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Abstract: Neural crest cells (NCCs) are a vertebrate-specific, multipotent stem cell population that
have the ability to migrate and differentiate into various cell populations throughout the embryo
during embryogenesis. The heart is a muscular and complex organ whose primary function is to
pump blood and nutrients throughout the body. Mammalian hearts, such as those of humans, lose
their regenerative ability shortly after birth. However, a few vertebrate species, such as zebrafish,
have the ability to self-repair/regenerate after cardiac damage. Recent research has discovered the
potential functional ability and contribution of cardiac NCCs to cardiac regeneration through the
use of various vertebrate species and pluripotent stem cell-derived NCCs. Here, we review the
neural crest’s regenerative capacity in various tissues and organs, and in particular, we summarize
the characteristics of cardiac NCCs between species and their roles in cardiac regeneration. We
further discuss emerging and future work to determine the potential contributions of NCCs for
disease treatment.
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1. Introduction

The heart is a muscular and complex organ whose vital role includes the circulation of
blood and nutrients throughout the biological system. In contrast to other species, the mam-
malian heart is composed of four chambers (right atria, left atria, right ventricle, and left
ventricle), with various connecting vessels and arteries, including the aorta and pulmonary
vessel. The mammalian heart is derived from numerous cell types, including the first heart
field, second heart field, and neural crest (NC) population. The NC is an embryonic stem
cell population known for its temporary migratory potential and multipotency, specific
to vertebrate development. Neural crest cells (NCCs) are derived from the neural plate
border during neurulation, while simultaneously undergoing epithelial-to-mesenchymal
transition, a process that shifts cells into a mesenchymal state encompassed with enhanced
migratory potential [1,2]. Based on the initial axial position and site of contribution, NCCs
are divided into specific subpopulations: cranial, vagal, trunk, and sacral [3]. Although the
vagal NC mainly contributes to the development of the enteric nervous system, a small
number of cells, deemed the cardiac NC, contribute to the development of the cardiac
system [4,5]. It is currently perceived that the first and second heart field contribute to the
ventricles and atria, and the NC mainly contributes to the cardiac valves, interventricular
septum, and both the aorta and pulmonary vessel [3,6,7]. However, recent investigations
have focused on determining the contribution of cardiac NCCs to various portions and
locations of the heart. Comparably, cardiac NC contribution, although varying between
model systems, has shown promising results for contributing to the myocardium and
assisting in the regenerative capacity of cardiac tissue in zebrafish (Danio rerio) [8,9]. This
potential regenerative capacity to cardiac tissue in amniotes poses interesting avenues to
advance the treatment of various cardiac diseases. Heart disease is currently the leading
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cause of death in the United States. Ranging in type and severity, the damage caused to
the heart results in either death or irreplaceable damage to the function and/or structural
integrity of the heart. Therefore, determining the contribution and regenerative capacity of
the cardiac NC population in mammalian systems is of high clinical significance.

2. Cardiac Neural Crest Contribution to the Heart between Species

The ablation or disruption of cardiac NCCs during embryogenesis can result in con-
genital heart defects (CHDs), the most common human birth defect, presenting as various
cardiac abnormalities that can affect both the structure and the function of the heart [3].
Although phenotypes between biological models are comparable, to an extent, the contri-
bution of the cardiac NC to the heart varies between species and may be a contributing
factor that impacts the functional possibilities of the cells for regeneration later in the
adult system.

