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Abstract: Proteostasis, a portmanteau of the words protein and homeostasis, refers to the ability of 
eukaryotic cells to maintain a stable proteome by acting on protein synthesis, quality control and/or 
degradation. Over the last two decades, an increasing number of disorders caused by proteostasis 
perturbations have been identified. Depending on their molecular etiology, such diseases may be 
classified into ribosomopathies, proteinopathies and proteasomopathies. Strikingly, most—if not 
all—of these syndromes exhibit an autoinflammatory component, implying a direct cause-and-
effect relationship between proteostasis disruption and the initiation of innate immune responses. 
In this review, we provide a comprehensive overview of the molecular pathogenesis of these 
disorders and summarize current knowledge of the various mechanisms by which impaired 
proteostasis promotes autoinflammation. We particularly focus our discussion on the notion of how 
cells sense and integrate proteostasis perturbations as danger signals in the context of 
autoinflammatory diseases to provide insights into the complex and multiple facets of sterile 
inflammation. 
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1. Introduction 
Inflammation describes a highly conserved generally beneficial reaction—if 

controlled—of the body in response to a variety of danger signals [1–3]. It is triggered by 
the innate immune system and characterized by the rapid mobilization of specialized cells 
and humoral factors which combat the insult with a relatively low specificity [4–6]. 
Noxious signals capable of initiating innate responses are traditionally divided into 
exogenous and endogenous insults in order to facilitate self and non-self-discrimination 
[7,8]. External stimuli are typically derived from infectious agents and include a wide 
range of microbial products referred to as pathogen-associated molecular patterns 
(PAMPs) which are recognized by pathogen-recognition receptors (PRR) such as Toll-like 
receptors (TLR), RIG-I-like receptors (RLR), NOD-like receptors (NLR), among others 
[9,10]. The binding of PAMP to PRR triggers multiple intracellular signaling cascades 
ultimately resulting in the activation of the NF-κB and IRF3 transcription factors which in 
turn promote the expression of pro-inflammatory cytokines (i.e., TNFα, IL-1, IL-6) and 
type I and/or II interferons (IFN) [11,12]. Type I IFN is a large cytokine family consisting 
of 18 members with 14 IFN-α species and one single specimen each of IFN-β, IFN-κ, IFN-
ω and IFN-ε which are produced by both immune and non-immune cells [13]. Following 
autocrine and/or paracrine binding to their receptor IFNAR1/2, type I IFN engage 
JAK/STAT signaling that results in the rapid transcription of a myriad of so-called IFN-
stimulated genes (ISG) [14]. Prominent ISG include PKR and OAS1 whose products confer 
the cell an antiviral state by arresting protein translation and promoting RNA 
degradation, respectively [14]. Internal stimuli also known as damage-associated 
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molecular patterns (DAMPs) are widely regarded as self-molecules that accidently reach 
undedicated compartments following tissue injury [15,16]. Prime examples of DAMPs 
include extracellular and/or cytosolic DNA as well as extracellular ATP or histones, only 
to name a few [17–20]. Like PAMPs, DAMPs use various PRR to elicit innate immune 
responses which are characterized by the prompt production of NF-κB- and IRF3-
responsive genes [21,22]. As innate immunity triggered by DAMPs is pathogen-free, it is 
frequently categorized as sterile inflammation [23,24]. Importantly, sterile inflammation 
is not necessarily restricted to the unphysiological release of molecules from necrotic cells 
and/or damaged intracellular organelles. Disturbances in protein flux have also long been 
known to be immunostimulant and prominent hallmarks of a flurry of autoimmune 
diseases. It is indeed more than 60 years ago that extracellular protein aggregates initially 
called “rheumatoid factors” have been described in the plasma and synovial tissues of 
patients with rheumatoid arthritis (RA) [25]. It became rapidly evident that such 
aggregates were in fact large insoluble autoimmune complexes (IC) made up of self-
reactive immunoglobulin (Ig) G [26]. It is their inefficient clearance by circulating 
proteases and/or phagocytes that results in their deposition in tissues and contributes to 
autoinflammation, notably through the stimulation of monocytes, macrophages and 
dendritic cells (DC) [27,28]. Herein, RA provided the first example of sterile inflammation 
triggered by loss of protein homeostasis. Meanwhile, over 40 autoinflammatory diseases 
have been reported to be associated with protein homeostasis (or more commonly 
referred to as “proteostasis”) perturbations. 

2. Proteostasis Sensors and Their Roles in Triggering Sterile Inflammation 
Imbalances of protein flux are not limited to the extracellular space but can also occur 

within the cell as a consequence of a disequilibrium between protein synthesis at 
ribosomes (i.e., translation) and degradation by the ubiquitin–proteasome system (UPS) 
and/or autophagy [29]. Regardless of localization, it is becoming increasingly clear that 
proteostasis perturbations behave as danger signals and have the potential to initiate 
sterile inflammation. Although our current knowledge on the mechanisms perceiving and 
integrating these signals are not fully understood, a growing body of evidence suggests a 
critical role of the endoplasmic reticulum (ER) in the surveillance of intracellular 
proteostasis. The mechanisms monitoring proteostasis outside the cell are less clear, albeit 
a couple of studies point to a potential involvement of PRR in this process, as discussed 
below. 

2.1. The Unfolded Protein Response (UPR) 
As shown in Figure 1, the ER-membrane resident proteins IRE1, ATF6 and PERK 

belong to the mechanisms by which the cell is capable of sensing intracellular proteostasis 
disruption. One estimates that approximately 30–40% of the newly synthetized proteins 
traffic through the endoplasmic reticulum (ER) [30]. It is further understood that up to 
25% of these proteins fail to achieve final conformation and that such products are 
recognized by the protein quality control machinery in the ER and transported back to 
cytosol by the ER-associated degradation (ERAD) pathway for subsequent degradation 
by 26S proteasomes [31]. Given that retro-translocation is driven by degradation [32–34], 
proteasome dysfunction ultimately results in the accumulation of misfolded proteins 
within the ER lumen and subsequent activation of the IRE1, ATF6 and PERK receptors. 
This in turn engages the so-called unfolded protein response (UPR), a compensatory 
reaction which mostly aims to restore proteostasis by  

I. Arresting global protein biosynthesis; 
II. Upregulating specific genes coding for chaperones and ERAD components [35–37]. 

