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Abstract: Axonal growth is mediated by coordinated changes of the actin and microtubule (MT)
cytoskeleton. Ample evidence suggests that members of the formin protein family are involved
in the coordination of these cytoskeletal rearrangements, but the molecular mechanisms of the
formin-dependent actin–microtubule crosstalk remains largely elusive. Of the six Drosophila formins,
DAAM was shown to play a pivotal role during axonal growth in all stages of nervous system
development, while FRL was implicated in axonal development in the adult brain. Here, we aimed
to investigate the potentially redundant function of these two formins, and we attempted to clarify
which molecular activities are important for axonal growth. We used a combination of genetic
analyses, cellular assays and biochemical approaches to demonstrate that the actin-processing activity
of DAAM is indispensable for axonal growth in every developmental condition. In addition, we
identified a novel MT-binding motif within the FH2 domain of DAAM, which is required for proper
growth and guidance of the mushroom body axons, while being dispensable during embryonic axon
development. Together, these data suggest that DAAM is the predominant formin during axonal
growth in Drosophila, and highlight the contribution of multiple formin-mediated mechanisms in
cytoskeleton coordination during axonal growth.

Keywords: cytoskeleton; formin; axon; nervous system; development; Drosophila

1. Introduction

Recent advances in the field of neuroscience revealed the fine structure of the axonal
cytoskeleton and further demonstrated the importance of actin and microtubule (MT)
interactions during axonal development [1,2]. Axonal growth cones (GCs) are particularly
rich in both cytoskeletal elements, and movement of the axons is governed by cytoskeleton
rearrangements induced by guidance molecules and adhesion proteins [3]. Several modes
of actin–microtubule crosstalk have been described which may be involved in axonal
growth [4]. For example, microtubules defasciculating from the central bundle make
contact with the actin arcs of the transition zone of the GC, while the MTs reaching out to
the peripheral zone can be captured by F-actin bundles and extend preferentially alongside
filopodial actin, and also the assembly of branched actin arrays is possible from microtubule
plus ends [5–7]. Most of these interactions are mediated by cytolinkers, proteins that are
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able to make contact with both cytoskeletal elements. Although a growing number of
proteins, such as spectraplakins (ACF7/MACF1 in mammals, Shot in Drosophila), Drebrin,
Gas2-like 1, NAV1, XMAP215 and formins, are clearly implicated in linking of the regulation
of actin and MT dynamics in growth cones, many aspects of their mechanisms remained
largely unexplored.

Formins are well known to play an essential role in the formation of unbranched actin
filaments; however, an increasing body of work has suggested that they can also regulate the
microtubule cytoskeleton. The most conserved structural elements of all formins are the two
formin homology domains (FH1 and FH2) [8]. The FH1 domain contains polyproline motifs,
which serve as a binding surface for profilin-bound actin monomers, whereas the FH2 is
the main functional domain having a role in actin nucleation and filament elongation [9,10].
Members of the diaphanous-related formin (DRF) subfamily, such as Dia, DAAM and FRL,
contain other conserved domains as well, including a GTPase-binding domain (GBD), a
diaphanous inhibitory domain (DID) and a diaphanous autoregulatory domain (DAD).
Interaction between the DID and DAD domains provides an autoinhibited conformation,
whereas binding of a small GTPase (such as Rho, Rac or cdc42) to the GBD destabilizes the
DID–DAD interaction which in turn partially activates the DRFs [11,12]. In addition to actin
binding, several studies showed that formins can directly interact with microtubules and
they play an important role in the formation of stable MTs [13–20]. These data suggested
that in vitro and in simple cellular assays, most formins exhibit an MT stabilization activity,
which is usually dependent on their FH2 domain [21], although some formins contain other
MT-binding domains [15,16]. In addition to these domains, few formins were shown to
be able to bind MTs via their positively charged C-terminal tail (CT) regions [19,22,23],
albeit binding strength seems to be lower than for the FH2 domain [18]. Importantly, it
has also been revealed that the actin assembly activity of formins is not necessary for the
induction of MT stabilization nor for direct MT interaction [17,19,22]. Collectively, these
observations suggested that the main MT-binding surface of formins resides in the FH2
domain. Interestingly, however, the FH2 domain is also implicated in another type of MT
interaction, attained by binding to MT plus-end tracking proteins (+TIPs), such as end-
binding protein 1 (EB1), adenomatous polyposis coli (APC) or cytoplasmic linker protein
170 (CLIP-170) [14,17,24]. The concerted action of formins and +TIPs is likely to represent
another important mechanism of actin and MT coordination in neurons, and possibly in
other cell types [14,24–26]. Thus, formins can be coupled to MTs in several distinct ways
that might involve direct MT-binding and/or interactions with MT-binding proteins, such
as +TIPs. Whereas these are not necessarily mutually exclusive alternatives, it remained an
important question to understand the functional impact of these mechanisms in a consistent
in vivo model system, while keeping in mind that formins can also exert an indirect effect
on MT regulation, via modulation of the actin cytoskeleton.

In a previous study, we showed that the DAAM and FRL formins have a redundant
contribution to development of the mushroom body (MB) neurons of the adult Drosophila
brain [27]. We found that axonal growth of the Kenyon cells was significantly more
compromised in DAAM; flr double mutants as compared to single mutant animals. To
extend these studies, we investigated the possible redundant role of DAAM and FRL in
development of the embryonic central nervous system (CNS) and axonal growth. We
found that the frl null mutant embryos showed no developmental defects in the CNS,
and our double-mutant analysis revealed no indications for redundancy between DAAM
and FRL in the embryonic nervous system, suggesting that of these two formins, only
DAAM is crucial for embryonic axonal growth. As to the mechanisms of DAAM, we have
formerly shown that the growth speed of MTs is reduced and organization of the MT
cytoskeleton is altered in DAAM mutant primary neurons [22]. We have also shown that
Drosophila DAAM can directly interact with taxol-stabilized MTs via its FH2 domain and
CT region, and through this direct interaction, DAAM stabilizes MTs against cold-induced
depolymerization in vitro. Our results also revealed that a C-terminal fragment of DAAM
(CDAAM) including the FH1, FH2, DAD and CT domains, can crosslink and co-align
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the F-actin and MT filaments. Together, these results strongly suggested that DAAM has
a direct effect on MT dynamics during axonal growth. However, we have also noticed
that the effect of an actin-destabilizing reagent (Latrunculin A) on MT growth was largely
comparable to what we measured in DAAM mutant neurons. Therefore, how DAAM
regulates the MT-cytoskeleton during axonal growth remained an unanswered question.

