated TLR9/AP1/cyclin D1 signaling-mediated carcino-
genesis in oral squamous cell carcinomas (HB cells in vitro) [70,71]. In addition, the
CXCR4/SDF-1/Akt pathway is essential for the TLR9 pathway to enhance the metastasis
of lung cancer cells in vitro (95D cells) [72]. CpG ODN led to the activation of NF-κB and
enhanced expression of matrix metalloproteinase (MMP)-2, MMP-7, and cyclooxygenase-2
(COX-2) mRNA TLR9 in esophageal cancer suggesting its role in cell proliferation and differ-
entiation [73]. H. pylori acts through TLR2/9 to activate the PI-PLCλ/PKCα/c-Src/IKKα/β
and NIK/IKKα/β pathways, resulting in NF-κB and Cox2 expression. The Cox2 expression
may also contribute to gastric carcinogenesis [74,75].

TLR9 exerts various pro-cancerous effects. The matrix metalloproteinase (MMP) 2/9
-TLR9 axis is of particular interest because most cancerous cells secrete massive quantities of
MMP2/9. MMP-2 and MMP-9, also known as Gelatinase A and B, respectively, play critical
roles in tumor cell invasion and metastasis, as they can degrade the major components
of the extracellular matrix (ECM), a major component of the tumor microenvironment.
MMP-2 and MMP-9 are thought to be the key enzymes in this process because they degrade
type IV collagen [76,77]. TLR9-MMP signaling regulates invasion in a variety of cancer
cells, including breast and prostate cancers [78,79], and the TLR-9-mediated invasion of
oral cancer cells is promoted via activation of the DNA-binding activity of at least in
part AP-1 TLR-9 signaling [71]. In brain tissues, hypoxia has also been shown to activate
MMP-2, -9, and -13. These proteases may be TLR9-regulated in brain cancer cells. These
observations need further analysis [80]. The GL261 glioma cell line and activation of TLR2
upregulated the expression of MMP2 and MMP9 to promote tumor invasion, indicating
that TLR2 signaling in glioblastoma stem cells (GSCs) is involved in the invasiveness of
glioma. However, TLR2 upregulated MMP2 and MMP9 expression in GL261 glioma cell
lines and promoted tumor invasion, indicating that TLR2 signaling in GSCs is involved in
the invasiveness of glioma [81].

4. TLR9 Expressions and Function in Gliomas

In the CNS, TLR9 is expressed in neurons, glial cells, and immune cells [82]. TLRs
play important roles in cancer cells and the modulation of immune responses in glioma.
Upon ligand recognition, TLR9 activation promotes downstream signaling, supporting
either tumor progression or suppression, and therefore, can be used as a potential target in
cancer therapy [83–85].

TLR9 was reported to be expressed in human glioma cell lines U251 and U87, the
murine cell line C6 primary human glioma biopsies, and isolated GSCs [86–89].

TLR Expressions in the Glioma Microenvironment

Microglia are tissue-resident macrophages of myeloid origin that are essential for
brain-specific immune surveillance. TLR 9 is highly expressed in both human microglia
in the normal brain parenchyma and tumor-infiltrating microglia [90]. In response to
pathogen attack or other pro-inflammatory stimuli, the expression of microglial TLRs is
responsible for the innate immune system of the brain. Microglial infiltration is highly
influenced by the tumor microenvironment. Synergistic activation of TLR3 and TLR9 in
microglia reinforces the secretion of pro-inflammatory factors, phagocytic activity, and
suppression of glioma growth [91].

Glioma cells exhibit stem cell-like phenotypes called glioma stem cells (GSC), which
are known to be aggressive and resistant to therapy. CpG-ODN was observed to activate
TLR9 to promote the growth of GSCs through the activation of signal transducer and
activator of transcription 3 (STAT3) signaling in cultured cells; silencing TLR9 expression
abrogated the GSC development [92].