While transient stimulations of the UPR are physiological reactions devoid of 
inflammation, excessive UPR activation is considered pathological and associated with 
persistent innate responses [35,38]. The mechanisms by which the UPR triggers sterile 
inflammation are diverse, complex, poorly understood and have been already discussed 
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elsewhere [35,39]. Of particular interest is the PERK arm of the UPR which mediates the 
phosphorylation of eIF2α, an event that shuts down canonical translation of 5′ capped 
mRNA molecules and affects the steady-state level of short-lived proteins [40]. These 
proteins include notably IκBα whose increased turnover upon activation of the UPR 
facilitates the nuclear translocation of NF-κB and the subsequent production of 
inflammatory mediators [41,42]. As discussed later, the UPR has been proposed as a major 
contributor to autoinflammation in various proteinopathies [35]. 

 
Figure 1. : Most inflammatory pathways engaged following proteostasis disruption originate from 
the ER. Proteostasis perturbations are typically caused by proteasome dysfunction and/or excessive 
protein misfolding, as indicated. (1) Sustained misfolding of secretory proteins results in their 
accumulation within the ER lumen and generates ER stress, which is sensed by the IRE1, ATF6 and 
PERK receptors upon dissociation of the chaperone protein Bip. This, in turn, initiates the UPR that 
comprises the formation of sXBP1, ATF6f as well as a translational arrest, the activation of ATF4 
and the formation of SGs following phosphorylation of eIF2α by PERK. Persistent activation of all 
UPR branches have been reported to trigger sterile inflammation by various mechanisms (for more 
details, see main text). (2) Misfolding of IL-24 typically results in its subsequent retro-translocation 
back to the cytosol by the ERAD machinery. In case of proteasome dysfunction, IL-24 misfolded 
species accumulate in the cytosol and activate PKR to trigger a type I IFN response and 
inflammation via eIF2α phosphorylation. (3) Proteome imbalance is also sensed by the short-lived 
ER-membrane resident protein TCF11/Nrf1 whose turnover rate decreases with increased 
proteasome dysfunction. This results in its proteolytic cleavage by DDI2, thereby giving rise to a 
transcription factor inducing the expression of proteasome genes to restore protein homeostasis and 
mitophagy genes that may exacerbate inflammation through persistent glycolysis, as indicated. (4) 
Proteasome defects also reduce the intracellular pool of free amino acids and result in mTORC1 
downregulation. This, in turn, promotes sterile inflammation by increasing mitophagy and blocking 
lipid synthesis (for more details, see the main text). Amino acid depletion in the cell also activates 
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GCN2 of the integrated stress response (ISR) which facilitates inflammation following eIF2α 
phosphorylation. 

2.2. The Integrated Stress Response (ISR) 
As proteasome-mediated protein degradation produces peptides which are further 

degraded into amino acids by peptidases [43], it is legitimate to assume that the 
intracellular pool of amino acids is regulated—at least partially—by the UPS. This 
hypothesis, which has been proven to be true in yeast [43], implies that proteostasis 
perturbations caused by impaired protein breakdown are followed by a parallel depletion 
of intracellular amino acids. 

A major sensor of amino acid deficiency in the cell is the general control 
nonderepressible 2 (GCN2) kinase which undergoes activation by uncharged tRNA that 
accumulate upon amino acid starvation [44]. As shown in Figure 1, like PERK, GCN2 
promotes the phosphorylation of eIF2α in a pathway referred to as the integrated stress 
response (ISR) [45] which, by definition, intersects with the UPR. As both the ISR and 
PERK branch of the UPR converge to eIF2α, these pathways share similar consequences 
regarding their proinflammatory properties in case of sustained stimulus. Another kinase 
of the ISR capable of phosphorylating eIF2α is protein kinase R (PKR) [46], which is 
primarily activated by double-stranded (ds) RNA in infected cells during viral replication 
[47,48]. Besides phosphorylating eIF2α, PKR also triggers a signaling cascade resulting in 
the nuclear translocation of the transcription factor IRF3 and subsequent transcription of 
type I IFN genes [49–52]. Interestingly, the PKR activation spectrum is not restricted to 
RNA viruses and can be expanded to a flurry of non-microbial stimuli including 
proteostasis disruptors such as tunicamycin, oxidative stress and heat shock [53–58]. A 
recent study by Davidson et al. described cytosolic IL-24 as a potent PKR activator 
following proteasome dysfunction [59]. In this process, misfolding of newly synthetized 
IL-24 within the ER lumen results in its retro-translocation back to the cytosol by ERAD 
where it accumulates and activates PKR to engage a type I IFN response. Supporting the 
notion that abnormal cytosolic accumulation of IL-24 is a danger signal alerting the 
immune system via PKR, cells devoid of IL-24 and/or PKR fail to exhibit a type I IFN 
signature in response to proteasome inhibition [59]. The work of Davidson et al. therefore 
unambiguously identifies the IL-24/PKR axis as a new surveillance pathway capable of 
initiating sterile inflammation in response to perturbed proteostasis. This notion is fully 
in line with the observation that PKR is found constitutively phosphorylated/activated in 
the CNS of patients suffering from neurodegenerative proteinopathies [60–63] and that 
PKR inhibition is able to delay neuroinflammation in rats [64]. 