In this paper, we identify DAAM as the sole formin member necessary during the
development of the embryonic nervous system of Drosophila. To dissect the role of DAAM
at a molecular level and to address how its MT side-binding and actin processing activities
regulate the axonal cytoskeleton, we performed rescue experiments with wild-type and
mutant forms. Our current and previous experiments demonstrate that the actin-processing
activity of DAAM is indispensable for normal neural growth in every developmental
aspect studied so far. In addition, we identified a novel MT-binding motif within the FH2
domain of DAAM, and we demonstrate that it plays a role in vivo during mushroom body
development, while it appears dispensable during embryonic neuronal development.

2. Materials and Methods
2.1. Fly Stocks and Genetics

Flies were raised at 25 ◦C under standard conditions. The following mutant strains
were used: w1118 (BL #3605), Elav-Gal4 (BL #8760 and 8765), OK107-Gal4 (BL #854) provided
by the Bloomington Drosophila Stock center, dDAAMEx4 [28], frl59 [29], DAAMEx4; frl59/TM3,
twi-Gal4, UAS-EGFP, UAS-DAAM [30], UAS-DAAMI732A [28], UAS-DAAMK881A [31], UAS-
DADG [28] and UAS-CDAAM [30]. Where necessary, zygotic mutants were selected by
using a CyO, twi-Gal4, UAS-EGFP or TM3, twi-Gal4, UAS-EGFP balancer chromosome. For
live imaging, the ElavGal4,EB1::GFP line was crossed to UAS-CDAAM or UAS-CDAAMI732A.
The UAS-DAAMFH2R/K-A, UAS-CDAAMI732A and UAS-CDAAMFH2R/K-A transgenic con-
structs were generated as described below. Drosophila transgenesis was carried out by
using the PhiC31 integrase and all transgenes were integrated into the attP40 landing site
on the second chromosome.

2.2. Molecular Biology

For transgenesis, CDS of all DAAM constructs were cloned into the pWalium5moe
vector, which is derived from pWalium10moe by the removal of a 5xUAS sequence. Point
mutations were generated by site-directed mutagenesis by using standard protocols (for
primers, see Table S1). For bacterial protein expression DAAM FH2, FH2R/K-A constructs
were cloned into pGex6p1 or pGex2T. For S2 cell protein expression, DAAM FH2, FH2R/K-A,
CDAAM, CDAAMI732A, CDAAMFH2R/K-A constructs were cloned into either pAFW or
pAGW destination vectors by following a standard Gateway cloning procedure.

2.3. Protein Expression and GST Pull-Down

N-terminally GST-tagged DAAM FH2, FH2R/K-A recombinant proteins were expressed
and purified as described earlier [32]. For GST pull-down, recombinant proteins (5 µg
of each) were immobilized on glutathione-sepharose 4B beads (GE Healthcare, Chicago,
IL, USA) in storage buffer (50 mM Hepes, pH: 7.5; 5 mM DTT; 50 mM NaCl; 5% glycerol;
1% sucrose). Sepharose beads were then incubated for 1 h at room temperature (RT) with
purified tubulin (Cytoskeleton, Denver, CO, USA), which was previously dissolved in PEM
buffer (80 mM Pipes, pH: 7.0; 2 mM MgCl2; 0.5 mM EGTA) and then diluted in microtubule-
binding buffer (MBB; 10 mM Hepes, pH: 7.0; 1 mM MgCl2; 1 mM EGTA; 1 mM DTT;
0.5 mM Thesit) to have a final concentration of tubulin at 0.5 µM. Beads were then washed
in MBB and the proteins were eluted in SDS-PAGE sample buffer. Proteins were analyzed
by SDS-PAGE and Western blot by using a standard procedure. GST-tagged proteins were
detected by Coomassie blue staining and tubulin was detected by an anti-tubulin antibody
(1:1000; DM1A, Merck KGaA, Darmstadt, Germany) in combination with HRP-conjugated
anti-mouse IgG (1:10,000; Jackson ImmunoResearch Europe Ltd, Cambridgeshire, UK).
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2.4. MT Co-Sedimentation

MT co-sedimentation was performed as described by Fassier et al. in 2018 [33] with
some modifications. S2 cells were transfected with either pAFW-DAAM-FH2 or pAFW-
DAAM-FH2R/K-A plasmids by using the Effectene transfection reagent (QIAGEN Sciences
Inc., Germantown, MD, USA). After 24 h of culturing at 27 ◦C, the cells were harvested
(1000× g, 2 min, 4 ◦C) and washed in PEM buffer supplemented with a protease inhibitor
cocktail (cOmpleteTM, F. Hoffmann-La Roche Ltd., Basel, Switzerland). Pellets were resus-
pended in PEM buffer and the cells were lysed by sonication. Total lysates were spun at
150,000× g, 10 min, 4 ◦C in an Optima MAX-XP benchtop ultracentrifuge (Beckman Coulter
Inc., Brea, CA, USA) using TLA120.1 rotor. Supernatants were collected and supplemented
with 20 µM Taxol (SigmaAldrich) and 1 µM GTP (SigmaAldrich). Samples were incubated
at 37 ◦C for 30 min to let the MTs polymerize. The resulting extracts were layered onto
a 10% sucrose cushion in PEM buffer (one third of the final volume). The samples were
spun at 180,000× g, 15 min, 37 ◦C. Supernatants were collected in empty tubes and the
pellets were resuspended in the original volume of PEM buffer. The proteins were analyzed
by SDS-PAGE and Western blot. Equal volumes were loaded from the supernatant and
pellet fractions. DAAM constructs were detected by a mouse anti-Flag antibody (1:500;
SigmaAldrich) and tubulin was detected as described for GST pull-down.

2.5. SDS-PAGE and Western Blot Analysis of Embryonic Lysates

Stage 11 and 16–17 embryos were collected and homogenized in a lysis buffer (25 mM
Tris-HCl, pH:7.5; 150 mM NaCl; 0.1% SDS; 0.5% Na-deoxycholate; 1% TritonX-100) sup-
plemented with a protease inhibitor cocktail (cOmpleteTM, F. Hoffmann-La Roche Ltd.,
Basel, Switzerland). Homogenates were spun at 12,000× g, 10 min, 4 ◦C and supernatants
were analyzed by SDS-PAGE and Western blot by using a standard procedure. DAAM
was detected by a rabbit anti-DAAM polyclonal antibody (1:500; [34]) in combination with
HRP-conjugated anti-rabbit-IgG secondary antibody (1:10,000; Jackson Immunoresearch).
FRL was detected with a rat anti-FRL polyclonal antibody (1:1000; unpublished data, de-
scribed in Tóth et al., under revision in Cells) in combination with an HRP-conjugated
anti-Rat-IgG (1:10,000; Jackson Immunoreserach). Rat anti-α-Actinin (1:10,000; Babraham
Institute, Cambridge, UK) or rat anti-actin (1:10,000; Babraham Institute, Cambridge, UK)
antibodies were applied to detect proteins that were used as loading controls.

