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Abstract: Brain-derived extracellular vesicles (BDEVs) are released from the central nervous system.
Brain-related research and diagnostic techniques involving BDEVs have rapidly emerged as a means
of diagnosing brain disorders because they are minimally invasive and enable repeatable measure-
ments based on body fluids. However, EVs from various cells and organs are mixed in the blood,
acting as potential obstacles for brain diagnostic systems using BDEVs. Therefore, it is important
to screen appropriate brain EV markers to isolate BDEVs in blood. Here, we established a strategy
for screening potential BDEV biomarkers. To collect various molecular data from the BDEVs, we
propose that the sensitivity and specificity of the diagnostic system could be enhanced using machine
learning and AI analysis. This BDEV-based diagnostic strategy could be used to diagnose various
brain diseases and will help prevent disease through early diagnosis and early treatment.
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1. Introduction

Extracellular vesicles (EVs) are secreted by almost all cells and are known to play an
important role in intercellular communication [1]. EVs are classified into three subtypes:
apoptotic bodies, microvesicles, and exosomes [2]. These EV subtypes are distinguished by
their size and the characteristics of their biogenesis; however, specific markers are lacking
for each EV subpopulation. Therefore, the overlap in size between subtypes ultimately
leads to confusion over their identification. Given the lack of specific markers for each
EV subtype and difficulty in distinguishing the subtypes, the International Society for
Extracellular Vesicles has proposed the use of “EV” as a generic term for vesicles secreted
from cells as well as the classification of subtypes based on EV size [3]. Exosomes, also
called small EVs, are the smallest vesicles, measuring ~40–120 nm. They are produced
through a complex process involving the internal budding of endosomes. Microvesicles,
also called ectosomes, are ~100–1000 nm in size and are produced from the outer plasma
membrane. Apoptotic bodies, the largest EVs, are ~500–4000 nm in size and are produced
as a result of programmed cell death. Microvesicles are distinguished from apoptotic bodies
by their size, and they differ by their formation, content, and membrane-specific antigens
as microvesicles originate from the plasma membrane [4].

EVs carry biomolecules from origin cells and transmit them to other cells for cell com-
munication. Attempts have been made to isolate tissue-specific EVs using their properties
combined with tissue-specific single or multiple markers [5]. The successful isolation of
EVs using tissue-specific markers enables the noninvasive and repeatable measurement of
tissue pathology without tissue biopsy. These advantages have led to an increase in studies
involving tissue-specific EV isolation and diagnosis.
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Protocols to isolate brain-derived EVs by dissociation of brain tissue have been well
established [6–8]. Papers that discover new disease mechanisms or biomarkers by analyzing
the internal molecules in detail through cargo analysis in EVs have been reported. For
example, Huang et. al. and Su et al. isolated EVs from the brains of AD patients and
analyzed protein and lipid to find potential biomarkers [9,10].

In particular, considering that EVs can pass through the blood–brain barrier (BBB),
there are also attempts to isolate EVs from blood for brain diagnosis. It is well known
that amyloid-β (Aβ), tau, and α-synuclein, which are used as major biomarkers of brain
disease, are released through EVs [11–13], and minimally invasive brain diagnosis can be
made by detecting them in the blood. The brain is extremely difficult to biopsy, and in most
cases, radiological methods are used for diagnosis, but the cost is high, and early diagnosis
is not easy because the cause of the disease or the sensitivity is not high in the result.
However, the minimally invasive brain diagnosis method using Blood EV not only reduces
the physical and economic burden of the subject by enabling repetitive measurement, but
also tracks individual changes by accumulating comparative data at different time points
through repeated analysis. Therefore, changes in the brain can be continuously tracked,
and diseases can be prevented through early diagnosis. In the first stage of diagnosis using
BDEV, if combined with existing diagnostic methods, it will contribute to early diagnosis,
and it is expected that personalized diagnosis and prevention will be possible if data are
accumulated in the second stage further through repetitive measurement. Recently, in
order to further increase the accuracy of body fluid-based diagnosis, reports on the results
of separating BDEV from blood and using it for clinical diagnosis have been steadily made.
In the case of traumatic brain injury, there was no appropriate diagnostic molecular marker,
but by examining miRNA and protein profiles of blood EVs isolated using neuronal-
specific markers, it was shown that there is a possibility to distinguish between patients
and controls [14–17], and Alzheimer’s disease. Regarding disease, isolated EVs were tested
for traditional AD markers such as tau and Aβ, showing the possibility of predicting AD
in the early stages of the preclinical course [18,19]. In addition, astrocyte-derived EV has
higher expression levels of proteins known to be associated with AD pathogenesis, such as
amyloid beta precursor protein (APP), γ-secretase, and β-secretase, than neuron-derived
EV, so it is likely to be more useful for diagnosing AD patients [20]. Although α-synuclein
is used as an important biomarker for PD, it is known that the initial false positive rate is
high. When α-synuclein of neuron-derived EV is investigated, a more reliable relationship
between PD and healthy control is seen than when using total plasma [21].