2.3. The mTORC1 Signaling Complex 
Apart from GCN2, major amino acid sensors include the cytosolic SESN2 and 

CASTOR proteins which sense leucine and arginine levels, respectively [65]. Binding of 
these amino acids to their respective receptors activate GATOR2, which in turn inhibits 
the mTORC1 complex inhibitor GATOR1 [66]. Subsequently, mTORC1 itself undergoes 
activation and engages several downstream signaling pathways inhibiting autophagy, 
while promoting protein translation, lipid biosynthesis and mitochondria biogenesis [67]. 
Based on the assumption that the UPS regulates amino acid homeostasis, one would 
expect that impaired proteostasis result in downregulation of mTORC1 signaling (Figure 
1). Indeed, our recent investigation on cells isolated from patients with PSMD12 
haploinsufficiency confirmed that proteasome loss-of-function was associated with 
reduced activation of mTORC1 [68]. From the mTORC1 downstream pathways, lipid 
biosynthesis seems of particular interest regarding sterile inflammation. It was indeed 
recently suggested that a reduced cholesterol flux in the cell engages spontaneous type I 
IFN responses in a poorly understood process involving the cGAS/STING pathway [69]. 
Likewise, increased autophagy by reduced mTORC1 activation might be relevant with 
respect to sterile inflammation following proteotoxic stress. Elevated autophagy does not 
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only imply increased lysosomal protein breakdown but also presupposes increased 
elimination of intracellular organelles including mitochondria, a process referred to as 
“mitophagy”. Supporting the notion that mTORC1 is a proteostasis sensor, increased 
mitophagy has been observed in patients with proteasomopathies [68]. Interestingly, 
sustained mitophagy implies a switch of the energetic metabolism from oxidative 
phosphorylation to glycolysis, the latter being associated with the accumulation of PEP, 
succinate, citrate and itaconate all exhibiting pro-inflammatory properties (i.e., M1 
phenotype) by various and sometimes poorly understood mechanisms [70]. Whether 
mitophagy indeed participates in the initiation of sterile inflammation in response to 
impaired proteostasis is not known, but the observation that glycolysis is increased in 
microglia and astrocytes of patients in AD [70–72] supports this notion. 

2.4. Stress-Induced Granulation 
A cellular feature frequently shared by many neurodegenerative proteinopathies is 

the formation of so-called stress granules (SGs) in the CNS [73–84]. SGs are cytoplasmic 
liquid-like seemingly compartmentalized structures devoid of membranes mostly 
containing translation factors, RNA as well as RNA-binding proteins [85–88]. 
Importantly, SGs are not an exclusive feature of neurodegenerative diseases, and their 
formation may be induced in all cell types in response to various stress reactions driven 
by eIF2α phosphorylation, namely following activation of the UPR and/or ISR (Figure 1) 
[89]. Accordingly, SGs are induced in situations in which the proteostasis network is 
challenged such as viral infection and proteasome inhibition and [90–92]. Interestingly, 
while the role of SGs in the propagation of type I IFN responses during viral infection 
seems to be established [93–95], their contribution to inflammation following sterile 
proteostasis disruption is not known. Viral SGs are thought to amplify innate immune 
signaling by building a platform that facilitates the recruitment of the DNA/RNA sensors 
cGAS, PKR and RIG-1 [96–98]. It is unclear whether viral SGs are biochemically distinct 
from those observed in proteinopathies. In this regard, further investigations are 
warranted to answer the question whether SGs due to impaired proteostasis of non-viral 
origin predispose the cells to generate type I IFN responses. 

2.5. The TCF11/Nrf1-NGLY1-DDI2 Axis 
Another proteostasis sensor is the ER membrane-resident protein TCF11/Nrf1, also 

referred to as nuclear factor erythroid derived 2-related factor 1 (NFE2L1) and encoded 
by the NFE2L1 gene [99,100]. TCF11/Nrf1 is a highly glycosylated short-lived protein 
which under normal conditions is rapidly targeted to proteasome-mediated degradation 
by ERAD [99,100] following its de-glycosylation by the enzyme N-glycanase 1 (NGLY1) 
[101]. Consequently, in case of proteasome dysfunction, TCF11/Nrf1 becomes stabilized 
and prone to enzymatic processing by the aspartyl protease protein DDI1 homolog 2 
(DDI2) at the ER membrane [102]. As shown in Figure 1, following proteolytic cleavage, 
processed TCF11/Nrf1 translocates into the nucleus and binds to ARE promoters to induce 
the transcription of 20S and 19S proteasome subunit genes and a subset of ubiquitin 
factors. The TCF11/Nrf1-DDI2 pathway is widely viewed as a compensatory mechanism 
ensuring the replacement of defective 26S complexes by newly synthetized ones. Like all 
proteostasis sensors, TCF11/Nrf1 seems to have the potential to engage proinflammatory 
programs. This assumption is based on the observation that TCF11/Nrf1 also up-regulates 
mitophagy genes [103]. While the safe elimination of damaged mitochondria by 
autophagy prevents the accidental leakage of immunostimulatory mitochondrial (mt) 
DNA into the cytosol, the removal of the healthy ones due to excessive mitophagy might 
reprogram the cells towards glycolytic processes and their inherent proinflammatory 
consequences. On the other hand, TCF11/Nrf1 has been shown to mitigate lipid-mediated 
inflammation acting as a sensor for cholesterol [104]. Altogether, these studies highlight 
that our current understanding of TCF11/Nrf1 in inflammation remains incomplete and 
warrants further investigation. 
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2.6. Pathogen Recognition Receptors (PRR) 
Unexpectedly, works aimed to unravel the pathogenesis of neurodegenerative 

proteinopathies have revealed that PRR are able to sense intra- and extracellular 
proteostasis perturbations. Indeed, normally specialized in the recognition of PAMP 
and/or DAMPs, PRR are also capable of perceiving abnormal protein aggregates. For 
instance, extracellular α-syn oligomers and fibrils produced during the course of 
Parkinson disease (PD) bind to TLR4 and TLR2 expressed on microglia [105–110]. In a 
very similar fashion, Aβ aggregates from Alzheimer disease (AD) are captured by TLR2, 
4, 6 and 9 [111–115]. In ALS, the inflammasome is activated by cytosolic TDP-43 
aggregates [116–118]. These observations suggest a role for PRR beyond sensing PAMP 
and/or DAMP in surveilling both intra- and extracellular proteostasis disturbances. It 
remains however unclear whether this perception is limited to certain types of proteins 
and/or aggregates. 