2.6. Primary Neuronal Cultures and Immunohistochemistry

Primary neuronal cells were obtained from stage 11 Drosophila embryos as described
previously by Sanchez-Soriano et al. in 2010 [35]. Primary neurons were cultured for
6 h or 24 h in vitro (HIV), and then fixed by following a procedure described by Xu et al.
in 2013 [36]. Briefly, cells were pre-fixed for 1 min in a solution containing 0.3% (w/v)
glutaraldehyde (Electron Microscopy Sciences, Hatfield, PA, USA) and 0.25% TritonX-100
in Cytoskeleton buffer (CB; 10 mM PIPES, pH 7; 150 mM NaCl; 5 mM EGTA; 5 m glucose
and 5 mM MgCl2), then post-fixed for 15 min in 2% (w/v) glutaraldehyde in CB. After
fixation, cells were permeabilized and blocked-in blocking buffer (0.2% w/v BSA, 0.3%
Triton X-100 in CB) for 30 min. MT cytoskeleton was detected by anti-tubulin (1:1000;
DM1A) antibody in combination with Alexa405-anti-mouse IgG (1:600; Thermo Fisher
Scientific Inc., Waltham, MA, USA) and F-actin was visualized by phalloidin-Alexa488
(1:80; LifeSciences). Final samples were mounted in an anti-fade reagent (ProLong Gold,
Thermo Fisher Scientific Inc, Waltham, MA, USA, P36930) for imaging.

Stage 16–17 embryos were fixed and stained as described previously [34]. The fol-
lowing primary antibodies were used: mouse anti-Fasciclin II (1:500; DSHB), anti-BP102
(1:50; DSHB) and anti-DAAM (1:500; [34]). For fluorescent staining, we used Alexa555-anti-
mouse and Alexa488-anti-rabbit antibodies. For colorimetric staining, biotin-anti-mouse
secondary IgG (Jackson Immunoresearch) was used in combination with a Vectastain ABC
kit (Vector Laboratories, Inc, Burlingame, CA, USA) and SigmaFast DAB tablets (Merck
KGaA, Darmstadt, Germany).
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To analyze the MBs, adult brains were dissected in cold PBS, fixed in 4% paraformalde-
hyde (diluted in PBS) at RT for 20 min, primary antibody (1:500; mouse anti-FasII, Develop-
mental Studies Hybridoma Bank, Iowa City, IA, USA) was applied overnight (ON) at 4 ◦C.
After the secondary antibody (1:600; Alexa488-anti-mouse) and standard washing steps,
samples were mounted in an anti-fade reagent (ProLong Gold, Thermo Fisher Scientific
Inc, Waltham, MA, USA, P36930) for imaging.

2.7. Schneider 2 Cell Cultures and Transfection

For transfection, 0.25 × 106 S2 cells per well were plated onto 6-well plates and
transfected with pAGW, pAGW-CDAAM, pAGW-CDAAM I732A and pAGW-CDAAM
FH2 R/K-A constructs using the Effectene transfection reagent (Qiagen). On the following
day, 2 h before the fixation, the cells were transferred to a new 6-well plate containing a
coverslip pre-coated with concanavalin A. The cells were fixed and stained as the primary
neuronal cells, described above. The following primary antibodies were used: mouse
anti-α-tubulin (1:1000, DM1A; Merck KGaA, Darmstadt, Germany) and chicken anti-GFP
(1:1000, Abcam plc, Cambridge, UK). As secondary antibodies we used chicken Alexa-488
(1:600, Thermo Fisher Scientific Inc, Waltham, MA, USA) and mouse Alexa-546 (1:600,
Thermo Scientific).

2.8. Microscopy and Image Analysis

Confocal images were captured on a Zeiss LSM800 microscope. Images were then re-
stored by using Huygens Professional Software, 21.10 (Scientific Volume Imaging). Length
of the axonal MT bundles was measured by using NeuronJ plugin [37]. MT dynamics were
analyzed as described previously [22]. DAB-stained embryos were analyzed on a Zeiss
AxioImager M2 microscope.

2.9. Statistical Analysis and Figures

Prism 8.0.1 software was used to carry out statistical analysis (GraphPad Software,
San Diego, CA, USA). Normality of the data was assessed by D’Agostino–Pearson test.
According to the normality, Anova or Kruskal–Wallis test was used for multiple compar-
isons with either Tukey’s or Dunn’s post hoc test, respectively. Pairwise comparisons were
performed by using Student’s t-test. In all tests, p < 0.05 was considered as statistically
significant. Data are represented as mean ± S.D. Figures were prepared by using Illustrator
CS6 software (Adobe Inc, San José, CA, USA).

3. Results
3.1. DAAM and frl Mutant Analysis in Primary Neuronal Cultures

We have previously shown that DAAM has an important role in the development
of the embryonic, larval and adult nervous system of Drosophila [28,31,34]. Drosophila
DAAM acts as a bona fide formin and it is essential for the formation and growth of actin-rich
filopodial protrusions [32,34]. DAAM is strongly expressed in the Drosophila embryonic
nervous system, as well as in primary neurons, and the lack of DAAM causes axonal
growth defects [22,34]. However, DAAM is not the only Drosophila formin that has been
linked to CNS development, as we showed that DAAM and FRL regulate axonal growth in
the MB of the adult brain in a redundant manner [27]. Since FRL is also expressed in the
embryonic CNS and primary neurons (Figure S1A,B), we wanted to clarify its contribution
to embryonic axonal development and/or a potential redundancy with DAAM in this
context. To this end, we analyzed DAAMEx4 and frl59 single mutant, and DAAMEx4; frl59

double-mutant embryos. DAAM encodes two major isoforms (PB and PD), of which PB is
the predominant one in the embryonic nervous system. DAAMEx4 is a hypomorphic allele
which affects the expression of only the PB isoform [28]; therefore, it is an ideal genetic tool
to investigate the role of DAAM in axonal growth. Western blot (Wb) analysis showed
the DAAM-PB is the only isoform expressed in stage 11 embryos, while DAAM-PD is
expressed only at later stages (16–17) (Figure S1C,D). Wb also confirmed that DAAM-PB
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is completely missing from the DAAMEx4 embryos, whereas expression of DAAM-PD is
not affected (Figure S1C,D). Frl59 is a null mutant allele, generated by CRISPR/Cas9 [29].
Accordingly, Wb analysis showed that the expression of FRL is strongly reduced in the frl
mutant embryos (Figure S1C,D). DAAMEx4 and frl59 single mutant homozygous flies are
viable, whereas most of the DAAMEx4;frl59 double mutants fail to hatch and die during the
larval and pupal stages of development; nevertheless, selection of the double homozygous
mutant embryos is straightforward with the help of an appropriate balancer chromosome.