Furthermore, it has been reported that by isolating oligodendrocyte-derived EVs
and examining α-synuclein, multiple system atrophy and PD, which are often clinically
confused, can be more accurately distinguished [22,23]. In the case of microglia exosomes,
many share biomarkers with macrophages and monocytes, making it difficult to separate
them specifically [24]. However, after measuring microglia-derived EV in the blood using
plant lectin, isolectin B4, which is known to bind to microglia, and CD11b, a microglia
surface marker, it was reported that the amount increased in AD patients [25].

In the field of disease diagnosis, researchers have attempted to indirectly assess the
state of brain tissue using the following process.

(1) The isolation of EVs from the blood; (2) the enrichment of brain-derived EVs
(BDEVs) using an immunocapture method with brain-related biomarkers; and (3) analysis
of the cargoes of BDEVs.

EVs secreted from the brain pass through the BBB and are found in the blood [5]; thus,
to improve the diagnosis of brain disorders, it is important to enrich BDEVs effectively by
separating them from various organ-derived EVs.

In the present study, a strategy for identifying BDEV biomarkers to improve the
enrichment of BDEVs and a method for applying this strategy to brain diagnosis and
brain region-specific discovery were proposed and reviewed. Our suggested strategy
is summarized with three steps: (1) considerations of new BDEV biomarker discovery,
(2) application of BDEV, and (3) machine learning and AI strategies for clinical application.
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Through the discovery of more effective BDEV markers, we hope to be able to achieve the
early diagnosis of brain diseases.

2. Results
2.1. Concept of BDEVs

BDEVs are EVs secreted from various cells in the brain. They are known to pass
through the BBB and are secreted into the blood. BDEVs contain various molecules,
including noncoding RNAs, mRNAs, proteins, and metabolites, that reflect their origin
cell [26]. Thus, by capturing BDEVs in the blood and examining their internal molecules,
the state of the brain can be identified indirectly and disease can be predicted (Figure 1) [20,
22,23,27–30]. For example, L1 neuronal cell adhesion molecule (L1CAM) was considered
a BDEV marker, and attempts were made to analyze brain diseases via L1CAM-positive
EVs in the blood [19,21,31]. However, some studies have shown that L1CAM has low brain
specificity and is expressed in cells other than brain cells; hence, the role of L1CAM as a
BDEV is controversial. Therefore, more specific biomarkers must be identified to improve
the accuracy of brain disease diagnosis.
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Figure 1. Brain-derived extracellular vesicles. Various cell types are found in the brain, including
neurons, oligodendrocytes, astrocytes, and microglia, and these cells secrete extracellular vesicles
(EVs) that reflect the characteristics of their origin cells. These EVs carry various cargoes such as
DNA, RNA, proteins, and metabolites. Given that EVs share the characteristics of their origin cell, it
is possible to sort cell type-specific EVs using the surface markers of each cell type in the brain.
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2.2. Proposed BDEV Biomarker Discovery Strategy

To discover novel BDEV biomarkers for blood biopsy, it is necessary to sequentially sat-
isfy at least the following four conditions: (1) specific expression in brain tissue, (2) known
molecules present in EVs (3) present in EV membranes for BDEV enrichment via immune
capture from EVs of various origins, and (4) known biomarkers previously detected in
blood (Figure 2).
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Figure 2. Selection strategy for novel BDEV markers. The step-by-step criteria for identifying novel
BDEV biomarker candidates are shown. First, the marker should have brain tissue specificity. Second,
the marker should be highly likely to be or have been detected in an EV. Third, the biomarker should
be sortable as a BDEV in a mixture of EVs. Finally, the biomarker should ideally have been detected
in the blood.

