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Abstract: Mesenchymal stem/stromal cells (MSC) are capable of renewing the progenitor cell fraction
or differentiating in a tissue-specific manner. Adipogenic differentiation of adipose-tissue-derived
MSC (adMSC) is important in various pathological processes. Adipocytes and their progenitors are
metabolically active and secrete molecules (adipokines) that have both pro- and anti-inflammatory
properties. Cell culturing in 2D is commonly used to study cellular responses, but the 2D environment
does not reflect the structural situation for most cell types. Therefore, 3D culture systems have been
developed to create an environment considered more physiological. Since knowledge about the effects
of 3D cultivation on adipogenic differentiation is limited, we investigated its effects on adipogenic
differentiation and adipokine release of adMSC (up to 28 days) and compared these with the effects
in 2D. We demonstrated that cultivation conditions are crucial for cell behavior: in both 2D and
3D culture, adipogenic differentiation occurred only after specific stimulation. While the size and
structure of adipogenically stimulated 3D spheroids remained stable during the experiment, the
unstimulated spheroids showed signs of disintegration. Adipokine release was dependent on culture
dimensionality; we found upregulated adiponectin and downregulated pro-inflammatory factors.
Our findings are relevant for cell therapeutic applications of adMSC in complex, three-dimensionally
arranged tissues.

Keywords: mesenchymal stem/stromal cells; 2D culture; 3D culture; spheroids; adipogenic
differentiation; adipokines

1. Introduction

The common practice of culturing cells on a two-dimensional (2D) surface does not
reflect the physiological situation of most cell types in tissues. Because cells in the body
are arranged in three dimensions, a 2D cell culture surface disregards aspects such as
cell polarity, the three-dimensional (3D) organization of intercellular contacts, and the
extracellular milieu. Due to these limitations, 3D culture systems have been developed
to provide an environment that is considered to be more physiological in terms of the
structural arrangement of the cells in a body [1–4]. Several 3D cultivation techniques are
known, including the use of natural and synthetic scaffolds [5–7], scaffold-free models
(e.g., hanging drop), and hybrid model systems that use a scaffold to support scaffold-free
systems [8,9].

Several recent reports have pointed out the specific capacities of 3D spheroid cul-
tures in the differentiation of various cell types including osteoblasts [10], organotypic
skin cells [11], and cancer (associated) cells [12–14], in addition to tailored derivatives
from induced pluripotent stem cells (iPSC) [15,16] or mesenchymal stem/stromal cells
(MSC) [17,18]. Three-dimensional spheroid cultures allow detailed comparison with the re-
spective 2D culture methods, which opens further possibilities for co-culturing and putative
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therapeutic applications [19]. Therefore, we decided to examine adipogenic differentiation
of adipose-tissue-derived mesenchymal stem/stromal cells (adMSC) in a newly adapted
3D spheroid system using cell-bound magnetizable beads to achieve a higher tissue-typical
structural organization and compare the cellular responses with those obtained from the
parallel 2D cultivation.

Adipogenic differentiation is characterized by changes in the sequential expression of
genes that determine the adipocytic phenotype of the cells, such as peroxisome proliferator-
activated receptor gamma (PPARγ). This is reflected in the appearance of various adipogenesis-
specific mRNA and proteins and in the end usually leads to lipid accumulation [20].
Adipogenic differentiation not only plays a role during embryonic development and the
related formation of adipose tissue, but is also important in various pathological processes
such as diabetes [21] and osteoporosis [22].

Adipocytes are metabolically active and secrete pro-inflammatory cytokines, hor-
mones, and growth factors, among other things [23]. These adipocyte-released factors are
collectively known as adipokines [24]. Adipokines include adiponectin, a protein hormone
involved in the regulation of glucose levels and fatty acid turnover [25]; the plasminogen
activator inhibitor-1 (PAI-1), a serine protease that inhibits fibrinolysis and induces insulin
resistance and metabolic deviations [26]; and the pro-inflammatory factors interleukin-6
(IL-6) and the monocyte chemoattractant protein 1 (MCP-1). Adipokines possess both
pro- and anti-inflammatory properties and link energy metabolism to immunological
responses [27].

adMSC are cells of the adipose tissue that can renew the mesenchymal progenitor
cell fraction or may alternatively differentiate in a tissue-specific manner [28,29]. Thus,
their presence is a prerequisite for the physiological turnover and regeneration of adipose
tissue [30]. Like all mesenchymal stromal cells, adMSC can exhibit immunosuppressive,
anti-inflammatory, and pro-angiogenic features [31,32]. Thus, they represent a promising
cell type for use in regenerative therapies [33]. Because adMSC retain their ability to
differentiate in vitro, they can be used to examine both essential signal transduction and
the effect of pharmacological compounds.

Only a few studies have addressed the effects of 3D cultivation on the degree of differentia-
tion of MSC compared with 2D cultivation so far. For example, Bogdanova-Jatniece et al. [34]
detected the expression of the pluripotency marker Nanog in spontaneously formed 3D
aggregates of adMSC, whereas 2D cultures were negative for this marker. Regarding adi-
pogenic differentiation, there are even fewer reports that thoroughly compare 2D and 3D
cultures. The limited number of studies is probably also due to the high technical demands
of 3D culture protocols. For example, Hoefner et al. [35] demonstrated a dynamic shift
in the composition of the extracellular matrix (ECM) during adipogenic differentiation
in 3D spheroids formed by a fluid overlay technique that did not occur in 2D cultivation.
The ECM composition obtained in 3D cultivation resembled that of native adipose tis-
sue. In this setting, the 3D spheroids required a significantly shorter adipogenic stimulus
to maintain adipogenesis than in the 2D cultures. Kim et al. [36] demonstrated that 3D
spheroids of MSC from dental follicles, generated with a newly developed microchip
dish, showed a higher level of pluripotency markers compared with those in a 2D culture,
whereas the degree of adipogenic differentiation in these cells remained unaffected by the
cultivation dimensionality.