In the human DC infiltration distribution, there were fewer pDCs in GBM specimens
than in normal brains. Grade III and IV malignant gliomas are associated with a potent
immunosuppressive tumor microenvironment that escapes the host antitumor response.
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One of the characteristic features of glioma is immunosuppression in the presence of
Tregs in the immunosuppressive glioma microenvironment, which is potentiated by the
suppression of APC functions via the expression of immunosuppressive cytokines, such as
IL-10 and TGF-β, contributing to the abolition of effector T-cell progression in the murine
model host pDCs promoting glioma [93].

5. Current Status of TLR9 Agonists in Glioma Treatment and Clinical Trial Based on
CpG Agonists

The expression pattern profile and signaling mechanisms of TLRs make them potential
targets for glioma therapy, where multiple routes may be targeted to aid the development
of effective clinical strategies. An important aspect of the utilization of TLRs in glioma
clinical trials is the application of TLR agonists as single agents to suppress tumors.

TLR agonists have been reported to initiate or suppress immune responses in the
glioma environment upon binding to specific TLRs. CpGODNs can be administered
subcutaneously, intrathecally, or intracranially. Local administration of TLR agonists is of
particular interest in immunotherapies [84,94].

In this regard, several clinical phase studies have been carried out and others are
currently in process; however, the results are controversial and have not led to a definitive
position regarding the use of TLR agonists as adjuvant therapy to treat CNS tumors.

Phase I clinical studies were conducted on CpG -28 (sequence 5′-TAAACGTTATAACGTT
ATGACGTCAT-3′) administered locally to 24 patients with recurrent GBM by convection-
enhanced delivery. The dose of CpG-28 was escalated from 0.5 mg to 20 mg dose level.
Two patients whose tumors were growing at the time of inclusion showed a minor response
(29% and 20% reduction, respectively, in the product of the largest perpendicular diameters)
at the injection sites. These local responses were associated with reduced mass effect and
decreased surrounding edema. Two other patients had stable disease for more than four
months (progression-free survival at four months, 9%). The one-year survival rate was 28%.
The median survival time for all patients was 7.2 months from the time of enrollment (95%
confidence interval, 4.8–12.7 months). Progression-free survival at six months was 4.5%. In
conclusion, an independent scientific committee recommended a dosage of 20 mg for a phase
2 clinical trial. This study demonstrated that local treatment with CpG ODNs in patients with
recurrent glioblastoma is feasible and well-tolerated at doses up to 20 my [95]. A phase 2 trial
evaluating the efficacy of CpG-28 did not achieve the targeted PFS benefit in patients with
recurrent GBM. However, the occurrence of a few long-term survivors suggests that some
patients with GBM might benefit from this treatment. Translational studies are ongoing to
clarify the criteria for the selection of such a subgroup of patients. In addition, a randomized
phase II trial is currently ongoing for newly diagnosed GBM, in combination with surgical
resection and radiotherapy [96].

A CpG28 phase I trial conducted on patients with different types of cancer, adminis-
tered alone or concomitantly with oncological treatment, was well tolerated at doses of
up to 0.3 mg/kg subcutaneously and 18 mg intratumorally; however, poor effectiveness
was observed in glioma patients. There was no significant survival between the groups
treated with CpG-28 alone or CpG/oncological therapy. However, the patient with grade
III ependymoma was stable during the protocol and remained alive six years after the
study. Patients with grade III anaplastic oligoastrocytoma and glioblastoma showed clinical
improvement after the administration of CpG28 and bevacizumab. They remained stable
for 5 and 8 months and died at 12.5 and 8.8 months, respectively [97].

More recently, a phase II trial indicated that the injection of CpG-ODN into the surgical
cavity of newly diagnosed GBM patients after tumor removal was followed by standard
of care with radiotherapy and temozolomide. This study enrolled 81 patients who were
randomly assigned to receive CpG-ODN plus SOC (39 patients) or SOC alone (42 patients).
The incidence of adverse events was similar in both arms, although fever and postoperative
hematomas were more frequent in the CpG-ODN arm. This resulted in an increased 2-year
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survival rate (31% vs. 26%) and median PFS (9 vs. 8.5 months) compared with applying
the standard of care alone (NCT00190424) [98].