2.1. Chick/Quail-Chick Chimera

The contribution of the NC to cardiac development has been heavily studied using
chick or quail-chick chimera models. In the quail-chick chimera, ablation of the NC from
somites 1 through 3 prior to migration resulted in aorticopulmonary defects, along with al-
terations of the outflow tract (OFT), leading to rarer CHD phenotypes, such as transposition
of the great arteries [4]. Furthermore, ablation of NCCs destined for aortic arches 3, 4, and
6 in the chick have been shown to result in persistent truncus arteriosus (PTA), aortic arch
defects, and incomplete looping of the heart [10,11]. Similarly, ablation of pre-migratory
NCCs destined for aortic arches 3 and 4 presented with cardiac alterations, including
changed stroke volumes, reduced cardiac output, and decreased ejection fractions [11,12].
These results show not only that cardiac NCCs are vital for proper heart development
in the chick, but also that this cell population may be needed for the cardiac conduction
system, a vital component necessary for electrical contraction in the heart. More recently,
Tang and colleagues identified that with the use of replication-competent avian retro-
viruses to mark NC progenitors for lineage analysis in chicks, cardiac NCCs contributed
to the trabecular myocardium of the ventricles, a previously unreported contribution of
NCCs [13]. Previously, it was accepted that cardiac NCCs only contributed to portions of
the aorta and pulmonary vessels and valves, along with the membranous interventricular
septum [4,14,15]. However, this identification of NCCs in the ventricles provides a novel
insight into NC contribution and leads to further questions regarding their function and
contribution throughout development and regarding regeneration capability.

2.2. Mouse

Not long after the identification of cardiac NCCs in chicks, the mouse (Mus musculus)
was identified to have similar contributions of NCCs to the heart. As a fellow amniote,
the cardiac structure of the mouse is four-chambered, consisting of two atria and two
ventricles, similar to that of the chick. It was corroborated that cardiac NCCs in the mouse
also delaminate to pharyngeal arch arteries 3, 4, and 6, which will then further migrate to
the heart [16]. Similar to recent evidence found in chicks, a growing number of studies also
suggested the ability of mouse NCCs to differentiate into cardiomyocytes [13,17–21], yet
conclusions may vary using different NCC lineage-tracing mouse models [22–24].

Tang et al. examined mice that had NCCs marked using cytoplasmic GFP (Wnt1-
Cre;ZsGreenfl/fl and Wnt1-Cre2+;R26mTmG)) and found that at embryonic day (E) 15.5,
a large number of cells in the OFT, interventricular septum, and myocardium of the
ventricles were NC positive [13]. The authors do note that the number of Wnt1-Cre-
positive cells remains stable postnatally and does not undergo cell division or apoptosis,
providing similar information that has been noted in both chicks and zebrafish, indicating
an evolutionary role of the NC within these cardiac regions [13,25,26]. The finding of the
NC population in both of the mouse ventricles warrants further investigation into the
NC-specific function in these regions. Furthermore, the stability of the NC population
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raises interest regarding the potential ability to contribute to cardiac remodeling due to
injury, including regeneration.

2.3. Zebrafish

In contrast to amniote models, the zebrafish (Danio rerio) has been a driving model in
studying development, as its translucent body allows for clear visualization of fluorescence-
labeled NC contribution [27,28]. Unlike the structure of the amniote heart, zebrafish
hearts are tubular in structure, consisting of one atrium and one ventricle, and maintain
a one-directional flow [26,29,30]. As the developing heart in zebrafish varies compared
to amniote models, this suggests that NC contribution varies as well. In contrast to the
mouse or chick, the zebrafish heart does not consist of a ventricular septum due to having
a single ventricle, clearly indicating varying cardiac NC contribution [26,30]. Sato and
Yost found that in zebrafish, cardiac NCCs contribute to the bulbus arteriosus, ventricle,
atrioventricular junction, atrium, and muscle formation in the myocardium [25]. The Kirby
group also found that by using cell marking, cardiac NCCs migrated to the myocardial
wall of the heart tube, and laser ablation of the pre-migratory cardiac NCCs resulted in
the loss of NC migration to the heart and failed heart looping, along with reducing the
ejection fraction and cardiac output [26]. Although it has further been corroborated that
NCCs integrate into the myocardium in the zebrafish heart, the Chen group found that
NCCs in the zebrafish can be characterized into two populations: one that gives rise to
cardiomyocytes and another that contributes to the endothelium and bulbus arteriosus [8].
Furthermore, the Chen group found that ablation leads to reduced heart rates, defective
myocardial maturation, and failure to recruit progenitor cells from the second heart field,
indicating the need for further investigation into the cell–cell communication between the
various cardiac contributing cell populations [8].