3. Causes of Proteostasis Perturbations and Associated Autoinflammatory Syndromes 
Depending on the source of perturbation, proteostasis imbalances carry two possible 

consequences, namely 
I. Protein aggregation or; 

II. Protein depletion. 
As illustrated in Figure 2, protein aggregation is frequently found in disorders such 

as proteinopathies or proteasomopathies following excessive protein misfolding or 
proteasome dysfunction, respectively. By contrast, intracellular protein depletion mostly 
occurs as a consequence of impaired translation in so-called ribosomopathies. The 
investigation of the molecular pathogenesis of such disorders have greatly improved our 
knowledge on how the innate immune respond reacts to disrupted proteostasis, as 
discussed below. 
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Figure 2. Proteostasis perturbations may arise at any stage of the protein life cycle and typically 
result in the initiation of sterile inflammation. Depicted are three pathological situations causing 
impaired proteostasis in which translation (1), protein folding (2) and proteasome-mediated protein 
degradation of defective ribosomal products (DRiPs) following their polyubiquitination by E1, E2 
and E3 enzymes of the ubiquitin-conjugation pathway (3) are affected. 

3.1. Proteostasis Perturbations Caused by Translation Deficiency 
Defects in protein synthesis are typically due to loss-of-function mutations in genes 

encoding components of the translation machinery. Prominent vulnerable genes in this 
category include those coding for proteins of the 40S and 60S ribosomal subunits (RPS 
and RPL, respectively). Genomic alterations of the RPS and/or RPL genes generally result 
in ribosome assembly disruption which itself causes a wide range of disorders 
traditionally referred to as “ribosomopathies” [119]. 

At the molecular level, this group of syndromes is essentially characterized by 
reduced protein synthesis due to persistently depressed translation [120]. Accordingly, 
ribosomopathies primarily affect cells with high protein demand, particularly those of the 
hematopoietic lineage. Major ribosomopathies include the various forms of Diamond-
Blackfan anemia (DBA), which are inherited monogenic autosomal dominant genetic 
disorders characterized by ineffective erythropoiesis and caused by mutations in either 
RPS or RPL genes [121]. Here, insufficient protein synthesis leads to protein depletion and 
cell death. Specifically, it is understood that the ribosomal subunits that fail to become 
incorporated into ribosomes initiate a so-called nucleolar stress response that results in 
cell cycle arrest and apoptosis [122,123]. Paradoxically, ribosomopathies also increase 
cancer risk overtime [124]. This seemingly inconsistency can be however easily explained 
by the fact that cell proliferation defects exert a strong pressure that results in the 
progressive selection of transformed cells that have acquired compensatory mutations in 
proto-oncogenes [124]. 

Most importantly, it was recently suggested that proteostasis disruption in DBA was 
associated with the generation of inflammatory gene signatures [125–127]. 
Autoinflammation could be confirmed in a DBA zebrafish model in which affected 
animals constitutively express type I IFN-stimulated genes (ISG) [128]. Further evidence 
for a functional cause-and-effect relationship between translation deficiency and sterile 
inflammation comes from the observation that mutations in RPL10 drive type I IFN 
responses in T cell leukemia [129]. The mechanisms by which ribosomopathies favor 
autoinflammation remain unclear, but it is conceivable that senescence due to prolonged 
cell cycle arrest might play a role in this process. Indeed, as shown in Figure 3, it was 
recently shown that senescence is intrinsically associated with genome instability and the 
subsequent leakage of DNA fragments into the cytosol which trigger type I IFN response 
by the cGAS/STING pathway [130,131]. Consistent with a potential role of cGAS in 
driving inflammatory responses upon ribosomal dysfunction, Wan et al. have shown that 
ribosome collision during translation results in the cytosolic accumulation of cGAS [132], 
thereby predisposing the cells to respond stronger to cytosolic, even background, DNA 
(Figure 3). 
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Figure 3. Molecular pathogenesis of ribosomopathies and their potential inflammatory 
consequences. The failure of mutant ribosomal proteins of the small 40S (RPS) and/or large 60S 
(RPL) ribosomal subunits to assemble into ribosomes induces the nucleolar stress response leading 
to p53 stabilization via persistent inactivation of the MDM2 E3 ubiquitin ligase. This, in turn, results 
in genome instability and subsequent leakage of double-stranded (ds)DNA into the cytosol. 
Cytoplasmic dsDNA is then sensed by the cyclic GMP-AMP synthase (cGAS) which promotes a 
type I IFN response via the STING/IRF3 signaling pathway, as indicated. The recruitment of cGAS 
in the cytosol is itself facilitated by defective and collided ribosomes. 

3.2. Proteostasis Perturbations Caused by Protein Misfolding 
It is well established that protein biosynthesis (or mRNA translation) in eukaryotic 

cells is not an accurate process. Early works from Yewdell’s lab estimate that 
approximately 30% of newly synthetized proteins fail to reach their 3D structure because 
of damage, premature termination and/or incorporation of wrong amino acids [133,134]. 
As these improperly folded proteins (or DRiPs) are non-functional and, in most cases, 
prone to aggregation, they are rapidly sampled and sorted out by various protein quality 
control (PQC) systems. One major co-translational PQC mechanism relies on the action of 
the molecular chaperones Hsp70 and Hsp90 that are capable of sensing hydrophobicity 
exposed by all misfolded nascent proteins [135]. Both Hsp70 and Hsp90 recruit E3 
ubiquitin ligases such as the carboxy-terminus of the Hsc70 interacting protein (CHIP), 
leucine-rich repeat and sterile alpha motif-containing 1 (LRSAM1) and/or E6-associated 
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protein (E6-AP) which themselves mediate the ubiquitination of the presented protein 
substrates and target them for subsequent degradation by the 26S proteasome [136,137]. 