In order to assess the phenotypic effects of DAAM and frl, we first examined the mor-
phology of the ventral nerve cord (VNC) in the mutant embryos. Although we found no
gross alterations at this level, we observed that development of the intersegmental nerve b
(ISNb) was delayed (‘stalled’ phenotype) in DAAMEx4 and DAAMEx4; frl59 embryos, while
the frl59 single mutants appeared normal (Figure 1A–D′′′). To extend this analysis to the
subcellular level, we generated embryonic primary neuron cultures from stage 11 embryos,
as previously described [22]. This was followed by a detailed morphological analysis of neu-
ronal axons, including the measurement of central MT bundle length and filopodia number,
and the examination of MT organization and GC morphology (Figure 2A–F′′). This analysis
revealed that DAAMEx4 (24.72 ± 11.28 µm, n = 187) and DAAMEx4; frl59 (26.04 ± 9.68 µm,
n = 130) cells have significantly longer central MT bundles as compared to the frl59 single
mutants (18.06 ± 8.12 µm, n = 160) or wild-type control cells (18.43 ± 7.92 µm, n = 173)
(Figure 2G). The fact that DAAM mutant cells have longer axons is in a good agreement
with our previous findings for DAAMEx68, a null mutant allele [35]. MT morphology in the
GC is significantly altered in both DAAMEx4 and DAAMEx4; frl59 mutant cells as compared
to frl59 single mutant or control cells. Organization of the MTs in the GC was classified either
bundled or unbundled (Figure 2E–F′′). Unbundled MTs are more spread; they tend to form
loops or curves and the occurrence of single MT filaments is more frequent. Conversely,
bundled MTs are packed without any individual filaments present. In DAAMEx4 and
DAAMEx4; frl59 neurons, the frequency of bundled MTs is increased, while the frequency
of the unbundled MTs is decreased significantly as compared to controls (Figure 2H). Be-
cause it is assumed that MT loops indicate a pause of axonal growth [35,38], the increased
number of bundled MTs in DAAMEx4 and DAAMEx4; frl59 neurons is in harmony with the
increased length of central MT bundles. Organization of the actin cytoskeleton was studied
by counting the number of filopodia and categorizing GC morphology after phalloidin
staining. GC morphology was classified as lamellar when GCs were broader with extensive
lamellipodia, whereas the non-lamellar GCs appeared pointed at the distal tip of the axons
(Figure 2E–F′′). Our analysis showed that filopodia number was somewhat decreased in all
mutant neurons as compared to control cells, although the difference was not significant
in any of the cases (Figure 2I). In contrast, GC morphologies were altered significantly in
DAAMEx4 and DAAMEx4; frl59 mutant cells as compared to frl59 single mutant or control
cells (Figure 2J). Non-lamellar GCs tend to have bundled MTs; thus, the frequencies we
found are in good correlation with each other, because in DAAMEx4 and DAAMEx4; frl59

neurons the frequency of bundled MTs and the frequency of non-lamellar GCs are both
increased as compared to frl59 single mutant or control cells.

Collectively, these investigations revealed that DAAM is essential for axonal growth
in primary neurons, whereas FRL has a negligible or no effect. Analysis of the whole
embryonic nervous system pointed towards the same conclusion, as development of the
ISNb motoraxons was only impaired in DAAMEx4 and DAAMEx; frl59 mutants but not in
frl59 embryos. These results strongly suggest that, unlike in the adult brain, DAAM and
FRL play no redundant roles in the development of the embryonic nervous system. Because
of the six Drosophila formins, FHOS, CAPU and Form3 are either not expressed or not re-
quired during embryonic CNS development [39], whereas the role of Dia remained unclear;
DAAM appears as the most relevant formin with regard to embryonic axonal development.
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Figure 1. Morphological analysis of the nervous system of DAAM and frl single- and double-
mutant embryos. (A) Morphology of FasII-positive motoraxons in the ventral nerve cord of wild-
type (A), frl59 (A′), DAAMEx4 (A′′) and DAAMEx4/frl59 (A′′′) embryos. Scale bar represents 50 µm.
(B) Frequency of ISNb phenotypes in wild-type and mutant embryos. (C–C′) Schematic representa-
tion of wild-type and mutant (stalled) motoraxons (TN—transverse nerve, ISNb—intersegmental
nerve b, ISNa—intersegmental nerve a, SNa—segmental nerve a). (D) Morphology of the FasII-
positive motoraxons in the ISNb of wild-type (D), frl59 (D′), DAAMEx4 (D′′) and DAAMEx4; frl59

(D′′′) embryos. Arrows in (D′′) and (D′′′) point to the stalled ISNb. Scale bar represents 10 µm.

Figure 2. Cont.
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Figure 2. Morphological analysis of primary neurons derived from DAAM and frl single- and double-
mutant embryos. (A–D′′) Representative images of primary neurons derived from wild-type (A–A′′),
DAAMEx4 (B–B′′), frl59 (C–C′′) and DAAMEx4; frl59 (D–D′′) embryos. The actin cytoskeleton was
labelled by phalloidin (green); microtubules were visualized by an anti-tubulin (magenta) antibody.
Scale bar represents 5 µm. (E–F′′) Examples for cytoskeleton organization of axonal growth cones
labelled by phalloidin (green) and anti-tubulin antibody (magenta). Scale bar represents 5 µm.
(G) Statistical analysis of axonal length of axonal microtubule bundles. Scatter plots show the values
of the individual cells and the means of the independent experiments. (H) Scatter plots show the
frequency of microtubule morphologies in the growth cone. (I) Statistical analysis of the axonal
filopodia numbers. Scatter plots represent the values of the individual cells and the means of the
independent experiments. (J) Scatter plots show the frequency of growth cone morphologies labelled
by phalloidin. ANOVA was used for statistical analysis. Tukey’s post hoc test was used for multiple
comparison. * p < 0.05, ** p < 0.01.