2.4. Frog

Different from chicks, mice, and zebrafish, the frog (Xenopus laevis) heart is comprised
of three chambers (two atria and one ventricle) containing incomplete OFT septation,
which is referred to as a spiral septum, that assists in directional blood flow [31–33].
However, although structurally different, studies have also investigated the variation
and/or conservation of the NC population during heart formation. Studies have confirmed
that in the frog, the NC population contributes to the development of the aortic sac and
arch arteries, and it does not contribute to the OFT cushion mesenchyme, which is solely
contributed by the second heart field, similar to the cushion composition in mice and
chicks [32,34,35]. This observation that NCCs contribute to the cardiac cushions in humans,
mice, and chicks can be considered a characteristic of a higher vertebrate species, as NCCs
do not populate the cardiac cushion in frogs, purposing that the recruitment of cardiac
NCCs into the OFT cushions allows for an increase in cells in the OFT septum to complete
septation [34]. Furthermore, using orthotopic translation in frog chimeras to lineage trace
NCCs, it was found that a smaller portion of NCCs was discovered in the wall of the
truncus arteriosus, providing evidence that although various abilities of the NC are similar
among species, further investigation is needed into the effect of such variations [35].

NC ablation studies in frogs have produced varying results. For example, Martinsen
et al. ablated NCCs from the cranial to mid-trunk level during embryogenesis, which
resulted in abnormal cardiac development, including an elongated and un-looped heart
tube, pericardial edema, and lack of normal heart tube formation, meaning that NCCs are
required for normal cardiac development in the frog [36]. However, other studies have
found that the ablation of pre-migratory NCCs did result in the loss of the aortic sac and
arch arteries, but presented with normal spiral septum formation, suggesting that in the
frog, the septum is derived from the second heart field and not the NC [34]. This variation
between cardiac alterations suggests high crosstalk with the second heart field, as seen in
mice and chicks, but warrants a more concise conclusion into the potential abilities of the
NC to crosstalk with other cell populations [37–40].
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3. Regenerative Capacity of the Neural Crest

Although NC contribution is most commonly investigated during embryogenesis,
recent studies have begun to determine this population’s potential for regeneration at later
stages. It is most commonly accepted that NCCs are multipotent early in development,
but have the possibility to lose their multipotency once differentiated into various cell
types, based on the area of contribution. Tissue regeneration is a vital and emerging
ability by which the structure and function of damaged tissues and organs can be restored.
The potential contribution of the NCC lineage to regeneration could offer great potential
to regenerative medicine and disease modeling; however, this ability is not yet fully
understood in various tissues and between different species.

3.1. Gastrointestinal Tract and Enteric Nervous System

One field of interest that has sparked an investigation into NC regenerative capacity
is the gastrointestinal tract. In particular, the intestine has one of the highest regenerative
capacities in the human body [41]. The coordination of the gastrointestinal tract is regulated
by the enteric nervous system (ENS), a network comprised of neurons and glial cells
that arise from the NC [42,43]. To understand the contribution of the NC to this highly
regenerative area, Kruger and colleagues investigated the gastrointestinal tract in adult rats
and found the persistent existence of NCCs. These postnatal NCCs were able to self-renew
extensively in culture, but were overall not as extensive as NCC regeneration of the fetal
gut [44]. Furthermore, the authors were able to determine that the NCCs of the adult gut
were still active and able to give rise to neuro-transmitting neurons but were unable to
create certain neural subtypes that were capable of being produced by the fetal gut [44].
They suggest that this reduction in producing various neuronal subtypes involves a loss
of BMP expression but an increased response to gliogenic factors at postnatal stages [44].
Although the complete functional significance of NCCs in the adult mammalian system is
still unknown, these findings of NCCs in the adult gut suggest new possibilities for NCCs
in regeneration.

Recently, Yuan and colleagues have investigated the regenerative capacity of the ENS
and whether NCCs, other than those of the enteric NC, have the ability to regenerate
functional enteric neurons and neurons of the intestine [45]. Previous studies have shown
that NCCs from the native intestine and ENS are capable of differentiating into functional
enteric neurons and were able to rescue bowel motility [46–50]. For example, Cooper
et al. engrafted enteric NCCs into the mouse gut and found that enteric neurons and glia
arose and were maintained over two years without presenting long-term complications,
providing invaluable contributions to regenerative therapies [48]. However, Yuan et al.
investigated whether, in the adult mouse, trunk pre-migratory NCCs that do not contribute
to the ENS are also capable of generating enteric neurons [45]. They determined that trunk
NCCs transplanted into the colon of adult mice were able to form neuronal networks,
including enteric neurons and ganglion-like anatomy in the colon, suggesting that non-
intestinal pre-migratory NCCs were able to establish neuron-like characteristics and can
successfully integrate into the intestine [45].