Besides aging, major causes for excessive misfolding include alterations in genes 
coding for 
(i) UPS components or; 
(ii) Highly translated host (or viral) proteins. 

These events may result in the accumulation of insoluble protein aggregates, a typical 
feature of a heterogenous group of disorders known as proteinopathies [138,139]. As 
mentioned above, proteostasis disruption in proteinopathies is not necessarily due to UPS 
dysfunction. Indeed, virtually every protein variant with a particularly high synthesis rate 
may increase protein supply and/or misfolding, thereby surpassing UPS capacity. Prime 
examples of protein mutants predisposed to misfolding and aggregating include the 
HLA-B27 allele as well as various variants of the cystic fibrosis transmembrane 
conductance regulator (CFTR), transthyretin (TTR), α-1 antitrypsin (AAT), amyloid 
protein precursor (APP), α-synuclein (SNCA), huntingtin (HTT) and transactive response 
RNA/DNA-binding protein (TDP-43), just to name a few. With the exception of HLA-B27, 
CFTR and AAT, all these proteinopathies primarily affect CNS and promote typical 
neurodegenerative phenotypes. The reasons for this tissue selectivity remain obscure and 
intriguing in view of the wide distribution of these proteins throughout the body. An 
undebatable issue in this field, however, is that neurodegeneration has a sterile 
inflammatory component—commonly referred to as neuroinflammation—
predominantly triggered by glia cells (i.e., microglia, astrocytes and/or oligodendrocytes). 
Likewise, non-neurodegenerative proteinopathies are strongly associated with 
autoinflammation. These observations unambiguously point to a cause-and-effect 
relationship between protein aggregation and innate immunity, as discussed below. 

3.2.1. Non-Neurodegenerative Proteinopathies 
These disorders are essentially caused by misfolding and subsequent aggregation of 

protein variants outside the CNS. These typically include ankylosing spondylitis (AS), 
cystic fibrosis (CF), alpha-1-antitrypsin deficiency (AATD) and hereditary transthyretin 
amyloidosis (ATTR) which are all associated with inflammatory reactions. As a large 
fraction of these mutant proteins (i.e., HLA-27, CFTR and AATD in AS, CF and AATD, 
respectively) typically misfold within the ER lumen, persistent activation of the UPR is 
thought to contribute to the disease inflammatory phenotype [140–148]. Nevertheless, 
additional pathways may synergize with the UPR to trigger autoinflammation in these 
patients. 

For instance, ATTR is an autosomal dominant proteinopathy with neuronal and 
cardiac manifestations which provides an excellent example of extracellular proteostasis 
perturbation. It is characterized by the extracellular deposition of transthyretin (TTR)-
derived amyloid fibrils, particularly in the peripheral nervous system (PNS) [149]. The 
pathologic basis of ATTR are single amino acid variations in the TTR protein, among 
which the Val30Met and Val142Ile substitutions are the most frequent ones [150]. The TTR 
protein is produced by the choroid plexus and liver and found in the cerebrospinal fluid 
(CSF) as well as in the bloodstream where it carries thyroxin and retinol [151][35]. TTR 
misfolding mutations typically result in the formation of extracellular precipitates 
resembling β-pleated sheet structures named amyloid fibrils which cause tissue 
dysfunction [152]. Although patients with ATTR exhibit no evidence of systemic 
inflammation, they present with elevated circulating inflammatory markers [153,154]. 
Recent evidence suggests that activation of the innate immune system in ATTR occurs 
extracellularly as well with TTR aggregates capable of activating immune cells, notably 
neutrophils and microglia to produce proinflammatory cytokines [155,156]. The receptors 
involved in this process remain however ill-defined. 

3.2.2. Neurodegenerative Proteinopathies 
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This group of proteinopathies is by far the largest and includes prominent disorders 
such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), 
spinocerebellar ataxias and polyglutamine (polyQ) diseases, among others. Although 
these disorders are clinically and phenotypically distinct, their molecular etiology is 
identical and based on the uncontrolled accumulation of protein variants mostly in the 
CNS. As alluded to earlier, one major mechanism by which proteostasis perturbations 
trigger neuroinflammation in these diseases involves the release of protein aggregates into 
the extracellular space and their subsequent binding to PRR such as TLR and/or TREM2 
on microglia [105–115]. However, recent research on the molecular pathogenesis of 
amyotrophic lateral sclerosis (ALS) has expanded the spectrum of the molecular pathways 
initiating sterile inflammation in response to proteostasis disruption. 