3.2. Separation of Function Alleles of DAAM

To further understand how DAAM promotes embryonic axon growth, we focused
on its potential molecular mechanisms in cytoskeleton regulation. The DAAM protein,
similarly to other formins, is able to directly bind actin, as well as microtubules [22,32].
In order to clarify whether actin or MT binding, or both, are required for the proper
functioning of DAAM during axonal growth, we created mutations that selectively impair
the actin and MT interactions. The FH2 domain of formins forms an antiparallel homodimer
and each half of this structure contains two actin-binding sites; one of them (the primary
actin-binding site) is marked by a conserved isoleucine (Ile, I) residue, while the other (the
secondary actin-binding site) contains a conserved lysine (Lys, K) residue [40,41]. Mutation
of these residues strongly reduces the actin-processing activity of several formins [42]. The
same result has been reported for Drosophila DAAM, where mutation of the conserved Ile
(I732A) residue significantly compromised the actin-processing activity of the FH1-FH2
fragment in vitro [43]. Because of the high-level structural conservation, we expected that
a mutation of the secondary actin-binding site (K881A) exhibits a similar effect. More
importantly, we formerly demonstrated that the I732A mutant FH2 domain is able to bind
MTs in vitro with the same affinity as the wild-type control [22], and for this reason it can
be considered as a clean separation of function type of allele.
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As to MT binding, we have shown that Drosophila DAAM directly interacts with
MTs via its FH2 domain and the C-terminal “tail” region [22]. Given that the CT region
is much shorter, and the CT mutations we previously tested affected the interaction with
both cytoskeletal components [43], we focused on the FH2 domain and aimed to create an
FH2 mutant version with reduced MT-binding capacity and unimpaired actin-processing
activity. Structural and bioinformatics analysis of the FH2 domain identified a potential
binding region for the negatively charged MT surface. The positive charge of this patch
results from the presence of five basic amino acids in a seven-amino-acid-long motif
containing amino acids 840–846 (Arg-Ser-Arg-Arg-Leu-Arg-Lys). A mutant form of the
DAAM FH2 domain was created, in which these basic amino acids were replaced with
Alanine (FH2R/K-A). Subsequent surface charge calculations showed that the previously
identified positive patch disappeared in the mutant protein (Figure 3A–B′). GST pull-
down and MT co-sedimentation assays revealed that in vitro the FH2R/K-A version has a
significantly reduced tubulin- and MT-binding capacity as compared to wild-type FH2
(Figure 3C,D). This effect has been further confirmed in Drosophila S2 cells, where we
found that GFP-tagged versions of the wild-type and I732A mutant CDAAM (a truncated
form consisting of the FH1-FH2-DAD-CT regions) exhibit a strong colocalization with MTs
(Figure 4A–C′′), that is largely reduced in the case of CDAAMR/K-A (Figure 4D–D′′). To test
for actin assembly, we attempted to purify the CDAAMR/K-A mutant protein; however, this
protein has a tendency to form aggregates in vitro resulting in low-quality preparations.
We observed a similar behavior in S2 cells where CDAAM and CDAAMI732A exhibited a
largely uniform subcellular distribution around the nuclei and in the cortical, lamellipodial
region (Figure 4B–C′′), whereas the CDAAMFH2R/K-A mutant protein often accumulated
into huge cytoplasmic and nuclear puncta (Figure 4D–D′′). Because of this difficulty, it
is not possible to reliably conclude on the actin assembly activity of CDAAMFH2R/K-A.
Nevertheless, it is noteworthy that when present in DAAM-PB, the R/K-A mutation does
not impair the in vivo activity of DAAM in primary neurons (see below), indicating that at
least in context of the full-length protein, this mutation is very unlikely to interfere with
actin polymerization.

Figure 3. Biochemical characterization of the FH2R/K-A mutant form of DAAM. (A–B′) Ribbon
diagram (A,B) and surface charge distribution (A′,B′) of the wild-type and R/K-A mutant FH2
domain of Drosophila DAAM. The region affected by the R/K-A is encircled in red (dashed oval in
A′,B′). (C) A GST-pull down assay, carried out by using GST-tagged wild-type and R/K-A mutant
FH2 recombinant proteins in combination with purified tubulin. Eluates of the GST-pull down
were analyzed by gel electrophoresis and Western blot. Recombinant proteins were visualized by
Coomassie blue staining and bound tubulin was detected by an anti-tubulin antibody. Note the
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presence of tubulin in samples with GST::FH2, and the lack of tubulin when GST::FH2R/K-A was
immobilized on the beads. (D) Western blot analysis of samples obtained from a microtubule
co-sedimentation assay. Tubulin was detected by an anti-tubulin antibody, while the Flag-tagged
wild-type and R/K-A mutant form of DAAM FH2 was detected by an anti-Flag antibody. Flag-tagged
FH2 protein was detected in the pellet. In contrast, the 3xFLAG::FH2-R/K-A did not co-sediment
with microtubules. I—input, SN—supernatant, P—pellet.

Figure 4. Morphological analysis of S2 cells expressing GFP-tagged wild-type and mutant forms
of CDAAM. (A–D′′) Representative images of the cytoskeletal organization of control (A–A′′,a,a′),
CDAAM (B–B′′,b,b′), CDAAMI732A (C–C′′,c,c′) and CDAAMFH2R/K-A (D–D′′,d,d′) expressing
S2 cells. GFP or GFP-tagged CDAAM was detected by an anti-GFP antibody (green), and microtubules
are visualized by an anti-tubulin antibody (magenta). Filamentous organization of CDAAM was
visible in the cortical lamellipodial region of CDAAM and CDAAMI732A expressing cells (see the
insets in b,b′,c,c′, respectively), which is not present in control cells (a,a′), and in cells expressing
CDAAMFH2R/K-A (d,d′) where most of the GFP signal accumulates into cytoplasmic foci (arrows
in D′′). Scale bar represents 5 µm.

3.3. The Actin-Processing Activity of DAAM Is Essential for Axon Growth

After basic biochemical characterization of the FH2 domains with the separation of
function mutations, we created transgenic flies that carry the corresponding mutations in
a UAS-DAAM-PB construct. First, we studied the rescue ability of the actin-processing
mutants (I732A and K881A) by expressing them in DAAMEx4 mutant embryos by using the
pan-neuronal ElavGal4 driver. Interpretation of the rescue experiments can be misleading
without having data on the expression levels and patterns of the transgenes. To exclude
this problem, Wb and immunostaining experiments were performed, and they showed
that all of the transgenes were expressed at equal levels and the proteins could be detected
specifically in the embryonic nervous system (Figure S2A–F). Moreover, Wb also showed
that the ElavGal4 driver was turned on at stage 11, when the embryos were collected to
prepare primary cultures and expressions of the transgenes were getting stronger over



Cells 2022, 11, 1487 11 of 20

time (Figure S2A). Primary neurons were extracted from embryos expressing either the
wild-type or the actin-processing mutant forms of DAAM (Figure 5A–D′′). Morphological
analysis revealed that primary neurons expressing the wild-type UAS-DAAM-PB isoform
had significantly shorter (20.43 ± 8.85 µm, n = 162) central MT bundles in their axons as
compared to control mutant cells (32.36 ± 10.68 µm, n = 161) carrying only the ElavGal4
construct, but no transgene (Figure 5E). In contrast, axonal length of neurons expressing
DAAM-PBI732A did not show any difference (31.46 ± 11.06 µm, n = 114), whereas cells
expressing DAAM-PBK881A displayed a medium, but significant, decrease (26.74± 9.56 µm,
n = 161) as compared to mutant cells (Figure 5E). Analysis of MT and actin cytoskeleton
organization in the GCs indicated that expression of the wild-type DAAM-PB fully rescued
the MT and GC morphology defects exhibited by the DAAMEx4 mutant cells, whereas
expression of DAAM-PBI732A failed to provide a rescue, while DAAM-PBK881A was able to
partially restore the wild-type phenotype in mutant cells (Figure 5F,H). Filopodia numbers
did not considerably change in any of the genotypes, although there was a significant
difference between wild-type and I732A-mutant-DAAM-expressing neurons (Figure 5G).