Four Steps for Discovering BDEV Biomarkers

1. Brain-specific biomarker

One weakness of existing BDEV biomarkers is that they are also expressed in other
tissues. Therefore, it is essential that more brain-specific biomarkers are discovered. Given
that the National Center for Biotechnology Information (NCBI) and other databases provide
human tissue RNA expression data, it is possible to specify genes expressed only in the brain
using this data. In addition, The Human Protein Atlas provides immunohistochemistry
results for all organs; therefore, it is also possible to confirm protein expression levels.

2. Known to have been detected in EVs

Regardless of brain-specific expression, a gene cannot be used in a BDEV-based
strategy if it is not loaded into an EV. Therefore, it is necessary to select a biomarker that
has been detected in EVs or is likely to exist in EVs. As the demand for information on
EVs has increased, databases such as ExoCarta and Vesiclepedia have begun to provide
data on EV cargoes [32,33]. In addition to providing gene annotation information, the Gene
Ontology (GO) resource provides information on the location of a gene product in the
cell [34]; thus, annotation information on the gene products that exist in EVs is available.
As research on EVs has progressed, our understanding of whether proteins are loaded
into EVs has also improved. Two EV cargo loading mechanisms exist: (1) proteins are
loaded into EVs via the endosomal system (exosome) and secreted and (2) proteins are
loaded together by membrane shedding (microparticles) [4]. Based on these basic biological
processes, we can infer whether endosomal system proteins or membrane proteins are
likely to be loaded into EVs. Some studies have shown that certain protein motifs facilitate
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EV loading [35]. Improving our understanding of the motifs that promote EV loading will
improve our ability to predict the biomarkers likely to be loaded into EVs. If databases and
the available information are used effectively, it will become possible to select a specific
protein biomarker known to be EV cargo or tentatively identify cargo candidates with a
high probability of success.

3. Isolation of BDEVs using various methods

EVs derived from various organs are mixed in the blood, and it is important that
only BDEVs are enriched for brain diagnosis. The methods most frequently used for
such enrichment are antigen–antibody affinity methods, such as immunoprecipitation.
Therefore, any biomarker selected for BDEV enrichment should possess high accessibility
to the antibody. It is difficult for an antibody to penetrate the EV, which is protected by
a lipid membrane; thus, the BDEV biomarker should exist outside the EV in the same
form as a membrane protein. Indeed, most of the proteins currently used as cell- and
tissue-specific EV biomarkers are classified as membrane proteins and receptors according
to the GO term “cellular component” classification. A technology for labeling the internal
RNA cargo of EVs through EV fusion has been studied [36]. By applying this method, not
only tissue-specific proteins but also non-coding RNAs such as miRNA/lncRNA, etc., with
known tissue or cell specificity, can be sorted through appropriate labeling. In addition
to the separation method using antigen-antibody affinity, it is also possible to capture
only specific EVs simply by using ligand-receptor interaction. If other such methods are
developed, the range of choices for BDEV biomarkers would be widened.

4. BDEV markers detected in the blood: an optional step for isolating BDEVs

Even when a putative biomarker is identified using the abovementioned criteria, the
existence of the putative biomarker with the EV and whether it can pass through the BBB
into the blood are possible issues because transport routes remain obscure [37]. To minimize
errors related to these problems, it is necessary to at least guarantee that the biomarker has
been detected in the blood. The Human Protein Atlas provides information on the level
of protein expression in the blood in connection with the PeptideAtlas database, and the
EV cargo database ExoCarta provides the origin of EVs, i.e., information on blood EVs,
cell culture EVs, etc. EV-related data are now being submitted to proteomics databases,
e.g., ProteomeXchange; therefore, it is possible to determine whether a biomarker has been
detected in the blood using thesis or public proteomics data from a database. The negative
effects of trial and error can be minimized by using databases to obtain the minimum
required data prior to beginning the research.