ALS is a neurodegenerative proteinopathy characterized by a progressive loss of 
motor neurons [157,158]. While most cases of ALS are sporadic, a dozen of predisposition 
genes have been identified over the past two decades [159,160]. These include notably 
SOD1 and TARDBP which code for the superoxide dismutase 1 (SOD1) and transactive 
response DNA binding protein 43 (TDP-43), respectively [161,162]. Both proteins tend to 
misfold and aggregate in neurons upon specific point mutations. In particular, abnormal 
accumulation and/or localization of TDP-43 accounts for 90% of ALS cases [163]. TDP-43 
is a ribonucleoprotein highly expressed in the CNS with functions in RNA processing 
[164,165] and its deposition is favored by aging, variations in the TDP-43 gene itself and/or 
in the C9orf72, GRN or TBK1 genes. [166–171]. Not surprisingly, ALS is associated with 
constitutive activation of microglia and ongoing neuroinflammation [172,173]. The 
mechanisms involved in the inflammatory component of ALS are diverse and seem to 
depend on genetic lesion. For instance, TDP-43 or its variants, as cytosolic proteins not 
trafficking in the ER, do not generate ER stress and/or induce the UPR [174]. By contrast, 
SOD1 mutant species, although devoid of signal sequence, have been shown to impair 
ERAD and activate the UPR [175], which itself conceivably contributes to 
autoinflammation (Figure 4). In addition, SOD1 aggregates are released to activate 
microglia via binding to TLR2, TLR4 and/or CD14 (Figure 4) [176]. The 
neuroinflammatory phenotype of individuals with ALS is also thought to be a direct 
consequence of aggregation of TDP-43 or its mutant in the mitochondria [177,178]. Indeed, 
a recent study showed that mislocalization of TDP-43 variants in mitochondria results in 
mitochondrial DNA leakage into the cytosol, subsequent activation of the cGAS/STING 
innate pathway and IFN signaling in ALS. (Figure 4) [118]. In addition, cytosolic TDP-43 
aggregates may promote innate immune responses by activating the inflammasome 
(Figure 4) [116,117]. Whether these processes occur simultaneously is unclear and their 
respective contributions to neuroinflammation may be also difficult to assess. In any case, 
these works reveal that the ability of the cells to react to impaired proteostasis due to 
protein misfolding is broad and probably even wider than initially assumed. 
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Figure 4. Neuroinflammation caused by impaired proteostasis in ALS involves multiple pathways. 
Pathogenic variants of superoxide dismutase 1 (SOD1) facilitate the formation of intracellular 
protein aggregates which themselves promote sterile inflammation by causing persistent activation 
of the unfolded protein response (UPR) via inhibition of the ER-associated degradation machinery 
(ERAD), as indicated. In addition, extracellular SOD1 protein aggregates exert their pro-
inflammatory effects by binding to phagocyte pattern recognition receptors such as Toll-like 
receptors (TLR)-2, 4 and 6. Pathogenic mutations within the TAR DNA-binding protein 43 (TDP-43) 
results in protein aggregation which activates the inflammasome and triggers the release of 
mitochondrial (mt) DNA. The latter, in turn, initiates a type I IFN response following sensing by the 
cytosolic cyclic GMP-AMP (cGAS) synthase and subsequent STING activation, as indicated. NLRP3: 
NOD-like receptor pyrin domain-containing-3; ASC: apoptosis associated speck-like protein 
containing a CARD; pro-CASP1: pro-caspase 1. 

3.3. Proteostasis Perturbations Caused by Impaired Protein Degradation 
As alluded to earlier, the breakdown of intracellular proteins in eukaryotic cells is 

ensured by two major conserved machineries from yeast to humans, namely 
I. The ubiquitin–proteasome system (UPS) and; 

II. The autophagy–lysosomal system [179]. 
The UPS allows the specific elimination of ubiquitin-tagged protein by the 26S 

proteasome [180]. Ubiquitination is a three-step process involving three groups of 
enzymes (i.e., E1, E2 and E3) that catalyze the transfer of ubiquitin moieties or chains on 
lysine, serine, threonine or cysteine residues of target proteins (a modus operandi 
described in excellent reviews) [181,182]. The 26S proteasome is formed by 20S core 
complex and a 19S regulatory particle [183,184]. While the 20S core complex contains the 
three different catalytic activities that permit degradation, the 19S regulatory particle is 
specialized in the recognition and unfolding of ubiquitin-modified substrates [185]. 
Specifically, the 20S proteasome is a large complex comprised of two outer α-subunits 
rings (α1–7) embracing two central head-to-head oriented rings containing β-subunits 
(β1–7). The catalytic activity is conferred by three of the β subunits, namely β1, β2 and β5 
which exhibit caspase-like, trypsin-like and chymotrypsin-like activity, respectively [186]. 
The 19S regulatory particle is made up of a base containing six ATPase subunits (Rpt1–6) 
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which unfold the protein substrate and a lid carrying subunits (i.e., Rpn10, Rpn13) capable 
of binding ubiquitin-modified proteins [187]. Importantly, the β1, β2 and β5 standard 
subunits may be replaced by the so-called β1i, β2i and β5i inducible ones in newly 
synthetized complexes to promote a switch from constitutive proteasomes to 
immunoproteasomes [188,189]. It is appreciated that immunoproteasomes are more 
effective than their standard counterparts at degrading ubiquitin-modified proteins, 
making them particularly important in situations in which protein homeostasis is 
challenged such as during infection or oxidative stress [190–195]. Due to its unique 
position at the intersection of multiple pathways [196], the UPS is involved in the 
regulation of myriad of cellular processes, and as such any dysfunction of one of its 
components may carry serious consequences on cell functioning or viability. 

3.3.1. The UPS and its Dysfunctions 
One major cause of proteasome dysfunction is aging [197]. Although not always 

consistent, investigations in animals and patients suffering from sporadic aging-related 
neurodegenerative diseases point to a decline ability of the UPS to eliminate undesirable 
proteins [198–205]. Other causes of UPS impairment are loss-of-function mutations in 
genes encoding proteasome subunits [35]. Surprisingly, as shown in Table 1, such 
genomic alterations lead to two clinical distinct phenotypes, namely autoinflammation 
(CANDLE/PRAAS) and neurodevelopmental disorders (NDD). 

Table 1. Summary of the genetic characteristics and associated clinical phenotypes of the  
proteasome variants identified so far. 