3.2. Cranial Bones, Bone Marrow, and Teeth

One major contribution of the NC is to assist in cranial skeletal formation during em-
bryogenesis, including cartilages and bones of the head [51–54]. Beyond cranial bones, stud-
ies have also indicated that NCCs contribute to bone marrow and tooth formation [55,56].
However, whether the NC can re-activate stem cell-like properties or NCCs maintain
multipotency postnatally in such structures is still under investigation.

Although NCCs give rise to the majority of bone, cartilage, and connective tissues
of the skull, little is known about the regenerative ability of the NCC lineage in cranial
structures after injury or disease. However, regarding the reactivation of stem cell-like
characteristics in adult bones, Ransom et al., with the use of a mandibular distraction
osteogenesis mouse model, identified that after injury, NC development-related genes,
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including sox10, sox18, and elk3, were upregulated within newly forming bones of the
jaw [57]. Furthermore, it was identified that post-migratory cranial NCCs were not only
self-renewing and able to form bone matrix in culture, but that subcutaneous transplanted
post-migratory cranial NCCs in mice were able to regain their ability to differentiate into
osteocytes and adipocytes, along with assisting in calvaria bone formation [58]. However,
the ability and corresponding mechanisms of cranial NCCs to re-active or maintain their
multipotency within bones of the skull and to properly contribute to new bone formation
have yet to be deciphered.

Bones, including portions of the skull, are composed of compact and cancellous tissue,
along with bone marrow at the core. Bone marrow is comprised of red blood cells, white
blood cells, and platelets, along with a large portion of stem cells. The origin and differential
capability of such stem cells is an area currently under investigation. For example, Isern
and colleagues identified that mesenchymal stem cells from the marrow of long bones
arise from trunk NCCs, and their contribution to marrow and surrounding bones may be
correlated to nestin expression [59]. Furthermore, Nagoshi et al. also identified NC-like
stem cells in the bone marrow, and although regeneration of marrow was not confirmed,
they determined that cells collected from the marrow of mice tibias and femurs at various
postnatal stages were able to differentiate into neurons, myofibroblasts, and glial cells,
posing novel advances toward the ability of NC-derived bone marrow to contribute to
bone regeneration [56].

Similar to bones, teeth, which are located in the mandible, are a known structure
contributed by NCCs during development [60]. A number of groups have begun to
decipher the regenerative capacity of NCCs that contribute to tooth formation. For example,
Zhang et al. recently showed that NCCs in vitro (O9-1 mouse NCC cell line) are able to
differentiate into odontoblasts, and that in vivo, both primary O9-1 cell scaffolds and
induced pluripotent stem cells (iPSCs) were able to contribute to dentin-pulp regeneration
of the mouse tooth [61]. Furthermore, Chung et al. also identified that transplanted tooth
germs with post-migratory cranial NCCs contributed to tooth formation and survival
of the tooth germ, possibly due to BMP signaling through the regulation of Smad4 [58].
Although not comprised of bone or bone-like components, mammalian palatal tissue is
highly regenerative and contributed significantly by NCCs [62–65]. Studies have so far
identified regions of the palate that consist of NC-like stem cells that maintain proliferative
and differentiation abilities, possibly providing avenues into regenerative disease therapy
for defects of both the hard and soft palate [66,67].

3.3. Peripheral and Central Nervous System

The formation of glial and neuronal cell lineages is a process that is assisted by the NC
population during development. During development, NCCs from the trunk region give
rise to numerous sub-lineages, including glial cells of the peripheral nervous system (PNS).
Glial cells contribute to the structure of both the PNC and central nervous system (CNS),
assisting in the protection and regulation of neurons, particularly through NCC-derived
Schwann cells [68]. The regeneration of nerve fibers and their supporting cells has been a
standing field of interest regarding functional recovery to structures such as the spinal cord
after injury. However, to date, success in nerve and glial regeneration has been minimal,
but recent work has shown the potential of NCCs in regeneration.