Figure 5. The actin-processing activity of DAAM plays a role in axon development in primary
neurons. (A–D′′) Representative images of the axonal and growth cone morphology of primary
neurons derived from DAAMEx4;Elav-Gal4 control (A–A′′) and transgene expressing (B–B′′-DAAM;
C–C′′-DAAMI732A; D–D′′-DAAMK881A) Drosophila embryos. The actin cytoskeleton was labelled by
phalloidin (green), and microtubules were detected by an anti-tubulin antibody (magenta). Scale bar
represents 5 µm. (E) Statistical analysis of the length of the axonal microtubule bundles. Scatter plots
show the values of the individual cells and the means of the independent experiments. (F) Scatter
plots show the frequency of microtubule morphologies in the growth cone. (G) Statistical analysis of
the axonal filopodia numbers. Scatter plots represent the values of the individual cells and the means
of the independent experiments. (H) Scatter plots show the frequency of growth cone morphologies
labelled by phalloidin. ANOVA was used for statistical analysis. Tukey’s post hoc test was used for
multiple comparison. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Together, these rescue experiments revealed that the I732A mutant form of DAAM,
impaired in its actin assembly activity, is not able to compensate for the lack of the wild-type
protein at all. Therefore, it appears likely that presence of the I732A mutation makes the
DAAM protein completely or largely dysfunctional, and that the actin-processing activity
of DAAM is indispensable for proper axonal differentiation. Interestingly, disruption of the
secondary actin-binding pocket of DAAM by the K881A mutation was still able to partially
restore the wild-type phenotype, suggesting that in the case of DAAM, the secondary
actin-binding surface of the FH2 domain is not absolutely required for function.

3.4. Direct MT-Binding of DAAM Is Not Essentially Required for Axon Growth

Several studies established that formins can directly interact with MTs and may have
a regulatory role in MT dynamics [15,17–19]. We have also shown that Drosophila DAAM
directly interacts with MTs in in vitro assays; DAAM is able to stabilize the MTs in vitro
and to protect them from MT de-stabilizing drugs in primary neurons, and it can crosslink
and/or co-align the MTs with those of F-actin [22]. To probe the functional importance
of direct MT binding, we made use of the UAS-DAAM-PBFH2R/K-A transgene, expressing
a mutant form with reduced MT-binding capacity, in rescue experiments. Similar to the
previous set of rescue experiments, the UAS-DAAM-PBFH2R/K-A transgene was expressed
in primary neurons by using the ElavGal4 driver line (Figure 6A–B′′). Immunostaining and
Wb experiments showed that this transgene ensured comparable expression levels as to
the I732A and K881A mutant lines (Figure S3A–C′). Morphological analysis of DAAMEx4

mutant primary neurons expressing DAAM-PBFH2R/K-A revealed that this form of DAAM
nearly perfectly restored the wild-type phenotype. Length of the central axonal MT bundles
was significantly decreased in DAAM-PBFH2R/K-A expressing neurons (21.39 ± 8.11 µm,
n = 161) as compared to control mutant cells (30.95 ± 9.88 µm, n = 120) and became similar
to that of wild-type cells (Figure 6C). Accordingly, the frequency of the GCs with bundled
MTs and non-lamellar morphology was reduced significantly (Figure 6D,F), and again
became much like the numbers measured in wild-type. Just as in the case of the other
transgenes used during these studies, filopodia number was not significantly affected
by the presence of DAAM-PBFH2R/K-A (Figure 6E). The fact that the DAAM-PBFH2R/K-A

transgene exhibited a highly similar rescue ability as the wild-type transgene indicates that
the MT-binding capacity of DAAM has negligible contribution to its function in cultured
embryonic primary neurons.

Figure 6. Morphological analysis of primary neurons derived from DAAMEx4 mutant Drosophila em-
bryos expressing DAAMFH2R/K-A. (A–B′′) Representative images of the axonal and growth embryos
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expressing DAAMFH2R/K-A. (A–B′′) Representative images of the axonal and growth cone morphology
of primary neurons derived from DAAMEx4;Elav-Gal4 control (A–A′′) and DAAMFH2R/K-A (B–B′′)
expressing Drosophila embryos. The actin cytoskeleton was labelled by phalloidin (green), and
microtubules were detected by an anti-tubulin antibody (magenta). Scale bar represents 5 µm.
(C) Statistical analysis of the length of axonal microtubule bundles. Scatter plots show the values
of the individual cells and the means of the independent experiments. (D) Scatter plots show the
frequency of microtubule morphologies in the growth cone. (E) Statistical analysis of the axonal
filopodia numbers. Scatter plots represent the values of the individual cells and the means of the
independent experiments. (F) Scatter plots show the frequency of growth cone morphologies labeled
by phalloidin. ANOVA was used for statistical analysis. Tukey’s post hoc test was used for multiple
comparison. ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Previously we reported that, in addition to the role in embryonic axonal growth,
DAAM plays a pivotal role in axonal growth and guidance of the adult mushroom body
(MB) neurons [28]. In order to address the in vivo effect of DAAM-PBFH2R/K-A, rescue
experiments were performed in the MB of the Drosophila adult brain. The MB is a central
brain region formed by three major classes of neurons, the γ, α′/β′ and α/β neurons,
each characterized with a well-defined axonal projection pattern (Figure 7A). Because
axons of the α′/β′ and α/β neurons are bifurcated, the MB consists of five bundled
axons that organize into the vertical α, α′ and the medial β, β′ and γ lobes. As shown
before, the DAAMEx4 mutant flies exhibit strong axonal growth and guidance defects in
the MB that we quantified in the α/β neurons (Figure 7B–C′,G,H). Whereas OK107-Gal4
driven MB-specific expression of the wild-type DAAM-PB rescued the mutant phenotype
(Figure 7D,D′,G,H), the DAAM-PBFH2R/K-A transgene failed to do so (Figure 7E,E′,G,H).
Notably, in MBs of DAAMEx4; UAS- DAAM-PBFH2R/K-A/+; OK107-Gal4/+ mutant flies, the
α-lobes were either shorter or thinner than in wild-type, while the β-lobes were either
normal or thicker (Figure 7E,E′), indicating that growth of the α-axons is repressed whereas
growth of the β-axons is promoted by the presence of the DAAM-PBFH2R/K-A transgene.
In line with this, careful examination of the lobes revealed that expression of DAAM-
PBFH2R/K-A resulted in a β-lobe fusion phenotype when the β-axons erroneously cross
the CNS midline (Figure 7E,E′,I). This effect highly resembles the phenotype caused by
overexpression of a constitutively active form of DAAM (DAD-G) lacking the C-terminal
autoinhibitory domain (Figure 7F,F′,I). As the β-lobe fusion phenotype is interpreted as
a gain-of-function (GOF) effect due to overextension of the β-axons, these findings are in
harmony with the primary neuronal data suggesting that the DAAM-PBFH2R/K-A mutant
form is active in vivo, and very unlikely to be impaired in its actin assembly activity.
Together, the plethora of defects affecting MB axonal development imply that the FH2R/K-A
mutation alters the regulation of DAAM activity in the MB. Thus, MT side-binding may not
play a significant role in execution of the MT-related formin functions in cultured neurons,
yet it appears to be important for proper MB axon formation in vivo.