Proteasome Gene Variant Genetic Model Origin Phenotype Reference 

20S Complex 

PSMB1 p.Y103H Homozygous, monogenic Recessive inheritance NDD [206] 

PSMB4 
5′ UTR: c.–9G > A Compound heterozygous, 

monogenic 
Recessive inheritance PRAAS [207] 

p.D212_V214del 

PSMB4 
p.L78Wfs ∗ 31 Compound heterozygous, 

monogenic 
Recessive inheritance PRAAS [208] 

c.494 + 17A > G 
PSMB4/ 
PSMB8 

p.Y222 * Double heterozygous, 
digenic 

Recessive inheritance PRAAS [207] 
p.K105Q 

PSMB8 p.G179V Homozygous, monogenic Recessive inheritance PRAAS [209] 
PSMB8 p.G201V Homozygous, monogenic Recessive inheritance PRAAS [210] 
PSMB8 p.C135 * Homozygous, monogenic Recessive inheritance PRAAS [211] 
PSMB8 p.T75M Homozygous, monogenic Recessive inheritance PRAAS [212] 

PSMB8 
p.R125C Compound heterozygous, 

monogenic 
Recessive inheritance PRAAS [213] 

p.D119N 

PSMB8 
p.Q55 * Compound heterozygous, 

monogenic 
Recessive inheritance PRAAS [214] 

p.S118P 

PSMB8 
p.A92V Compound heterozygous, 

monogenic 
Recessive inheritance PRAAS [215] 

p.K105Q 
PSMB8 p.A92T Homozygous, monogenic Recessive inheritance PRAAS [216] 
PSMB8 - Homozygous, monogenic Recessive inheritance PRAAS [217] 
PSMB8/ 
PSMA3 

p.T75M Double heterozygous, 
digenic 

Recessive inheritance PRAAS [207] 
p.H111Ffs * 10 

PSMB8/ 
PSMA3 

p.T75M Double heterozygous, 
digenic 

Recessive inheritance PRAAS [207] 
p.R233del 

PSMB9/ 
PSMB4 

p.G165D Double heterozygous, 
digenic 

Recessive inheritance PRAAS [207] 
p.P16Sfs * 45 

PSMB9 p.G156D Heterozygous, monogenic de novo, dominant PRAAS 
[218] 
[219] 

PSMB10 p.F14S Homozygous, monogenic Recessive inheritance PRAAS [220] 
POMP p.E115Dfs * 20  Heterozygous, monogenic de novo, dominant PRAAS [207] 
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Assembly 
Factors 

POMP p.F114Lfs * 18 Heterozygous, monogenic de novo, dominant PRAAS [221] 
POMP p.I112Wfs * 3 Heterozygous, monogenic de novo, dominant PRAAS [221] 
POMP p.D109Efs * 2 Heterozygous, monogenic de novo, dominant PRAAS [222] 

PSMG4 
p.Y223Sfs * 2 Compound heterozygous, 

monogenic 
Recessive inheritance PRAAS [223] 

p.N225K 

19S Complex 

PSMD12 p.R123 ∗ Heterozygous, monogenic de novo, dominant NDD 

[224] 
PSMD12 p.L425 ∗ Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.R201 ∗ Heterozygous, monogenic de novo, dominant NDD 
PSMD12 c.909−2A > G Heterozygous, monogenic de novo, dominant NDD 
PSMD12 Deletion Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.R201 * Heterozygous, monogenic de novo, dominant NDD [225] 
PSMD12 p.R182 * Heterozygous, monogenic de novo, dominant NDD 

[68] 

PSMD12 p.R357fs * 3 Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.T146Kfs * 3 Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.E313 * Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.Q170Gfs * 40 Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.L149 * Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.Q106 * Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.Q345 * Heterozygous, monogenic de novo, dominant NDD 
PSMD12 c.1083 + 1G > A Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.Q416 * Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.S176Qfs * 15 Heterozygous, monogenic de novo, dominant NDD 
PSMD12 c.1162−1G > A Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.S434Hfs * 2 Heterozygous, monogenic de novo, dominant NDD 
PSMD12 c.795 + 1G > A Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.L50Gfs * 26 Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.T146Kfs * 3 Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.R182 * Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.L354Efs * 6 Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.Y302 * Heterozygous, monogenic de novo, dominant NDD 
PSMD12 p.R289 * Heterozygous, monogenic de novo, dominant NDD [226] 
PSMC3 p.S376Rfs15 * Homozygous, monogenic Recessive inheritance NDD [227] 

* Asterisks indicate termination codons. 

3.3.2. Proteasome-Associated Autoinflammatory Syndromes (PRAAS) 
From the mid-eighties, an increasing number of cases of rare autoinflammatory 

syndromes sharing similar clinical features such as lipodystrophy, skin lesions and 
recurrent fever have been reported. These conditions were referred to by a number of 
different names including Nakajo–Nishimura syndrome (NNS) [228–230], joint 
contractures, muscle atrophy and panniculitis-induced lipodystrophy (JMP) syndrome 
[230] and chronic atypical neutrophilic dermatitis with lipodystrophy and elevated 
temperatures (CANDLE) [231,232]. From 2010, it became evident that such syndromes 
were caused by loss-of-function mutations in genes encoding proteasome subunits and/or 
proteasome assembly factors and were subsequently renamed proteasome-associated 
autoinflammatory syndromes (PRAAS) [207,210–212,220,221,223,233] (Table 1). Two 
major hallmarks of PRAAS are the presence of a constitutive type I IFN gene signature in 
patients’ blood cells and a concomitant increased accumulation of ubiquitin-modified 
proteins in various cell types including fibroblasts. Recent studies have identified cells of 
the hematopoietic lineage as decisive mediators of type I IFN in PRAAS [208,234] and in 
view of increased eIF2α phosphorylation in B cells isolated from PRAAS subjects [221], a 
possible role of the UPR has been suggested in the induction of autoinflammation in these 
patients [35]. This notion was supported by in vitro studies showing that blocking the 
IRE1 arm of the UPR prevents the upregulation of IFN-stimulated genes (ISG) in response 
to proteasome inhibition in microglia cells [235]. Later studies however have shown that 
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the IL-24/PKR axis of the ISR was the key contributor to type I IFN responses in ten 
unrelated PRAAS subjects [59,236]. These works unambiguously identify cytosolic IL-24 
and PKR as a new DAMP/PRR pair involved in proteostasis surveillance. Whether other 
mechanisms contribute to sterile inflammation in PRAAS, notably in cells expressing no 
or low levels of IL-24, is currently not known. 