Recent advances regarding PNS regeneration have been made possible due to the use
of NC-like stem cells derived from human embryonic stem cells or iPSCs. For example,
Huang and colleagues used NC-derived iPSCs to construct nerve conduits that, when
implanted into a rat sciatic nerve transection model, were able to increase functional nerve
recovery [69]. Supporting studies using sciatic nerve defect models and NC-derived human
iPSCs found that in vivo, grafted cells proliferated and successfully migrated throughout
the conduit after transplantation [70]. Furthermore, Kimura et al. discovered that grafted
NC-derived iPSCs also contributed to the increased strength of the leg muscle, indicating
functional recovery of the sciatic nerve after injury [70]. Similar conclusions have been
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made by other groups, indicating that NC-derived iPSCs or NC-derived embryonic stem
cells are a valuable tool that can contribute to nerve regeneration. However, the mechanisms
of this ability have yet to be determined [71–73].

Although sciatic nerve models have provided valuable information regarding the
contribution of NCCs to nerve regeneration, others have begun to apply NC-derived
stem cells to spinal cord injuries [74,75]. Similar to the PNS, the CNS is also composed
of various types of glial cells and neurons; however, the CNS is mainly composed of the
spinal cord and the brain, both of which are contributed highly by the NC population. In
the effort to determine whether NCCs are capable of contributing to CNS regeneration
and repair, Saadai et al., using human iPSCs from skin fibroblasts, seeded differentiated
NCCs into fetal lambs with spina bifida (an open neural tube defect) and found that iPSCs
NCCs produced neuronal lineages shown through the expression of the mature axonal
neurofilament marker NFM [74]. More recently, Jones et al. investigated whether human
embryonic stem cell-derived NCCs could be used as a therapeutic for adult spinal cord
injury and discovered that such derived NCCs were able to differentiate and stimulate
neuronal growth both in vitro and in vivo, accompanied by forelimb function recovery in
their rat spinal cord injury model, warranting further investigation into the mechanisms
and functional capabilities of NC-like stem cells for therapeutic treatments [76].

Regarding the brain, questions have been raised as to whether NC-derived cells
contribute to either functional or structural regeneration after injury. A common injury
to the brain is stroke, in which damage occurs due to an interruption of blood flow. To
date, multiple groups have reported that NC stem cells contribute to pericytes of the
CNS, and that ischemia-induced stem cells are contributed by NC-derived pericytes after
stroke [77,78]. Furthermore, studies have revealed that the transplantation of NCCs from
bone marrow or the epidermis to the corpus callosum in a lipopolysaccharide-induced
inflammatory lesion rat model indicated that these NCCs were able to migrate toward
the lesion, where they remained for several months, during which time glial cell fates
were adopted, raising the question as to how signaling from an injured area attracts and
communicates with surrounding NC-like stem cells to assist in recovery [79].

However, the ability of NC-derived cells in vivo to maintain or re-active their mul-
tipotency is a field that has yet to be defined regarding both the CNS and PNS, but the
conclusions made by NC-derived stem cells pose interesting avenues to the potential
re-activation of a NC-like state.

4. Cardiac Neural Crest in Cardiac Regeneration

During early mammalian development, the heart maintains its regenerative capacity;
however, shortly after birth, this ability is lost. Postnatal cardiac progenitors remain a
challenging and controversial issue in the cardiac field. Recent studies have begun to
investigate the potential ability of the heart to re-activate regenerative ability, particularly
through the NC, to assist in cardiac regeneration after injury.