3.5. Overexpression of a Constitutively Active Form of DAAM

To further test the effect of the separation of function alleles, we employed a GOF
system based on overexpression of the constitutively active CDAAM form. When CDAAM
is expressed in embryonic neurons, it strongly interferes with axonal growth evident in
the development of the embryonic CNS as well as in primary neurons [22,34]. To address
whether the GOF effect of CDAAM depends on actin-binding or MT side-binding activities,
we investigated the effect of the I732A and FH2R/K-A mutation on the activity of CDAAM.
The wild-type and mutant forms of UAS-CDAAM were expressed in the embryonic CNS
by using ElavGal4. Expression of the transgenes was checked by Wb experiments, reveal-
ing comparable levels in each case (Figure S2B). Analysis of whole embryos showed that
CDAAM overexpression strongly disrupts the organization of Fasciclin II (FasII)-positive
motoraxons in the VNC, while embryos expressing the I732A mutant form of CDAAM
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did not display any aberration in the nervous system (Figure 8A–C). Morphological anal-
ysis of primary neurons showed that cells overexpressing CDAAM had a significantly
shorter (13.69 ± 6.87 µm) central MT bundle in their axons as compared to control cells
(21.33 ± 8.22 µm) (Figure 8E,F′′,H). In contrast, overexpression of CDAAMI732A had no
striking effect on axonal growth (23.91 ± 9.27 µm) (Figure 8E–E′′,G–G′′,H). Live imaging
experiments were also performed expressing an EB1::GFP construct in primary neurons
(Figure S4A) to investigate MT dynamics in living cells [44]. We found that the velocity
of MT growth was reduced in neurons overexpressing wild-type CDAAM, whereas the
overexpression of CDAAMI732A did not alter MT dynamics as compared to control cells
(Figure S4B).

Figure 7. The FH2R/K-A mutant form of DAAM fails to rescue the MB axonal defects observed in
DAAMEx4. (A) Schematic representation of the organization of the mushroom bodies. (B–F′) Confocal
images of MBs stained for FasII (green) to label the α and β-lobes; with the exception of wild-type;
(B) two representative examples are shown for each genotype. The DAAMEx4 mutant (C,C′) MBs
exhibit various defects in axonal development resulting in missing, shorter, thinner or thicker lobes,
which can be perfectly rescued by UAS-DAAM expression (D,D′). As compared to this, the expression
of UAS-DAAMFH2R/K-A, in addition to various effects on the dorsal lobes, results in overprojection of
the β axons (E,E′) which is very similar to the effect of DAD-G expression (F,F′). (G) Quantification
of the axonal growth and guidance and defects detected in the MB α-lobes of adults of the genotypes
indicated. (H) Quantification of the axonal growth and guidance and defects detected in the MB
β-lobes of adults of the genotypes indicated. (I) Quantification of the β-lobe fusion phenotype in the
MBs of adults of the genotypes indicated. Chi-square or Fisher’s exact tests were used for statistical
analysis. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns—not significant. Scale bar represents
50 µm.
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Figure 8. The effect of CDAAM overexpression on neuronal morphology. (A–D) Morphology of
the FasII-positive motoraxons in the ventral nerve cord of control (Elav-Gal4) (A), CDAAM (B),
CDAAMI732A (C) and CDAAMFH2R/K-A (D) expressing Drosophila embryos. Scale bar represents
50 µm. (E–G′′) Representative images of axonal and growth cone morphology of primary neurons
derived from control (E–E′′), CDAAM (F–F′′) or CDAAMI732A (G–G′′) expressing Drosophila embryos.
The actin cytoskeleton was labelled by phalloidin (green), and microtubules were detected by an
anti-tubulin antibody (magenta). Scale bar represents 5 µm. (H) Statistical analysis of the length of
axonal microtubule bundles. Scatter plots show the values of the individual cells and the means of
the independent experiments. ANOVA was used for statistical analysis. Tukey’s post hoc test was
used for multiple comparison. ** p < 0.01, **** p < 0.0001.

As compared to CDAAMI732A, the CDAAMFH2R/K-A mutant form exhibited nearly
identical phenotypic effects, and overall, the FH2R/K-A mutation appeared to be a po-
tent suppressor of the CDAAM GOF effects (Figure 8D). This would argue that, beyond
actin binding, MT side-binding is an equally important aspect of the mechanism whereby
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CDAAM interferes with axonal growth. However, it is notable that CDAAM has only a mod-
erate effect on MT growth speed (Figure S4), suggesting that the effect of CDAAM on MT dy-
namics might be limited. In addition, our in vitro data with the purified CDAAMFH2R/K-A

mutant hinted at the possibility of inactivation due to protein aggregation that also happens
in vivo in S2 cells. Collectively, these results clearly revealed that the presence of the I732A
mutation completely abolishes the GOF effect of CDAAM, indicating an actin dependence.
Contrasting to this, the contribution of MT side-binding remained more controversial,
and further clarifications will require investigation of the structural consequences of the
R/K-A mutation.

4. Discussion

Being important cytoskeleton regulators, several formins proved to be essential during
the development of the nervous system [45]. Previously, we have shown that DAAM plays
a role in the development of the Drosophila nervous system at different developmental
stages from embryo to adulthood [22,28,31,34]. In addition, DAAM cooperates with FRL
during axon formation in the mushroom bodies of the adult brain [27]. In this paper, we
investigated the possible redundant role of DAAM and FRL during the development of
the embryonic nervous system. The analysis of single and double mutants showed that
FRL has a negligible effect on axonal growth in primary neurons and development of
the Fas II-positive motoraxons in embryos, and therefore the CNS function of FRL seems
restricted to the adult stage. In contrast, the effect of the lack of DAAM was similar to
what had been observed in previous studies [34,35]. As RNA in situ hybridization data and
single-mutant analysis argue against an embryonic CNS function in the cases of Fhos, Capu
and Form3 [39], our results clearly suggest DAAM being the main formin in the Drosophila
embryonic CNS. Nevertheless, whether DAAM is redundant with another formin than FRL
remained an open question as double-mutant analysis is not reported for fhos, capu and
form3, nor for dia where a further level of complexity arises due to its role in cytokinesis.