3.3.3. Neurodevelopmental Disorders (NDD) Caused by Proteasome Variants 
Surprisingly, the phenotypic spectrum of proteasome loss-of-function mutations is 

broader than initially assumed. In 2017, the identification of pathogenic variants of the 
PSMD12 gene in patients showing a predominant neuronal phenotype came as a surprise 
[224]. Subjects with PSMD12 mutations presented with short stature, facial dysmorphism, 
intellectual disability, limb anomalies and sometimes absent of speech. Later, similar 
manifestations were reported in patients carrying variants of the PSMB1 and PSMC3 
genes [206,227], thereby confirming the causal relationship between proteasome loss-of-
function and NDD. One particularly intriguing observation from these studies is that, in 
contrast to PRAAS patients, subjects with NDD were devoid of clinical signs of 
autoinflammation. However, recent investigation revealed that leukocytes isolated from 
NDD patients with PSMD12 haploinsufficiency do exhibit a typical type I IFN gene 
signature [68]. The reason why the upregulation of ISG in these cells is not associated with 
the development of clinical autoinflammation as observed in PRAAS patients is obscure, 
but this phenomenon has been described in other interferonopathies [237–240]. 
Interestingly, it was shown that PSMD12 haploinsufficiency was accompanied by a 
profound remodeling of mTORC1 and its downstream autophagy pathway. Specifically, 
the elimination of mitochondria by mitophagy in PSMD12-deficient cells was induced 
[68]. 

3.3.4. Disorders due to Deficient DUB and/or E3 Ubiquitin Ligases 
A number of autoinflammatory syndromes have been described to be caused by 

genomic alterations in genes coding for DUB and E3 ubiquitin ligases. These include 
notably loss- or gain-of-function mutations in the TNFAIP3, USP18 and OTULIN, RNF31, 
RBCK1 genes [241–247]. However, in contrast to their proteasome counterparts, 
pathogenic variants from DUB and/or E3 ubiquitin ligases exert their proinflammatory 
effects mostly by interfering with specific PRR signaling cascades rather than by 
destabilizing the whole-cell proteome [248]. 

3.3.5. The Autophagy-Lysosomal System and Its Defects 
The 2016 Nobel Prize in Physiology or Medicine went to Yoshinori Ohsumi for his 

discoveries of the “mechanisms of autophagy” [249,250]. Together with the UPS, 
autophagy is the main contributor to protein breakdown in the cell. Unlike the UPS, which 
is constitutive active, autophagy requires signals such as starvation, growth, etc. It relies 
on the formation of autophagosomes capable of sequestering intracellular material prior 
to delivery to lysosomes for subsequent degradation. Over the past few years, various 
types of autophagy have been described including micro-autophagy and macro-
autophagy [251], the latter enabling the elimination of protein aggregates [252], a process 
frequently referred to as “aggrephagy” [253]. In this selective form of autophagy, 
ubiquitin-modified protein aggregates are recognized by the autophagy receptors p62, 
NBR1 and OPTN which themselves interact with lipidated LC3II on the inner phagophore 
membrane [254], thereby targeting them to autophagosomes. As such, protein 
homeostasis critically depends on functional autophagy under stress conditions and any 
and loss of autophagy has been early associated with the aggregation of abnormal 
proteins and neurodegeneration [255]. 

Another major cause of autophagy dysfunction and a fortiori protein homeostasis 
perturbations are loss-of-function mutations in genes encoding any one of the many 
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components involved in this process. A particularly vulnerable gene in this regard is 
SQSTM1 encoding the autophagy receptor p62 and whose pathogenic variants are 
associated with the onset of various metabolic, myopathic and skeletal disorders as well 
as neurodegenerative disease including ALS. Strikingly, syndromes caused by SQSTM1 
disruption are clearly associated with signs of autoinflammation [256–258]. However, 
given that p62 is also directly involved in the regulation of NF-κB signaling [259,260], the 
precise contribution of impaired aggrephagy to inflammation in these diseases is difficult 
to assess. Other ALS genes potentially causing imbalanced protein homeostasis include 
ATG5 and ATG7 [261,262]. Although clearly associated with protein aggregates, no 
inflammation was observed in these patients. 

4. Conclusions and Future Directions 
Altogether, these studies revealed that eukaryotic cells are equipped with various 

sensitive systems capable of sensing quantitative aberrations of their intra- and 
extracellular proteomes. Strikingly, these sensors are more or less directly connected to 
innate signaling pathways, and the continuous sampling of proteostasis perturbations 
consistently results in autoinflammation. The reason why the cell mostly responds to 
impaired proteostasis by the production of proinflammatory mediators is however not 
fully understood. One possible explanation is that inflammation might be part of 
autocrine program primarily aimed to help restoring proteostasis. This hypothesis is 
particularly based on the fact that many of the target genes (i.e., ISG) of type I IFN encode 
products that act on the proteostasis network at various levels. For instance, type I IFN 
limits the proteostatic burden by supporting a translation arrest via the induction of PKR. 
Conversely, by inducing immunoproteasome subunits and proteasome activators [263], 
type I IFN accelerates protein breakdown and as such help the cells to cope with 
proteotoxic stress. Given that inflammation has proliferation-promotive effects [264], it 
might also well be that the initiation of innate responses under these circumstances is 
intended to preserve integrity by generating new cellular space for the accumulating 
protein aggregates. Herein, when limited in time, sterile inflammation might represent a 
beneficial reaction rebalancing dysregulated proteostasis. However, the onset of sterile 
autoinflammation or neuroinflammation in patients with impaired proteostasis might 
signify a point of no return from which protein homeostasis cannot be rescued any longer. 
In this regard, a better comprehension of the mechanisms driving these processes is 
needed. 
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