It has previously been established that zebrafish maintain regenerative abilities through-
out their systems, including the fins and retina [80–83]. Furthermore, it has been identified
that adult zebrafish hearts are able to regenerate ventricular myocardium, without scarring,
through cardiomyocyte dedifferentiation and proliferation [84,85]. However, until recently,
it was unknown whether the NC population assists in this regeneration capacity of the
heart. In addition to the established NCC contributions to cardiovascular development, nu-
merous groups recently determined that NCCs in the zebrafish heart also contribute to the
cardiomyocyte population [9,13,86]. Based on this, Tang and colleagues further investigated
whether the NC population of the zebrafish heart also plays a role in cardiac regeneration.
Using a sox10 promoter, expressing GFP (Tg(-4.9sox10:eGFP) to label embryonic NCCs, it
was found that though sox10 expression is down-regulated after NCCs reach the heart,
the removal of a portion of the adult ventricular apex stimulates sox10-GFP expression,
along with the NC marker tfap2a, in cardiomyocytes near the injury site, suggesting the
reactivation of a NC-like state for cardiac regeneration [13] (Figure 1). Furthermore, Sande-
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Melón et al. determined that pre-existing sox10-positive NCCs not only contributed to the
zebrafish adult heart, but that after ventricular cryoinjury, the number of sox10-expressing
cells significantly increased in the myocardium near the injured area [9] (Figure 1).
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Figure 1. The ability of the cardiac neural crest (NC) to contribute to regeneration after cardiac injury
in zebrafish and mammalian hearts. In the zebrafish, injured ventricular tissue has been shown to
populate a large number of NC-positive cells that express high levels of sox10 and tfap2a that give
rise to cardiomyocytes and myocardium of the regenerated ventricle. In the mammalian heart, the
contribution of the NC to the ventricle and their ability to regenerate or maintain a stem cell-like state
is still unknown. Although mammalian ventricular cardiac injury results in scarring and fibrosis
with little-to-no regenerative ability, there is potential that the injured tissue releases the chemokine
MCP-1, signaling to cardiac neural crest cells (NCCs) to migrate to the injury site to assist in tissue
regeneration of the ventricle. (Created with Biorender, accessed on 29 November 2022).

Although regeneration in zebrafish has shown promising roles for NCCs in cardiac
regeneration, less is known about the contribution of the NC during mammalian cardiac
regeneration. Similar to zebrafish, it was identified that NCCs are present in the postnatal
mouse heart and can differentiate into cardiomyocytes [17–21]. Tamura and colleagues
found that after myocardial infarction in adult mice, GFP-expressed NCCs migrated to
the border of the infarcted region and were able to differentiate into cardiomyocytes,
contributing to the regeneration of the myocardium [19]. The authors suggest that this
migration of NCCs after myocardial infarction is due to monocyte chemoattractant protein-
1 (MCP-1) expression in the infarcted area that provides guidance cues to NCCs [19]
(Figure 1). In contrast, although Hatzistergos and colleagues found that a population of
NCCs generate cardiomyocytes postnatally, these cells were not proliferative and had lost
their regenerative capacity [17].

5. Conclusions and Future Perspectives

NCCs are a multipotent cell population that are active during vertebrate embryogene-
sis and can contribute to numerous portions of the developing system. It is well accepted
that cardiac NCCs contribute to the OFT, great vessels, and septa of the heart. Furthermore,
in mammals, it is understood that the heart loses its regenerative capacity shortly after
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birth. However, recent studies have begun to pose various insights into the regenerative
capability of the heart and the contribution of the NC to such ability.