From the studies cited above, it is apparent that limited information is available on
adipogenic differentiation of adMSC in 3D cultures. In particular, to our knowledge, the
release of adipokines and other relevant differentiation factors has not yet been investigated.
With the need for a robust and reproducible 3D cultivation method and in order to obtain
3D spheroids whose size can be precisely adjusted at the beginning of the experiment
by inserting an exact number of cells, we applied a relatively novel method of spheroid
generation based on a magnetic bead technique [37–39]. Using this cell culture model,
we gained detailed insight into the effects of the 3D cell arrangement of adMSC upon
adipogenic stimulation and on their adipokine release, as well as on inflammatory response
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during the differentiation process. Our results may also provide further indications of how
these cells might behave in a 3D tissue environment during future therapeutic applications.

2. Materials and Methods
2.1. Tissue Donors

All donors gave written, informed consent to donate tissue to perform this study. The
ethics vote was positively approved by the ethics committee at the Medical Faculty of
the University of Rostock in compliance with the applicable law and is filed under the
registration number A2013-0112 and A2019-0107. In total, material from 20 donors was
used. The median age of the donors was 44 years (ranging from 30 to 67 years).

2.2. adMSC Isolation and Cell Culture

The adipose tissue was obtained by liposuction and the aspirated tissue was trans-
ported to the processing site at room temperature (RT) by direct transport or overnight and
processed after 3 to 24 h. The processing and isolation of adMSC was performed according
to the protocol of Meyer et al. [40] that was previously established by our group. Briefly, adi-
pose tissue was cleared of tumescent solution by aspiration and 30 mL of adipose tissue was
digested, shaking at 37 ◦C with 0.15 U/mL collagenase (NB4, Serva Electrophoresis GmbH,
Heidelberg, Germany). The tissue was then filtered through a 100 µm cell strainer (Greiner
Bio-One GmbH, Frickenhausen, Germany). The filtered tissue was washed with 10 mL Dul-
becco’s phosphate buffered saline (DPBS, PAN Biotech, Aidenbach, Germany) + 10% fetal
calf serum (FCS, PAN Biotech, Aidenbach, Germany) and sedimented for an additional
10 min. The aqueous infranatant containing the stromal vascular fraction (SVF) was filtered
through a 40 µm cell strainer (Greiner Bio-One GmbH, Frickenhausen, Germany). Both the
supernatant containing the lipid phase and the aqueous subsurface were centrifuged at
400× g for 10 min at room temperature. The supernatant was discarded and the two cell
pellets were resuspended in a total of 10 mL PBS + 10% FCS and pooled. The cell suspension
was centrifuged again for 5 min at 400× g and RT, and the supernatant was discarded.
The pellet was resuspended in 12 mL of Dulbecco’s Modified Eagle Medium (DMEM,
Thermo Fisher Scientific, Schwerte, Germany) + 10% FCS + 1% penicillin/streptomycin
(penicillin: 100 U/mL; streptomycin: 100 mg/mL, Thermo Fisher Scientific, Schwerte,
Germany, hereinafter referred to as complete culture medium). Cultivation took place
in 75 cm2 TCPS flasks (Greiner Bio-One GmbH, Frickenhausen, Germany)) at 37 ◦C and
5% CO2. After 24 h of cultivation, CD34 positive cells were isolated using magnetic beads
(CD34 positive isolation kit, Thermo Fisher Scientific, Schwerte, Germany). The number
of beads was based on the confluence of the cells and ranged from 10–25 µL of the bead
suspension. The resulting cell population is the adipose-tissue-derived MSC (adMSC). For
2D culturing, 6800 cells were seeded per well (corresponds to 20,000 cells/cm2, 96 well,
Greiner Bio-One GmbH, Frickenhausen, Germany). The 2D culture was cultivated up to
28 days with a medium change every 2–3 days. Cultivation was performed without specific
stimulation (unstimulated) and with adipogenic stimulation (described in more detail in
Section 2.4).

2.3. Three-Dimensional Cell Culture

The 3D cell constructs (hereinafter referred to as spheroids) of adMSC were generated
by using magnetizable nanoparticles (n3D, Bioscience, Greiner Bio-One GmbH, Fricken-
hausen, Germany; nanoparticle diameter 50 nm, composed of gold, poly-L-lysine, and iron
oxide). For this purpose, adMSC in a 75 cm2 cell culture flask growing with 80–90% conflu-
ency were incubated overnight with 80 µL of the magnetizable nanoparticles in complete
culture medium. This incubation causes the nanoparticles to attach electrostatically to
the cell membrane (verified by phase contrast microscopy). The nanoparticle-equipped
cells in the TCPS flask were washed twice with PBS and then incubated with trypsin con-
taining ethylenediaminetetraacetic acid/EDTA (Gibco/Thermo Fisher Scientific, Schwerte,
Germany) for 5 min at 37 ◦C. The detached cells were suspended in complete culture
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medium and centrifuged at 400× g for 5 min. The supernatant was discarded, and the
cell pellet resuspended in 5 mL complete culture medium. The resulting cell suspensions
were stored on ice until measurement. The cell suspensions were analyzed for the num-
ber of viable and dead cells with volume-calibrated cassettes (Via1-CassetteTM) and the
NucleoCounter® NC-3000TM (both Chemometec, Allerod, Denmark). This procedure was
performed according to the manufacturer’s protocol. For development of the 3D spheroids,
100,000 cells per well (96-well, Greiner Bio-One GmbH, Frickenhausen, Germany) were
seeded. The nanoparticle-equipped cells were subsequently exposed in cell repellent plates
to a magnetic field below the plate and spheroid formation was achieved overnight. The
spheroids were cultivated for up to 28 days without a magnetic field. Every 2–3 days, the
spheroids were exposed to the magnetic field in order to change the medium.

2.4. Adipogenic Stimulation

The procedure of adipogenic stimulation was described earlier [40,41]. In brief: after
having prepared the confluent monolayers for 2D cultures and the 3D spheroids, adipogenic
differentiation was induced after 3 days by adding a differentiation-stimulating medium,
i.e., a complete culture medium containing 1 µM dexamethasone, 500 µM IBMX (3-isobutyl-
1-methylxanthine), 200 µM indomethacin, and 10 µM insulin (all from Sigma-Aldrich
Chemie GmbH, Taufkirchen, Germany). Adipogenic stimulation (AS) took place with
every replacement of the medium three times a week (every second or third day). The
replacement of medium for both differentiating adMSC and undifferentiating adMSC
without specific differentiation factors (unstimulated/US) was performed simultaneously.