The process of axonal growth is driven by coordinated changes of the actin- and
MT-cytoskeleton. Several formin proteins have been shown to be important in actin–MT
crosstalk, and besides their general role in actin regulation, some formins also have an actin-
independent MT-related activity. Recent studies revealed that formins induce the formation
of stable MTs and/or play a role in crosslinking of actin and MT filaments in different
neuronal model systems [23,42,43]. Interestingly, these studies involved several formins
(mDia1, Fmn2, and Drosophila Form3 ortholog of mammalian INF2) belonging to different
subfamilies, which strongly suggests that an MT-related activity might be a general feature
of formins expressed in the nervous system. Consistent with these findings, we have also
shown that in the absence of DAAM, MT dynamics, especially the velocity of MT growth,
was significantly increased in mutant neuronal cells [22]. We also showed that DAAM
can directly interact with MTs, and it protects MTs from cold-induced depolymerization
in vitro and stabilizes MTs in nocodazole-treated primary neurons [22]. Despite these
advances, molecular mechanisms of the formin-mediated actin–MT crosstalk and that of
MT cytoskeleton regulation remained largely unclear. To address this issue, we reasoned
that the employment of mutations that selectively affect the actin- or the MT-binding ability
of DAAM would be beneficial to test. The I732A mutation was used as an actin-processing
mutant, and we found that it is not able to rescue the mutant phenotype of primary neurons.
Since the I732A mutation does not disturb the MT-binding capacity of DAAM [22], these
experiments clearly show that the actin-processing activity of DAAM is indispensable for
axon growth. We also wanted to perform the rescue experiment by using a mutant with
the opposite features, where MT-binding is reduced but the actin-processing function is
not disturbed. However, due to the fact that the actin- and MT-binding surfaces overlap
in DAAM, it is a challenging task to create such a mutant form of the protein. Based on
protein interaction studies, the FH2 domain has been identified as the chief MT-binding
surface of formins [17,18,22], yet the molecular details were not resolved. It is very likely
that neither the conserved Ile in the middle of the primary actin-binding site nor the dimeric
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structure of the FH2 domain is necessary for MT-binding [17,22]. Besides the FH2 domain,
several formins carry an additional MT-binding surface in their CT region, which is highly
basic; therefore, it is an ideal candidate for electrostatic interactions with the negatively
charged MT surfaces [18,19,23]. The specific MT-binding domain has been mapped for
only two formins, inverted formin 1 (INF1) and formin 1 [15,16]. Our previous studies
showed that Drosophila DAAM binds to MTs via its FH2 and CT regions [22]. Due to
the fact that, besides the FH2 domain, the CT region also has a role in actin binding and
F-actin assembly [43], and separation of the actin versus MT-linked functions in the CT
region appears extremely difficult. In this study, we identified a short, positively charged
motif in the FH2 domain of DAAM, which is important in both tubulin- and MT-binding
in vitro as suggested by our GST pull-down and MT co-sedimentation assays. Due to the
presence of the CT region, mutation of this short motif in the FH2 domain is unlikely to
completely abolish the MT-binding capacity of the full-length DAAM protein, but it is
very likely that at least one of the MT-binding surfaces would be compromised. When
this mutant form (R/K-A) was probed for rescue in embryos, expression of this protein
fully restored the wild-type axonal phenotype of the neurons. However, when the rescue
ability was tested in the adult brain, the UAS-DAAMFH2R/K-A construct failed to provide
rescue in the MB axons; instead, it induced a β-axon overextension phenotype, typically
observed upon DAAM overactivation. This specific defect in axonal guidance might
indicate that a DAAM–MT association is critical to steer axons into the right direction,
at least in the MB neurons. Together, these results demonstrate that the R/K-A mutant
form is fully active, and the MT side-binding capacity of DAAM through this motif is not
essential for axonal growth in cultured primary neurons, and as inferred from this, in the
embryonic CNS. Because of the presence of the CT region and the possibility of indirect
MT binding (see below), we emphasize that these data do not rule out the importance
of formin MT binding in general, it only addresses the functional importance of a newly
identified motif. Interestingly, it appears that in MB neurons, the R/K-A mutant behaves
similar to a constitutively active form, suggesting that the mutant residues are involved
in the regulation of DAAM activity. Whether this is an MT-dependent phenomenon, or
the mutations induce a structural alteration that partly impairs the formin-autoinhibitory
mechanism or binding to an MB-specific regulatory factor, awaits future elucidations.

In contrast to the rescue experiments carried out with the full-length DAAM protein
and where the I732A and the R/K-A mutants exhibited distinct effects, in the context of
the truncated, constitutively active CDAAM form, both mutations were able to suppress
the GOF effect. The strong influence of I732A is consistent with the rescue data, and
importantly, it reveals that the GOF effect of CDAAM critically depends on its actin-
processing activity. Curiously, although the R/K-A mutations do not abolish the activity of
the full-length DAAM protein, neuronal expression of the CDAAMFH2R/K-A mutant form
does not result in a GOF effect. One interpretation of this observation would be that, besides
actin interaction, MT side-binding is also essential for the GOF effect of CDAAM. Whereas
it would be an interesting scenario if the R/K-A mutations would indeed exert a differential
effect in context of the full-length protein as compared to the truncated version, caution
might be required with this interpretation as in vitro behavior of the CDAAMFH2R/K-A

mutant protein indicated a tendency for aggregation, also observed upon CDAAMFH2R/K-A

expression in S2 cells.
Regarding the potential molecular mechanisms of the formin-mediated actin/MT

cytoskeleton coordination during axonal growth, so far, we have mainly considered the
ones that involve direct protein interactions. Indeed, it has been shown for several formins
that they can simultaneously interact with actin and MT filaments, and they can crosslink
the two filamentous systems [18,19,22,23]. Importantly, however, in addition to the di-
rect interactions, formins were shown to be able to bind to a relatively large number of
cytoskeleton regulatory proteins, and these interactions have a large impact on the cy-
toskeleton coordinator function of formins. For example, some formins can interact with
MT + TIPs, which in turn induces cytoskeleton rearrangements and influences the activity
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of formins [22,26,46]. Formins can also induce the stabilization of MTs by inducing the
acetylation of the lysine-40 residue of α-tubulin and they have the ability to form stable Glu
MTs [20,21]. Moreover, in human retinal epithelial cells, the MT-stabilizing activity of INF2
relies on hierarchically organized protein complexes or pathways [45], and it was shown
that the I732A equivalent mutant reduces the tubulin acetylation activity of INF2. Collec-
tively, these data highlight multiple indirect mechanisms whereby formin proteins could
play a role in neuronal cytoskeleton coordination. Thus, although we found that the direct
MT-binding ability of DAAM is less important in differentiation of the Drosophila primary
neurons, to fully explore the significance of the formin-mediated MT and cytoskeleton
crosslinking functions in axons, further studies will be required by systematic analysis
of the +TIP interactions and the potential signaling pathways. Likewise, it would be of
interest to test whether the actin polymerization of incompetent formins affects tubulin
acetylation in axonal growth cones.
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