Although well-tolerated, local immunotherapy with CpG-ODN injected into the
surgical cavity after tumor removal followed by SOC did not improve the survival of
patients with newly diagnosed GBM [98].

Nevertheless, clinical trials with monotherapy CpG-ODN into glioma tumors, although
safe and well-tolerated CpG and showing promise as immunotherapy in mouse models but
proved disappointing results in human trials, demonstrated inefficiency in treating patients
with glioma. Moreover, it exhibits grade 2 common adverse effects, such as lymphopenia,
anemia, neutropenia, local erythema at injection sites, fever, and neurological worsening or
fatigue [96,98]. The application of novel combinatorial strategies in clinical trials is of great
importance. Preclinical in vitro and in vivo glioma models show an efficient response to
the administration of CpG 28 when combined with radiotherapy, with a total remission in
two-thirds of animal models [99]. CpGODN1668 induces efficient antitumor immunity in
a therapeutic GL261 glioma model [100]. CpGODN 107 also exerts a radiosensitizing effect
and induces autophagy and cell cycle arrest, and inhibits angiogenesis [101–103]. CpG-1826
combined with cyclophosphamide treatment elicited an antitumor immune effect by a local
increase in the main stockholders of the immune system GAMs, DCs, B-cells, and cytotoxic T-
cells, favoring an immune memory response and leading to long-term tumor regression [104].
Moreover, the development of nanoparticles has presented a promising strategy to enhance
drug delivery and immune response in glioma treatment and thus overcome inefficient ther-
apy. Single-walled carbon nanotubes non-covalently functionalized with CpG SWNT/CpG
are the first nanomaterials that inhibit the migration of cancer cells driven by the antioxidant
capacity of the SWNTs while stimulating macrophages through induction of the TLR9-NF-κB
pathway [105]. Schizophyllan, a polymer that protects short DNA from endosomal degra-
dation, efficiently enhances CpG-ODNs, inducing high levels of inflammatory cytokines to
repolarize M2 macrophages to M1 macrophages and induce apoptosis [106]. A synthetic
high-density lipoprotein-mimicking nanodisc was reported to deliver CpG with docetaxel
(a chemotherapeutic agent) to elicit CD8+ T-cell infiltration in glioma models, leading to
long-term survival and development of anti-GBM immunological memory when combined
with radiotherapy [107]. In vivo, the vaccine (STDENVANT) composed of DCs, CpG-ODN,
and GSC lysate as a source of GSC-associated antigens, increases the priming of effector T
cells. Furthermore, Combining STDENVANT and anti-PD-L1 antibody diminish Treg in the
brain with better survival [108]. (Table 1).

In a recent phase I clinical study of highly antigenic M032 (NSC 733972), Geneti-
cally Engineered HSV-1 Expressing IL-12, which contains rich unmethylated CpG in its
DNA recognized by TLR9, provoked an adjuvant effect. This trial will be intracranially
administered to patients with recurrent/progressive glioblastoma multiforme, anaplastic
astrocytoma, or gliosarcoma treated with checkpoint inhibitors after being tested safe in
animal models [109].

Table 1. TLR9 antitumoral based treatment upon stimulation with CpG.

Agostist-TL9 Combinational
Treatment Target Featured Outcome Mechanistic Features References

CpG 28 ns Fisher rats bearing 9L
glioma

complete tumor remission in
one-third of the animals

T cells in antitumor
effects [99]

radiotherapy Fisher rats bearing 9L
glioma

complete tumor remission in
two-thirds [99]

CpGODN1668 ns glioma-bearing C57BL/6
mice.

inhibit of glioma growth in vivo
and cured 80% of animals

diminish Treg and
increase CD8 [100]

murine GL261 glioma
cells in vitro inhibit GL261 cell proliferation [100]

CpG ODN 107 radiotherapy U251 and U87/orthotopic
tumor-bearing nude mice induce autophagy TLR9-ERK-mTOR

signaling pathway, [102]
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Table 1. Cont.