2.5. Determination of Cell Numbers and Cell Analysis

To determine and analyze the cell numbers of adMSC after different cultivation ap-
proaches, the NucleoCounter® NC-3000TM (Chemometec, Allerod, Denmark) aggregated
cells assay was used. Cells were incubated with trypsin/EDTA (Gibco) at 37 ◦C (2D culture:
5 min; 3D culture: 20 min), dissociated, and the detachment reaction was stopped with
the same volume of complete culture medium. The resulting cell suspensions were stored
on ice until measurement was performed. The measurement of the cell numbers and cell
diameters was performed according to the manufacturer´s protocol. The respective cell sus-
pension was analyzed for the number of viable and dead cells with volume-calibrated cas-
settes (Via1-CassetteTM) and the NucleoCounter® NC-3000TM (both Chemometec, Allerod,
Denmark) according to the manufacturer’s protocol (n = 9).

2.6. Analysis of 3D Culture Spheroids

Spheroids were visualized using phase contrast microscopy in an appropriate culture
medium (Carl Zeiss Microscopy Deutschland GmbH, Oberkochen, Germany; Axiovert
25, 10x objective, n = 3) after 1, 14, and 28 days under unstimulated cultivation conditions
and under adipogenic stimulation. For the determination of the size of the spheroids, the
phase contrast images (Zeiss Zen Blue) were converted to binary data using ImageJ and
calculated in terms of the area of the largest diameter of the respective spheroid. Zeiss Zen
lite software was used to determine the spheroid diameter.

2.7. Preparation of Microscopic Slides for Histological Analysis

Three-dimensional cultured spheroids were washed with PBS after 14 and 28 days
of adipogenic stimulation (AS) or unstimulated cultivation conditions (US) and fixed
in 4% paraformaldehyde (PFA) at 4 ◦C overnight. After washing again, samples were
dehydrated in 30%, 50%, 70% and absolute ethanol for 30–60 min each. Until embedding
them in LR White acrylate resin (medium grade, Plano GmbH, Wetzlar, Germany), the
samples were stored in absolute ethanol. For embedding, the specimens were infiltrated
with a 1/1 mixture of ethanol/LR White in an open vial after dehydration overnight.
Subsequently, infiltration with pure LR White was performed for 4 h. Samples were
transferred to gelatin capsules, filled with LR White, hermetically sealed, and polymerized
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at 50 ◦C for approximately 2 days. After embedding in LR White resin blocks, thin sections
with a section thickness of 0.5 µm were prepared with an ultramicrotome (Ultracut S,
Reichert/Leica, Vienna) using a diamond knife (Diatome, Nidau, Switzerland). The sections
were stained with toluidine blue and covered in mounting medium for analysis with a light
microscope (Zeiss Axioskop 40, n = 3) equipped with a digital camera (Zeiss Axiocam ERc
5s, both Carl Zeiss Microscopy Deutschland GmbH, Oberkochen, Germany).

2.8. Immunofluorescence Staining and Image Analysis

After 14 and 28 days under corresponding stimulation, the samples were stained with
calcein acetoxymethyl ester (Calcein AM, AAT Bioquest, Sunnyvale, CA, USA), propidium
iodide (PI, Thermo Fisher Scientific, Schwerte, Germany), and Bis-benzimide H33342
trihydrochloride (Hoechst 33342, Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) to
determine their viability. For this purpose, cells were washed with PBS and then incubated
in complete culture medium with calcein AM 1:3000, PI 1:50, and Hoechst 33342 1:2000
for 20 min at 37 ◦C. After incubation, samples were washed and visualized in PBS (PAN
Biotech, Aidenbach, Germany) on the inverted confocal laser scanning microscope LSM
780 (Carl Zeiss). Images were taken and analyzed using ZEN 2011 software (black edition,
both Carl Zeiss Microscopy Deutschland GmbH, Oberkochen, Germany). For the spheroids
from the 3D culture, several images were taken with the Z-stack function (slices with an
interval of 5 µm, pinhole 1 AU) and a 3D reconstruction was made by an overlay. The
overlay was used to illustrate the distribution over the entire spheroid (n = 3).

After 14 days of adipogenic stimulation or unstimulated cultivation conditions, sam-
ples were stained with Bodipy (Thermo Fisher Scientific, Schwerte, Germany) and Hoechst
33342 to detect fat vacuoles and for localization. For this purpose, the samples were washed
with PBS and dist. H2O at the time of measurement, then fixed with 4% PFA for 1 h, washed
again, and incubated with Bodipy 1:250/ Hoechst 33342 1:2000 in complete culture medium
at 37 ◦C for 20 min. After washing again with H2O and PBS, the samples were visualized
on the inverted confocal laser scanning microscope LSM 780 as described above (n = 3).

2.9. Quantification of Adipokines by Multiplex Analysis

The expression of a set of adipokines: adipogenesis-related factors, nerve growth factor
(NGF), interleukin 6 (IL-6), leptin, IL-8, hepatocyte growth factor (HGF), adiponectin, mono-
cyte chemotactic protein 1 (MCP-1), tumor necrosis factor (TNF), resistin, IL-1β, and plas-
minogen activator inhibitor 1 (PAI-1, total) was quantified in both supernatants and lysates
of 2D and 3D cultured adMSC using the MILLIPLEX® MAP Kit for Human Adipocyte
Magnetic Bead Panel (Merck Millipore/Sigma-Aldrich Chemie GmbH, Taufkirchen, Ger-
many) according to the manufacturer’s instructions. The samples were collected after 7 and
14 days of unstimulated and adipogenically stimulated cultures, respectively. Lysates were
prepared using the Bio-Plex® Cell Lysis Kit (Bio-Rad Laboratories GmbH, Feldkirchen, Ger-
many). Briefly: standards, controls, and samples were incubated together with the antibody
bead mix in a 96-well plate at 4 ◦C for 16–18 h. The plate was then incubated with detection
antibody at RT for 1 h, followed by incubation at RT with streptavidin-phycoerythrin for
30 min. Fluorescence intensity minus background intensity and the resulting protein con-
centrations of biomarkers were measured using the Bio-Plex® 200 System and Bio-PlexTM

Manager 4.1.1 software (both Bio-Rad Laboratories GmbH, Feldkirchen, Germany). Protein
concentrations were normalized to the respective cell number, which was measured using
NC-200 (n = 4).