2.3. Strategy of Brain Region- or Cell Type-Specific Diagnosis Using Multiple Markers

The human brain has brain regions with specialized functions and different cell
subtype compositions; thus, the molecular and biological characteristics of brain diseases
that occur in each brain region are also different, and the treatment for these diseases differs
accordingly. Therefore, discovering brain region-specific markers in the brain is important
for diagnosing different brain diseases (Figure 3). It is difficult to accurately diagnose a
specific brain disease in its early stage because the early pathological characteristics of
brain diseases are often similar and mixed [38,39]. Hence, using BDEVs for brain region- or
cell type-specific diagnosis at the molecular level could make it possible to identify brain
diseases more accurately at an earlier stage. The development of analysis technology and
the accumulation of data have led to the identification of brain region- and cell type-specific
expression biomarkers. The Human Protein Atlas provides RNA expression information
for each brain region in humans, and the Allen Brain Atlas also provides this information
or in situ hybridization results. In particular, single cell analysis has led to the discovery of
brain cell type-specific biomarkers [40,41]. Establishing a biomarker capable of isolating
bulk BDEVs secreted from the entire brain will facilitate a fuller analysis by enabling
the double-capture of additional region- or cell type-specific biomarkers, even if these
biomarkers are not brain-specific. For example, EV secretion is known to be increased in
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cancer cells [42]; if EV secretion changes according to the disease state, such as in cancer,
assessing the subpopulation of each BDEV biomarker will help accurately diagnose the
disease [43]. Alternatively, new diagnosis systems could be constructed using molecular
monitoring of brain-derived region- or cell type-specific EVs.
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specialized functions depending on the brain region, even if the cells are of the same lineage, e.g.,
cholinergic neurons in the hippocampus and dopaminergic neurons in the substantia nigra.

2.4. Repeatable and Minimally Invasive Brain Monitoring System

By analyzing blood-based BDEVs, we can indirectly identify the state of the brain using
a minimally invasive method that is less burdensome than repeated biopsies. Moreover,
using this method, it will be possible to build a BDEV-based sustainable brain monitoring
system (Figure 4). Such a system could capture the prognosis of a disease through the
periodic collection of the patient’s blood, isolation of BDEVs, and continuous monitoring of
disease-related molecules. The measured molecule may be a well-known biomarker (e.g.,
amyloid beta, amyloid precursor protein, tau, synuclein, and neuron-specific enolase) or a
new biomarker discovered using the above-described BDEV-based brain disease diagnosis
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strategy. Furthermore, if information from various research fields is accumulated, it may
be possible to build an AI-based automated diagnosis system through machine learning.
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including those related to blood-based brain aging. As the state of the body is monitored through
periodic blood tests, BDEVs in the blood can be periodically separated and measured through these
tests. In addition, it is possible to continuously trace the change in the pattern of the internal disease-
associated biomarker; therefore, it is possible to establish a blood-based, brain-specific, long-term,
and repeatable testing method by comparing and analyzing not only age-related changes but also
changes in groups of participants with a similar age.

2.5. Machine Learning, AI, and Personal Diagnosis

The development of high-throughput data production methods, e.g., sequencing and
mass spectrometry, has facilitated the collection of molecular data from individual patients.
By combining this data with machine learning, AI-based diagnosis is becoming possible.
The biological activities of humans are controlled by complex interactions at various levels
such as the transcriptome, proteome, and metabolome. In addition, a symbiotic microbiome
within humans is being actively studied in an attempt to explain cellular activities more
accurately (Figure 5). Rather than attempting to understand biological activities in only one
major field, which was once the standard, the era of multiomics has enabled researchers to
study biological activities in several different biological layers [44]. Given the complexity
of these interactions, machine learning, a field of AI in which data are interpreted via
computational methods and universal patterns are derived from the data, is now being
applied to help interpret multiomics data, which is difficult to interpret using traditional
human-led methods. Moreover, studies have been conducted to apply the results of
machine learning to disease diagnosis.

Feature selection is the process by which data are selected for machine learning
(Table 1). It is an important step for reducing data noise and increasing computational
power. Humans are known to possess about 20,000–25,000 genes; if the RNA and protein
expression levels of all human genes are used for machine learning, the number of data
combinations increases exponentially and the computational burden becomes overwhelm-
ing. Furthermore, as the number of features used in machine learning increases, the model
becomes more complex and difficult to interpret. Therefore, it is important to select only the
appropriate features for obtaining the desired results, and the selected features themselves
can be applied as new biomarkers. Features can be selected by comparing those with
and without disease using existing statistical methods, although various tools have been
developed specifically for feature selection [45,46].
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Figure 5. BDEVs and machine learning. Various multiomics data can be collected through molec-
ular data analyses of BDEV cargoes, and the efficiency of disease prediction and diagnosis can be
improved using machine learning. This process will enable not only personalized diagnosis but also
personalized medicine.