Agostist-TL9 Combinational
Treatment Target Featured Outcome Mechanistic Features References

CpG ODN 107 radiotherapy
U87/human U87

implanted xenographt in
nude mice

not induce apoptosis but induce
cell cycle arrest at G1

phase/inhibit angiogenesis

TLR9-mediated NF-κB
activation and NO

production in the tumor
cells/VEGF/HIF

inhibition

[101,103]

CpG 1826 metronomic
cyclophosphamide

GL261 mouse glioma
cells/GL261

tumor-bearing mice

elicit anti-tumor immune
response

increased tumor T-cell
infiltration [104]

CpG 1826
Schizophyllan

(SPG)
nanoparticles

C6
repolarizing the M2

macrophages to much-desired
M1 and apoptosis

[106]

CpG ODN carbone nanotubes
SWNT

K-Luc murine glioma cell
line

inhibit cell migration, activate
macrophage

decreased NF-κB
activation in glioma cells [105]

CpG ODN DTX-sHDL-CpG
nanodiscs

Mouse, GL26-WT,
GL26-Cit, GL26-OVA, rat

CNS-1, and human
HF2303, U251

tumor regression and
anti-tumor CD8+ T-cell

responses in the brain TME

long-term survival and
immunological memory [107]

CpG ODN DTX-sHDL-CpG
nanodiscs +RT of GBM-bearing animals tumor regression and long-term

survival in 80% [107]

CpG ODN
DCs harboring

(GSC)-associated
antigens

orthotopic mouse model
of glioma

improved survival and
tumor regression by enhancing

anti-tumor immune function

upregulated
programmed death 1

(PD-1)
and its ligand PD-L1,

decreased T cells

[108]

6. TLR9 in Glioma: Dichotomic Role
6.1. TLR9 Can Participate in Immune Responses against Glioma

Some studies have revealed that TLR9 plays an important role in glioma progression
and induction. For example, Meng et al. (2005) showed that radiotherapy (RT) could be
advantageously associated with the intratumoral injection of the TLR9 agonist CpGODN28.
When Fisher rats bearing 9 L glioma were treated with various combinations of RT with
CpGODN28, complete remission was achieved in two-thirds of patients. The combination
of CpG ODN and RT enhanced the role of T cells in antitumor effects [99]. Moreover, another
TLR9 agonist, CpGODN107, was investigated as a radiosensitizer in vitro (human glioma
U87 cells) and in vivo. The combination of CpGODN107 and irradiation significantly
inhibited cell proliferation. The mechanism of radiosensitivity involves CpGODN/TLR9
activation of NF-κB and the production of nitric oxide (NO), inducing cell cycle arrest
at the G1 phase but not apoptosis [101]. The radiosensitizing effect of CpG ODN107 is
intimately linked to the TLR9-ERK-mTOR signaling pathway. This mechanism is essential
for priming autophagic cell death in glioma cells [102]. Inhibition of angiogenesis via the
HIFα/VEGF pathway is directly associated with increased CpG ODN107 radiosensitivity
in human glioma U87 cells [103]. Moreover, CpG induces apoptosis in glioma cells in vitro
and in vivo. It enhances the antigen-presenting capacity of microglia, shifts the immune
response to CD8 T cells, and diminishes the number of CD4CD25 Treg [110]. Other
studies have also confirmed these results. It has been shown that a unique intratumoral
injection of CpG-ODN 1668 successfully abolished glioma growth in vivo and healed 80%
of glioma-bearing C57BL/6 mice [100], restoring antitumor immunity in a therapeutic
murine glioma model [111]. IGF-1 leading to augmentation of HIF-1α stimulation is
coupled with reduced TLR9 and CXCR4 levels and increased SOCS3 expression. These
findings suggest a complicated interplay between TLR9 and HIF-1α in response to IGF-1
under normoxia [112].