2.10. Statistical Analysis

Sample size n included at least 3 and a maximum of 9 biological replicates. The
respective n number is given in the associated figure. Depending on the assay and the
associated accuracy, each sample was measured in double or triple technical replicates.
Microsoft Excel 2010 and GraphPad Prism 7 software were used for statistical analysis.
Data were presented as median values displayed as boxplots. One-way ANOVA post
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hoc uncorrected Fisher´s LSD was used for analysis of the spheroid area, analysis of the
spheroid diameter, and protein expression and Friedman Two-way ANOVA post hoc
test for cell number and cell diameter. The probability value of p < 0.05 was set as the
significant difference (indicated by §, #, and * in the graphs). All graphs were prepared
using GraphPad Prism 7 software (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Phenotype of 3D Cultured Unstimulated and Adipogenically Stimulated adMSC

The spheroids were visualized under unstimulated cultivation conditions and under
adipogenic stimulation over a period of 28 days by phase contrast microscopy (Figure 1a).
After only 24 h, uniformly sized, symmetrically shaped, compact spheroids were generated
with the help of this new 3D cultivation method. In the following, under non-stimulated
(control) cultivation conditions, spheroids became smaller over the 28-day culture period
(Figure 1a, left), whereas the size of adipogenically stimulated spheroids appeared stable
within the observed timeframe (Figure 1a, right). Measurements of the spheroid area and
diameter by image analysis confirmed our observations that the unstimulated spheroids be-
came smaller over the observation period, whereas the size of the adipogenically stimulated
spheroids remained largely unaltered (spheroid area: Figure 1b and spheroid diameter:
Figure 1c).

To obtain information on the viability and distribution of adMSC in 3D, the spheroids
were fluorescently labeled by live/dead staining after 14 and 28 days under corresponding
stimulation (Figures 1d and S1). In both unstimulated and adipogenically stimulated
spheroids, the nuclei (blue) were arranged in a compact manner and evenly distributed.
The majority of cells were alive (green), but dead cells (red) were also detectable and
evenly distributed. Consistent with the results of phase contrast microscopy, vital staining
showed that the size of the adipogenically stimulated spheroids remained largely stable
during the 28-day experimental period, while the unstimulated spheroids became smaller
and appeared less intact at the end of the experimental period. However, there were no
obvious changes in the proportion of live and dead fractions and their spatial distribution
(Figure S1). Due to the penetration depth of the laser and the compactness of the spheroid,
only the outer shell of the spheroid could be depicted. The core of the complete spheroid
could not be visualized by confocal microscopy and was therefore examined in detail by
histology (see Section 3.4).

3.2. Dependence of the Cell Number Development and the Single Cell Diameter on the Cell Culture
Model and Differentiation

The development of the cell number in the course of cultivation provides information
about the proliferation behavior of the cells. We were able to show that a large portion of
the cells in 3D cultivation perished in the first week of cultivation: with an initial seeding
of 100,000 cells/well, only about 25% (US) and 40% (AS) could be detected after 7 days.
Furthermore, the progression of the cell number under unstimulated cultivation conditions
in 3D culture was clearly different from the progression in 2D (Figure 2a): while the cell
quantity in 2D increased steadily over the observation period of 28 days (from approx.
14,000 cells/well on day 7 by about 2.5 times to approx. 34,000 cells/well on day 28),
there was a steady decrease in the cell quantity in 3D (a 3-fold decrease from approx.
25,000 cells/spheroid to approx. 8500 cells/spheroid).
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stimulated culture, # p < 0.05; § significantly different from day 14 of the respective stimulation, § p 
< 0.05; One-way ANOVA post hoc uncorrected Fisher´s LSD with n = 3 for area measurement by 
image analysis using ImageJ and n = 4 for diameter measurement by image analysis using Zeiss Zen 
lite). (d) Live/dead staining of an unstimulated and an adipogenically stimulated spheroid after 14 
days (n = 4, LSM 780, Zen black software, overlay of Z-stack, green: live, red: dead, blue: nuclei; 
scale bar: 200 µm). 

To obtain information on the viability and distribution of adMSC in 3D, the spheroids 
were fluorescently labeled by live/dead staining after 14 and 28 days under corresponding 
stimulation (Figures 1d and S1). In both unstimulated and adipogenically stimulated 
spheroids, the nuclei (blue) were arranged in a compact manner and evenly distributed. 
The majority of cells were alive (green), but dead cells (red) were also detectable and 

Figure 1. Analysis of spheroid morphology and size. (a) Imaging of unstimulated (US) and adi-
pogenically stimulated (AS) spheroids after 1, 14, and 28 days (n = 3, phase contrast, Axiovert 25,
scale bar: 200 µm). (b) Analysis of the spheroid area and (c) the spheroid diameter of unstimulated
and adipogenically stimulated spheroids after 7, 14, and 28 days (* significantly different from day
7 of the respective stimulation, * p < 0.05; # significantly different from the respective time point of
unstimulated culture, # p < 0.05; § significantly different from day 14 of the respective stimulation,
§ p < 0.05; One-way ANOVA post hoc uncorrected Fisher´s LSD with n = 3 for area measurement
by image analysis using ImageJ and n = 4 for diameter measurement by image analysis using Zeiss
Zen lite). (d) Live/dead staining of an unstimulated and an adipogenically stimulated spheroid after
14 days (n = 4, LSM 780, Zen black software, overlay of Z-stack, green: live, red: dead, blue: nuclei;
scale bar: 200 µm).



Cells 2022, 11, 1313 8 of 19Cells 2022, 11, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 2. Quantification of the cell number and single cell diameter of adMSC in 2D and 3D cultures 
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0.05). (b) Diameter of single cells under US and AS conditions in 2D and 3D culture (n = 4; # signifi-
cantly different from 2D culture at the respective time point, Two-way ANOVA post hoc uncor-
rected Fisher´s LSD; # p < 0.05). 
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mulation in adMSC under both 2D and 3D cultivation using Bodipy lipid stain. Knowing 
the limited penetration of the laser, we analyzed the spheroids in toto as a first step. After 
14 days of cultivation, the unstimulated cells showed no clear lipid accumulation in either 
the 2D or the 3D culture (Figure 3). In contrast, adipogenic stimulation led to the formation 
of relatively evenly distributed lipid accumulations (yellow) in both the 2D and 3D culture 
(Figure 3a,b). As already indicated by the live/dead staining (Figure 1a), a densely packed 
cell arrangement in the spheroid shell independent of the differentiation status is visible 
(Figure 3b). In contrast, under 2D culture conditions the cells are spread at a lower density 
(Figure 3a).  