The use of various model organisms has provided vital information on how NCCs
contribute to cardiac formation, and more recently, these have been providing insight into
the possible contribution of this cell population beyond that which was previously accepted.
Although progress has been made in understanding the function of the NC between species,
cardiac formation, and correspondingly, NC contribution, varies between model systems,
which poses questions as to the evolutionarily conserved abilities of the NC. For example,
the finding that NCCs differentiate into cardiomyocytes and assist in the reformation of the
ventricular myocardium has been clearly shown in adult zebrafish [9,13,86]. However, the
confirmation of this ability in mammalian species has proved more challenging, but recent
advances have shown potential corroboration of such ability [17,19–21,87]. This variation
in the capacity of NCCs in different species may be due to the variation in how NCCs
contribute to cardiac formation. The location of NCCs in the heart during embryogenesis
could pose an advantage in certain species, as the recruitment of NCCs to the injured
area may lead them to be able to receive certain cues from surrounding cells to re-instate
stem cell-like properties. Furthermore, the axolotl should be additionally investigated into
the NC’s role in regeneration. The axolotl is a type of salamander with an astounding
capacity for regeneration of its system, including the tail and limbs, along with portions
of its spinal cord and brain [88–93]. As NCCs contribute to a large portion of various
developmental processes, it only raises the question as to whether NCCs contribute to the
regenerative ability of the axolotl. Multiple groups have reported the ability of the axolotl
to regenerate cardiac tissue without scarring after partial ventricular amputation assisted
by cardiomyocyte proliferation [94,95], with Cano-Martinez et al. further indicating that
the axolotl is also able to restore cardiac function after injury [94]. To date, little is known
about the NC’s contribution to the development of the axolotl heart [35,96]. However, the
current data pose an interesting avenue into the potential abilities of the NC regarding
such regenerative capacity, which could lead to advances in cardiac NC regeneration in
mammalian species and advances in cardiac disease therapies.

As the contribution of NCCs to the heart varies between model systems, it should
be further investigated whether regulatory networks controlling NC response to injury
and tissue regeneration also differ. For example, in zebrafish, it was identified that sox10
is potentially a vital component in cardiac NC reactivation and cardiomyocyte prolifera-
tion [13,86]. However, this role for sox10 has yet to be investigated and corroborated in
other vertebrate systems, such as the mouse or chick. Although there are various genes and
networks that are staples in cardiac mechanism studies, such as BMP and Wnt [44,97–99],
one signaling pathway that warrants further investigation regarding the NC’s contribution
to cardiac regeneration is the Hippo signaling pathway. The Hippo signaling pathway
is a highly conserved regulator of organ size and tissue growth. Previous studies have
reported that during mouse embryogenesis, the deletion of Hippo pathway core kinases
promotes cardiomyocyte proliferation, and that constitutively active Yap, a downstream
effector of the Hippo pathway, increases cardiomyocyte proliferation and heart size both
in the embryonic and postnatal mouse [100,101]. To date, numerous studies have identi-
fied Yap as a vital factor in regulating cardiomyocytes and neonatal cardiac regeneration,
and deficiencies in Yap or its downstream targets, such as Wntless, result in increased
scar size and fibrosis after myocardial infarction [98,102]. Furthermore, it was identified
that overexpression of Yap (YapS112A) after injury at postnatal day 28 reduced fibrosis,
increased myocardial tissue, enhanced cardiac function, and promoted cardiomyocyte
proliferation and survival, indicating that Yap is vital for postnatal-cardiac regeneration
after injury in mice [102]. As NCCs have been shown to give rise to cardiomyocytes among
various species, further investigation into the Hippo signaling pathway’s role in regulating
NC-derived cardiac tissue regeneration could pose a novel mechanism and role for both
Hippo signaling and cardiac regeneration.
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To enhance current therapies for patients with heart injuries, numerous studies have
begun investigating the ability of NC-derived stem cell models. As discussed, both hu-
man embryonic stem cells and iPSCs are currently at the forefront of regeneration strate-
gies [61,69,70]. Although results are promising, further investigations are needed into the
potential of NC-like stem cells in specific tissues to contribute to regeneration. Promising re-
sults have been shown in the ENS [44,45], but similar abilities of NCCs in the cardiac system
have not yet been identified. Further investigations should include whether NCCs from
embryonic stages remain multipotent in a dormant stage, or whether such cells maintain
specialized fates and later dedifferentiate to contribute to regeneration upon injury.

This review summarizes the contribution of the cardiac NC to the heart between
species and the possible contribution to regenerative capacity. Furthermore, we have
discussed recent advances in the field of cardiac regeneration, with emphasis on the in-
vestigation into how NCCs may be a pivotal cell population that could provide novel
information regarding tissue regeneration therapies. Despite the recent advances in un-
derstanding NC-derived cardiac regeneration, many questions still persist regarding the
regenerative capacity of the adult mammalian heart and the respective mechanisms. Re-
search is also needed to determine the evolutionarily conserved elements of NCs in the
cardiac system in order to better understand the abilities and functional contributions of
the NC.
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