After discovering biomarkers using appropriate feature selection applied to complex
molecular data, the biomarkers must then be used for disease diagnosis. Hence, vari-
ous algorithms have been developed for making clinical decisions. Machine learning is
applied after collecting molecular data for biopsy, such as data from plasma and urine
measurements, but it is difficult to account for the tissue specificity of the target disease.
However, using a BDEV platform to indirectly obtain tissue-specific molecular data that are
difficult to obtain via biopsy and applying these data using a machine learning approach
will improve brain disease diagnosis. In addition, collecting and recording patient data
over an extended period will help predict patient prognosis.

Table 2 summarizes studies to diagnose brain diseases using EVs isolated from blood
or brain-derived EVs and machine learning. After obtaining RNA or protein expression
using sequencing and mass spectrometry, in some cases, features selected through a feature
selection step are used, and clinical features related to patients such as sex, age, and behav-
ioral score, etc., and there are also studies using machine learning by quantifying known
brain disease-related proteins such as aβ, α-synuclein, and tau, etc. by immunocapture
assay. These studies show that EV-based diagnosis strategies can not only discover new
disease features but also develop known molecular features.

Table 1. An example of feature selection methods.

Method Description

Filter
Statistical techniques for evaluating
the feature score/rank

t-test/ANOVA Traditionally used to compare two or more
categorical groups and continuous features

Chi-square test Used for comparisons of categorical
features

Pearson’s correlation Measure of the linear relationship and
dependence between two or more features

Informatics gain Measure of the best features providing
optimal information about a class
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Table 1. Cont.

Method Description

Wrapper Select the best feature subset based
on classification performance

Forward selection
Begins with zero features and iteratively
adds features that provide predictive
power

Backward elimination
Begins with all features and iteratively
removes features that do not provide
predictive power

Stepwise selection Combination of forward selection and
backward elimination

Embedded
Search method for obtaining the
best subset of features that is built
into a learning algorithm

Ridge/LASSO regression Type of linear regression that uses feature
penalty

Decision tree/random forest Classifier that combines many decision
trees

Table 2. Machine learning studies with blood extracellular vesicle for the diagnosis of brain diseases.

Sample Target Disease Input Data Machine Leaning
Algorithm Reference

Plasma EV Alzheimer’s disease miRNA sequencing Decision trees, Support vector
machine, adaBoost [47]

L1CAM+ plasma EV Alzheimer’s disease
Clinical features, Tau, Aβ,
IRS-1, EV concentration
and diameter

Logistic regression [48]

L1CAM+ plasma EV Cognitive deficits in
HIV

Clinical features,
HMGB1, Neurofilament
light, Tau

K-Nearest Neighbor, Support
vector machine, adaBoost [49]

Plasma EV Parkinson’s disease Clinical features, Tau, Aβ,
α-synuclein Artificial neural network [50]

Plasma EV
Parkinson’s disease
and multiple system
atrophy

Surface antigen Random forest [51,52]

GluR2+ plasma EV Traumatic brain injury miRNA sequencing

K-Nearest Neighbor, Support
vector machine, Linear
discriminant analysis, Logistic
regression, Naive Bayes

[16]

Plasma EV Traumatic brain injury Proteomics Ensemble Learning [53]

3. Conclusions

A BDEV-based brain diagnosis platform could be used to indirectly obtain molecular
data from brain tissue that is otherwise difficult to obtain via biopsy. Additionally, the
identification and selection of appropriate BDEV biomarkers will facilitate the analysis
of various brain region- or cell type-specific BDEVs and the accurate diagnosis of related
diseases. In addition, the molecular data produced by analyzing BDEVs combined with
machine learning tools could help explain various brain phenomena and will help discover
new brain disease biomarkers. Ultimately, the collection of patient data over an extended
period will enable BDEV-based disease diagnosis and improve our predictions of patient
prognosis.
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