Figure 2. Quantification of the cell number and single cell diameter of adMSC in 2D and 3D cultures
up to 28 days. (a) Cell number of unstimulated (US) and adipogenically stimulated (AS) adMSC
within 28 days (n = 9; # significantly different to US in 2D culture at the respective time point,
Two-way ANOVA post hoc uncorrected Fisher´s LSD; # p < 0.05; * significantly different to day 7
of adipogenically stimulated 3D culture, Friedman test post hoc Dunn´s multiple comparison test,
* p < 0.05). (b) Diameter of single cells under US and AS conditions in 2D and 3D culture (n = 4;
# significantly different from 2D culture at the respective time point, Two-way ANOVA post hoc
uncorrected Fisher´s LSD; # p < 0.05).

In the adipogenic differentiation, the cell number development was different from
that in the unstimulated condition. Whereas in the 2D cultivation the cell numbers al-
most stagnated over the observation period, in the 3D cultivation there was an appar-
ent decrease in cell numbers from an average of about 42,000 cells/spheroid to approx.
6500 cells/spheroid, representing a 6-fold decrease, which was significant on day 28 of the
experiment (Figure 2a).

Interestingly, the single cell diameters differed depending on cultivation conditions.
While in the 2D cultivation both the unstimulated and the adipogenically stimulated cells
had a similar cell diameter of approx. 17–19 µm (median), the cell diameter in the 3D
cultivation was significantly smaller, reaching approx. 12–14 µm (Figure 2b).

Because we observed a significant decrease in cell numbers in the 3D cultures after
longer cultivation periods, we focused further investigations on the earlier to the interme-
diate time point of differentiation after 7 and 14 days of culture. However, for comparison,
we additionally examined aspects of spheroid development after a longer 3D culture of up
to 28 days.
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3.3. Adipogenic Differentiation of adMSC in 2D and 3D Cultures

Adipogenic differentiation was demonstrated by fluorescence imaging of lipid accu-
mulation in adMSC under both 2D and 3D cultivation using Bodipy lipid stain. Knowing
the limited penetration of the laser, we analyzed the spheroids in toto as a first step. After
14 days of cultivation, the unstimulated cells showed no clear lipid accumulation in either
the 2D or the 3D culture (Figure 3). In contrast, adipogenic stimulation led to the formation
of relatively evenly distributed lipid accumulations (yellow) in both the 2D and 3D culture
(Figure 3a,b). As already indicated by the live/dead staining (Figure 1a), a densely packed
cell arrangement in the spheroid shell independent of the differentiation status is visible
(Figure 3b). In contrast, under 2D culture conditions the cells are spread at a lower density
(Figure 3a).
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3.4. Morphology and Adipogenic Differentiation of the Spheroids Shown by Histological Sections

In order to study the structure, degree of differentiation, and distribution of lipid
accumulations in more detail on the cellular level in all areas of the spheroids, we further
evaluated sections of resin-embedded spheroids. The resulting sections with a thickness
of 0.5 µm were stained with toluidine blue, which provided an excellent resolution in
the Z-Axis and enabled an overview of the structures as well as a high resolution of the
lipid inclusions.

Microscopic analysis of the sectioned spheroids showed a regular outer surface lining
after 14 days of treatment (Figure 4a,b). Using higher magnification with oil immersion, it
became apparent that both the unstimulated and adipogenically stimulated spheroids had
formed two zones with different cellular arrangements (Figure 4c,d). With both treatments,
an outer, enveloping layer characterized by cells with a flat phenotype was observed
(Figure 4c,d; marked with arrows). The outer cellular envelope tended to be multilayered.
In contrast, the cells inside the spheroids generally appeared more round-shaped and
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there was a clear difference in the appearance of the unstimulated compared with the
adipogenically stimulated 3D culture conditions (Figure 4e,f). Whereas the interior of the
unstimulated spheroids presented with relatively few intact cells and occasionally with
cell-free areas containing cellular debris (Figure 4c,e; cell debris marked with asterisks), the
interior of the adipogenically stimulated spheroids was frequently filled with large cells
that exhibited a considerable number of vacuoles of varying sizes (Figure 4d,f; vacuoles
marked with arrowhead). These vacuoles appeared as bubble-like, foamy inclusions within
the cells, strongly suggesting an accumulation of lipid droplets, indicating differentiation of
these cells into (pre-)adipocytes. In contrast, only a few rather small inclusions are visible in
the unstimulated spheroids at the same magnification. Thus, adipogenically differentiating
spheroids appeared structurally more homogeneous with clearly demarcated cellular
territories and without evidence of cell death, whereas in the unstimulated spheroids,
cellular debris could already be observed relatively close to the shell region. However,
a necrotic core was not apparent in the unstimulated spheroids, as intact cells could be
detected up to the center of the spheroid. Moreover, even after 28 days of stimulation, at a
time when unstimulated spheroids displayed an even greater degeneration, no necrotic
core was found in either unstimulated or adipogenically stimulated spheroids. In general,
the zoning of the spheroids with an outer shell and core region, which was evident after
14 days of stimulation, is largely preserved during longer cultivation (Figure S2, spheroids
after 28 days). Cellular debris already visible in the unstimulated spheroids after 14 days
was even more pronounced after 28 days of culture and the remaining cells appeared
loosely arranged. In contrast, less debris was observed in the adipogenically stimulated
spheroids, which appeared more compact and remained structurally intact.

The nanoparticles used to develop the spheroids were visible in both stimulation
conditions (brown coloring) and, after 14 days, they tended to form small clusters that may
also reside intracellularly but were predominantly visible in the shell region (Figure 4). After
28 days of stimulation, the nanoparticles tended to form larger, meandering accumulations
that mainly covered the shell and the subjacent region (Figure S2).