The safety of intrathecal inoculation with CpG-28 in patients with neoplastic menin-
gitis has also been demonstrated [95,96]. In vitro, the combination of cyclophosphamide
(CPA) and CpG-ODN coupled with chemotherapy can elicit antitumor immune responses
with reduced length and amount of cure injection [104].
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Post incubation with CpG ODN and nanoparticles or encapsulated oligonucleotides
(CpG-STAT3ASO) have both antitumor effects by inducing immunostimulatory proprieties
and converting M2 scavenging towards beneficial pro-inflammatory type M1 macrophages
[106,113,114].

In addition, intravenous and intranasal administration of CpG nano-immunoadjuvant
(t-NanoCpG), either alone or with radiotherapy, boosts immunotherapy of glioma by
stimulating the maturation of dendritic cells, antigen cross-presentation, and production of
pro-inflammatory cytokines in vivo [115].

Based on the information presented by the investigators, TLR9 is an important
molecule that can induce or stimulate immune responses against gliomas. These find-
ings point towards the role of CpG in glioma immunotherapy and as a radiosensitizer
and provide a rationale for additional clinical advancement of CpG therapy in patients
with malignant glioma. Despite these promising results using TLR9 agonists for glioma
antitumor therapy [88], CpG-ODN treatment may not yield beneficial effects in glioma
patients showing an increase in tumor size after CpG-ODN intratumoral injection in a rat
glioma model [116].

6.2. TLR9 Promotes Glioma Development

Although TLR9 is involved in the immune response against glioma to eliminate the
tumor, its pro-tumoral role in glioma development has been investigated in several studies.
Several reports have demonstrated a link between TLR9 expression in human glioblastoma
multiforme tissues and patient follow-up. These findings suggest that TLR9 and NFKBIA
expression are significant independent prognostic factors for the overall survival of patients
with GBM [86,117]. Furthermore, the activation of TLR9 expressed in glioma cells can
effectively promote cellular invasion of cancer cells in vitro. CpG oligonucleotides have
been shown to stimulate the invasion of U373 astrocytomas overexpressing TLR9 via
MMP13 [78]. These results were confirmed by Wang using the U87 glioma cell line [118].
Curiously, a CpG-induced invasion could be abolished by the inhibition of the TLR9
signaling pathway, chloroquine [118,119]. It has been demonstrated that neighboring
oxygen levels have an important effect on TLR9 expression and function in human brain
cancer cells in vitro. In addition, these studies further suggest a powerful link between
TLR9 expression and the invasive machinery in brain cancer cells which can promote brain
cancer hypoxia-induced invasion by the activation of MMP 2, 9, and 13 in brain tissues.
Thus, TLR9 promotes hypoxia-induced brain cancer cell invasion [80].

TLR9 activation with CpG ODN promotes glioma stem-like cell (GSC) growth. CpG-
ODN treatment leads to Frizzled4- JAK2- STAT3 axis activation. In contrast, inhibition
of TLR9 abolishes GSC development. These findings point towards choosing TLR9 as a
valuable marker for GSC and an immunotherapeutic target for designing effective anti-
glioma drugs [92]. Overall, these results suggest that TLR9 suppression and activity
inhibition by chloroquine may be used as an adjuvant in GBM therapy, as previously
shown by Briceno et al. [120,121].

7. Conclusions

For the past several years, glioma treatment has been based on surgery and radio-
therapy, but a new understanding of the molecular interaction between the host and the
tumor may optimistically lead to interesting developments in this field. Currently, TLR9
has several effects on tumors. On the one hand, TLR9 and its agonist CpG can have bene-
ficial host effects and destroy tumor growth; on the other hand, they can promote tumor
progression. To explain these discrepancies, the TLRs function should be studied in detail
for each neoplastic setting. Further studies are needed to clarify the dual functions of TLR9
in glioma development and progression (Figure 3). The underlying molecular mechanisms
behind TLR9 signaling activation are also needed to better understand the process of these
dual effects of TLR9 in gliomas.
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