3.5. Changes in the Release of Adipokines Dependent on 2D and 3D Cultivation and the
Differentiation Status

The expression of a set of adipokines was measured in the supernatants and lysates
of 2D and 3D cultured adMSC after 14 days of cultivation by a multiplex assay. Relevant
adipokines such as adiponectin, plasminogen activator inhibitor (PAI-1), interleukin 6
(IL-6), monocyte chemotactic protein 1 (MCP-1), hepatocyte growth factor (HGF), and lep-
tin were differentially expressed dependent on both 2D and 3D cultivation and adipogenic
differentiation (Figure 5 and Table 1). The amount of all adipokines was always consid-
erably higher in the supernatants than in the respective lysates (Table S1), and because
there were no conflicting results between the amount of adipokine in supernatant and
lysate, we focused on the supernatant in the presentation. For example, adiponectin was
released exclusively during adipogenic stimulation of both 2D and 3D cultured adMSC.
The adiponectin release was significantly higher in the 3D model than in the 2D model and
increased with the progression of the adipogenic stimulation period (Figure 5a).

The other adipokines detected were primarily present in larger amounts under 2D
culture conditions. For example, PAI-1 release is much higher under 2D conditions and
can only be increased slightly by adipogenic stimulation (Figure 5b). In addition, the
release decreased with the duration of cultivation. The release of the pro-inflammatory
cytokines IL-6, IL-8, and MCP-1 was also significantly higher under 2D culture conditions
(Figure 5c,d and Table 1). Unlike adiponectin, there was a decrease in these three cytokines
over the period of 14 days of cultivation and also due to adipogenic stimulation. At
a much lower release level, this development was also displayed under 3D cultivation
conditions. HGF was released under 2D culture conditions in the unstimulated cultures in
a manner dependent on the cultivation time (significant increase after 14 days compared
with 7 days) (Figure 5e). The adipogenic stimulation led to a slight but non-significant
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increase in HGF release in the 2D culture. Under 3D culture conditions, there was a
tendency towards reduction in release over time. Interestingly, leptin was detected almost
exclusively under 2D culture conditions: this showed a higher level in the adipogenically
stimulated cells (Figure 5f). In the 3D culture, only very low levels were detected after
adipogenic stimulation.
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Figure 4. Thin sections (0.5 µm) of unstimulated and adipogenically stimulated 3D spheroids after
14 days. Overview images of (a) an unstimulated (US) spheroid and (b) an adipogenically (AS)
stimulated spheroid (scale bars: 100 µm, frames in the overview images correspond to the areas
shown below in high magnification, (c) detail of the shell region of an unstimulated spheroid (arrows:
enveloping cells, asterisks: cell debris), (d) detail of the shell region of an adipogenically stimulated
spheroid (arrows: enveloping cells, arrowheads, vacuoles), (e) detail of the core of an unstimulated
spheroid (asterisks: cell debris), (f) detail of the core region of an adipogenically stimulated spheroid
(arrowheads: different sized vacuoles; scale bars: 20 µm; representative images of 3 experiments;
light microscopy (Zeiss Axioskop 40), toluidine blue staining).
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Figure 5. Quantification of adipokines in supernatants of unstimulated (US) and adipogenically (AS)
stimulated 2D and 3D cultures after 7 and 14 days. (a) Adiponectin; (b) PAI-1; (c) IL-6; (d) MCP-1;
(e) HGF; (f) leptin (concentrations were normalized to cell number, n = 4; # significantly different
from 2D cultures at the respective time point; * significantly different from day 7 under the same
cultivation conditions; § significantly different from US culture at the respective time point and
dimension of cultivation; One-way ANOVA and Two-way ANOVA, post hoc uncorrected Fisher’s
LSD; # p < 0.05; * p < 0.05; § p < 0.05).

Resisitin and the nerve growth factor NGF were detectable only at very low levels
(Table 1). Here, the resistin release was increased by adipogenic stimulation in 2D. In
contrast, the adipogenic stimulation did not affect the resistin release in the 3D culture. The
NGF release was reduced by 3D cultivation and not affected by adipogenic stimulation.
However, no statistical significance was found for either (Table S1). In addition, only very
low levels of interleukin-1β (IL-1β) and tumor necrosis factor (TNF) could be detected. In
this case, this could not be influenced by adipogenic stimulation or by the dimension of
cultivation (Table 1).
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Table 1. Quantification of a subset of adipokines in cell culture supernatants of unstimulated (US)
and adipogenically (AS) stimulated 2D and 3D cultures (multiplex assay, biological replicates: n = 4,
technical replicates were involved in the calculations, median, values in pg/104 cells, descending
order depending on detected quantity, with decimal place in the single-digit range).

2D 3D

Analyte US AS US AS

Adiponectin Day 7 0 17,923 0 53,454
Day 14 0 38,056 0 150,746

PAI-1
Day 7 21,983 22,154 3809 2435
Day 14 12,219 20,027 3702 2791

IL-6
Day 7 4010 1006 601 51
Day 14 2561 423 485 36

MCP-1
Day 7 3565 1166 522 59
Day 14 2988 598 305 73

IL-8
Day 7 276 86 81 22
Day 14 418 71 40 20

HGF
Day 7 62 261 305 140
Day 14 181 243 232 49

Leptin Day 7 2.5 20 0 0
Day 14 15 13 0 0.7

Resistin
Day 7 0.5 2.5 0.7 0.6
Day 14 0.1 1.8 0.3 0

NGF
Day 7 1.4 1.0 0.1 0.1
Day 14 1.0 0.8 0.1 0.1

IL-1β
Day 7 0.1 0.3 0.1 0
Day 14 0.1 0.3 0.1 0.1

TNF
Day 7 0 0.2 0 0
Day 14 0 0.1 0 0

4. Discussion

The cultivation conditions are crucial for cell behavior in terms of proliferation, dif-
ferentiation, and other specific cellular reactions such as the release of biologically active
factors, synthesis of the extracellular matrix, or cell–cell interactions. The cultivation
conditions are determined by the addition of specific soluble components (e.g., growth
factors, hormones, and pharmacological compounds), insoluble substrates (e.g., artificial,
semi-artificial and natural coatings), and the dimensionality of the culture (2D and 3D
culture) [42]. The final outcome of the complex interplay of the aforementioned factors
further depends on the concentration, the particular time of stimulation, and specific com-
bination of factors, so prediction is often elusive. Specifically, knowledge of the effects of
3D cultivation on adipogenic differentiation is currently limited and constantly subject to
new findings [17,43–45]. Therefore, in this study, we compared the effects of 2D and 3D cul-
tivation in human adMSC without specific stimulation and under adipogenic stimulation,
respectively, with focusing on differentiation and adipokine release. In the 3D model sys-
tem used in this study, spheroid formation of adMSC was induced by cell-bound magnetic
nanoparticles temporarily exposed to a magnetic field. The application of this technique
led to the formation of spheroids with a uniformly defined size and compaction from the
beginning of the experiment. In addition, applying the magnetic field during medium
exchange prevents the loss of the spheroid due to aspiration. Different studies have shown
that the nanoparticles used are biocompatible and have no effect on cell development in
terms of viability, proliferation, or metabolism [46–48]. Similarly, we also found no adverse
effects during cultivation (not even in the areas where an accumulation of nanoparticles
occurred). Our observations confirmed these reports and so we conducted our experiments
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for up 28 days. During this period, the viability of cells in 2D culture and 3D spheroids was
relatively high and a series of specific changes occurred depending on the stimulation and
culture dimensionality.

4.1. Morphology of Unstimulated and Adipogenically Stimulated MSC Spheroids

This 3D spheroid model exhibited a clear difference in spheroid size depending on the
differentiation protocol applied. While the unstimulated spheroids became smaller over the
experimental period (from a diameter of 500 µm at the beginning to below 400 µm after
28 days), the size of the adipogenically stimulated spheroids remained relatively constant (at
about 600 µm in diameter). In addition, the unstimulated spheroids showed evidence of dis-
integration (isolated cell debris and more loosely attached cells inside the spheroid), whereas
the adipogenically stimulated spheroids remained structurally intact. These differences
became more and more evident over the observation period of 28 days. Since the morpho-
logical differences between the undifferentiated and adipogenically differentiated spheroids
extended to the center of the spheroid, we assume that the differentiation compounds
(i.e., dexamethasone, IBMX, indomethacin, and insulin) penetrate the complete spheroids.

In spheroids of tumor cells, there is often a marked increase in the size of the spheroids
when proliferation is strong. This increase in size is then associated with the formation
of a hypoxic region, which ultimately then leads to the formation of an avital, necrotic
core in the spheroids [49]. In our experiments, there was no increase in size over the
experimental period under any of the treatments performed and a necrotic core did not
develop. Moreover, despite their smaller size, cellular debris was mainly detectable in the
unstimulated spheroids, whereas the adipogenically stimulated spheroids, which were
even larger, had vital, well-differentiated cells throughout their nuclei.

Information on cell viability in spheroids from MSC is sparse and rather suggests the
opposite behavior compared with spheroids from tumor cells. For example, Regmi et al. [50]
described higher cell viability of MSC in a 3D culture model than with 2D culturing. In the
process they observed that heme oxygenase 1 (HMOX1) was significantly upregulated in
3D cultivated MSC, indicating a hypoxic situation with an increased level of reactive oxygen
species (ROS). By inhibiting the hypoxia cell signaling via the hypoxia-inducible factor-1
subunit alpha (HIF1α), a suppression of HMOX1 was caused. Similarly, Zhang et al. [51]
also demonstrated an involvement of HIF1α in the MSC survival within 3D cultures, as
the increase in the HIF1α expression was associated with increased resistance to apoptosis
triggered by oxidative stress. These studies show that the viability of cells in spheroids is
influenced by several factors, such as the diffusion of nutrients, oxygen, and degradation
products through the spheroidal structure. Thus, the size of the spheroids is also decisive for
the survival and differentiation of cells within the spheroid [52]. Specifically, in a recently
published study by Schmitz et al. using human adMSC (the cell type used in our study), it
was shown that not only the spheroid size but also the spheroid cultivation method plays a
crucial role in the occurrence of critical hypoxia [53]. There were large differences in critical
spheroid size depending on the spheroid culture method (from 180 µm on microstructured
plates to 920 µm spheroids in the hanging drop technique). The spheroids presented in our
work were, at most, just over 600 µm in size, so a critical undersupply and thus cell death
in the core of the spheroids may not have occurred. In addition, the smaller spheroids
(undifferentiated with 500 µm and smaller) show more indications of cellular degeneration
and are more fragile than the larger spheroids (adipogenically differentiated at a size of
about 600 µm). This suggests that the spheroid size plays a more minor role in the survival
of adMSC in this type of 3D culture than in the differentiation state.

However, not only the number of cells but also the size of the cells can influence
the size of the spheroid. The variation in single cell diameters in the different cultivation
methods we observed was significant. The diameter of the cells in the 3D cultures was
about 30% smaller than in the 2D culture. This is consistent with a number of studies,
where a decreased cell volume of up to 75% was observed in 3D cultivation [52,54]. This
reduction in cell size in the 3D culture is induced by cytoskeletal changes; Ruiz and Chen
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described a pivotal role of actinomyosin and the myosin-generated tension in the process
of 3D spheroid organization [55].

However, what are the reasons for the differences in stability between unstimulated
and adipogenically stimulated spheroids? In our study, spheroid size does not seem to
be crucial. There might, however, be a link to a change in cellular energy metabolism. As
we have previously shown, the metabolic basis of adMSC shifts significantly toward ox-
idative phosphorylation and β-oxidation under adipogenic differentiation compared with
undifferentiated adMSC. Thus, the metabolic capacity shifts toward lipid metabolism [56].
However, because these studies of energy metabolism were performed under 2D rather
than 3D conditions, a limitation of the transferability remains.

In principle, the adipogenic differentiation performed well in both 2D and 3D cultures
under adipogenic stimulation. Metachromatic toluidine blue staining of the thin sections
of these spheroids showed a large number of vacuoles in the cells just below the envelop-
ing cell layer of the adipogenically stimulated spheroids. Vacuoles of this type did not
occur in the unstimulated spheroids. This suggests substantial lipid accumulation in the
adipogenically stimulated spheroids, which is consistent with our lipid detection results.

Interestingly, some cells are filled with numerous smaller vacuoles, while others
contain only two to three large vacuoles. This suggests that after 14 days of stimulation,
adMSC have differentiated toward a pre-adipocytic cell fate throughout the spheroid
core [57]. It has been described that the degree of adipogenic differentiation is enhanced by
the cell–cell and cell–matrix contacts as a result of the 3D arrangement [58,59]. In general,
analyses of adipocytes and their differentiating progenitor cells are challenging because
they are hampered by the high lipid content of the cells [58,60]. For example, we suspect
that our cell counts of adipogenically stimulated adMSC may even be too low because the
cells need to be concentrated by centrifugation and because especially the large, lipid-laden
cells are then lost for quantification.

4.2. Adipokine Release of adMSC in 2D and 3D Culture

In our study, both 2D and 3D cultivation resulted in adipogenic differentiation after
adipogenic stimulation, whereas adipogenic differentiation was absent in the unstimu-
lated condition. This was the basis for a detailed comparison of adipokine release. We
demonstrated that the adipokine released in the highest amounts was the protein hor-
mone adiponectin. However, adiponectin release could only be induced by adipogenic
stimulation; without specific stimulation, adiponectin release was negligible. Adiponectin,
primarily produced in adipose tissue, causes a wide range of physiological effects, includ-
ing, e.g., the regulation of glucose levels as well as fatty acid breakdown [61].

Although adipogenic stimulation appeared necessary for the onset of adiponectin
expression in our study, 3D cultivation induced a further approx. 3-fold increase in
adiponectin release compared with the 2D cultures. In addition, the duration of the
adipogenic stimulation and thus the progression of adipogenic differentiation led to a
significant increase in the amount of adiponectin released. The adipogenic stimulation
compound used included indomethacin. Indomethacin strongly promotes adipogenesis
through a mechanism that increases two factors: the transcription factor CCAAT enhancer
binding protein β and the nuclear receptor peroxisome proliferator-activated receptor
γ2/PPAR γ2 [62]. Consequently, the further increase in the release of adiponectin in 3D
cultures must be induced directly or indirectly by the dimensionality of the culture. A
few aspects might be responsible for the increased adiponectin release in 3D. This may
include the reduced cell size already mentioned [52] and the roundish cell shape in the 3D
spheroid [63], which may also influence adipogenic differentiation.

Another adipokine analyzed was the protein hormone leptin. In our study, leptin
could only be detected in relatively low amounts under 2D conditions. This showed in-
creased release due to adipogenic stimulation on day 7. In the 3D culture, leptin release was
negligible. Leptin plays an essential role in regulating fat metabolism in mammals and is
expressed mainly by adipocytes. Leptin limits lipid storage by affecting specific metabolic
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pathways in adipose tissue. Leptin induces the release of glycerol from adipocytes and
inhibits the synthesis of fatty acids [64]. Thus, the low leptin release in 3D cultures may fur-
ther indicate the promotion of a cellular status for an unimpeded adipogenic differentiation
process in spheroids.

In principle, MSC have been shown to possess anti-inflammatory and immunomodula-
tory properties. In our experiments, we showed that the release of the inflammation-related
adipokines PAI-1, IL-6, IL-8, and MCP-1 was markedly reduced during 3D cultivation
compared with 2D. This is consistent with the outcomes of other 3D/MSC cultivation
studies. In this respect, Bartosh et al. [54] demonstrated that MSC in spheroids express high
levels of stanniocalcin-1, a protein with anti-inflammatory and anti-apoptotic properties.
Lee et al. [65] also showed an increase in anti-inflammatory factors through the spheroid
formation of MSC, such as the IL-10.

Strikingly, the release of the pro-inflammatory cytokines/chemokines IL-6, IL-8, and
MCP-1 was even lower when the cells were adipogenically stimulated (in both 2D and 3D
cultures). This downregulation of IL-6 is in contrast to the results of the study conducted
by Munir et al. [66], who showed a significantly higher IL-6 release in adipogenically
differentiated MSC compared with the undifferentiated MSC. However, the cultivation and
stimulation conditions were markedly different from those in our study. In addition, the
literature on this aspect is sparse.

5. Conclusions

Our experiments have shown that the chosen 3D spheroid model is a reliable and
valuable tool to study adMSC differentiation because it allows the generation of uniformly-
and symmetrically-shaped spheroids that can be studied over a comparatively long culture
period of 4 weeks. The findings based on these experiments provide new insights into the
effects of cell arrangements of adMSC in 2D and 3D cultivation, on differentiation and pro-
inflammatory activation. The dimensionality of cultivation revealed marked differences in
the release of adiponectin and leptin, indicating an increased adipogenic differentiation
capacity in 3D cultures. At the same time, it was again clearly shown that the release of pro-
inflammatory factors was reduced by 3D cultivation. Currently, there is little knowledge of
the underlying mechanisms causing the differences in the release of adipokines between
2D and 3D cultures. In addition, there has been only limited information on the signaling
and control of MSC survival and proliferation in 3D cultures. Therefore, further efforts are
needed to study the mechanisms and interactions in more detail. Such knowledge is not
only important for the use of adMSC in cell therapeutic applications in a very complex 3D
environment, but could also contribute to an understanding of the background of adipose
tissue diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells11081313/s1, Table S1: Quantification of a subset of adipokines in cell culture super-
natants and lysates from unstimulated (US) and adipogenic (AS) stimulated 2D and 3D cultures
(multiplex assay, biological replicates: n = 4, technical replicates were involved in the calculations,
represented as median and the respective minimum (Min) and maximum (Max) value, in pg/104 cells,
descending order depending on the amount detected, with decimal place in the single-digit range).
Figure S1: Live/dead staining of an unstimulated and an adipogenically stimulated spheroid after
14 and 28 days (n = 4, LSM 780, Zen black software, overlay of Z-stack, green: live, red: dead, blue:
nuclei; scale bar: 200 µm). Figure S2: Thin sections (0.5 µm) of unstimulated and adipogenically
stimulated 3D spheroids after 28 days. Overview images of (a) an unstimulated (US) spheroid and
(b) an adipogenically (AS) stimulated spheroid (scale bars: 100 µm), (c) detail of the shell region of
an unstimulated spheroid, (d) detail of the shell region of an adipogenically stimulated spheroid,
(e) detail of the core of an unstimulated spheroid, (f) detail of the core region of an adipogenically stim-
ulated spheroid (scale bars: 20 µm; representative images, n = 3, light microscopy (Zeiss Axioskop 40),
toluidine blue staining).
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