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Abstract: (1) Background: To explore the effect of exercise on the formation and recovery of alcoholic 

liver disease (ALD) and whether the IL-6–p47phox oxidative–stress axis is involved in that process. 

(2) Methods: Firstly, 23 six-week-old male C57BL/6J mice were randomly divided into the Con 

group, ALD group, ALD + NOXI group, ALD + Ex group, and ALD + Ex + NOXI group. The Liber–

DeCarli alcoholic liquid diet was used for 6 weeks to establish the ALD mice model, and the Con 

group was given the TP4030C control diet. The remaining groups were fed with the TP4030B alco-

holic diet, and exercise intervention was started after the ALD model establishment and lasted for 

another 6 weeks, with or without administration of the NOX inhibitor apocynin by intraperitoneal 

injection on every exercise training day. Secondly, 28 mice were randomly divided into the Sed 

group, Eth group, Eth + Ex group and Eth + Ex + NOXI group. The Sed group was given the TP4030C 

control diet. The remaining groups were fed with the TP4030B alcoholic diet and exercise interven-

tion was started synchronously combined with or without administration of intraperitoneal 

apocynin injections on every exercise training day for 5 weeks. After each individual experiment 

was accomplished, physiological assessment and biochemical analysis of blood and tissue samples 

were examined. (3) Results: The levels of TG in serum and IL-6 protein content in liver tissue in the 

ALD group were significantly increased compared to the Con group (p < 0.05); compared with ALD, 

p47phox expression in muscle was increased significantly in the ALD + NOXI group (p < 0.05), and 

TG in serum decreased in the ALD + Ex group (p < 0.05). TG in serum, AST/ALT ratio, and IL-6 

content in both liver and muscle decreased (p < 0.05) in the ALD + Ex + NOXI group with MDA in 

muscle significantly increased (p < 0.01). The AST/ALT ratio, TG in serum, SOD in liver, and p47phox 

in both liver and muscle in the ALD + Ex + NOXI group were significantly decreased compared 

with the ALD + NOXI group (p < 0.01). Compared with the ALD + Ex group, the liver index and 

HDL-C levels in serum were decreased (p < 0.05) in the ALD + Ex + NOXI group. The degree of 

hepatocyte steatosis and inflammatory infiltration were ameliorated after exercise intervention. In 

the Eth group, the relative epididymal fat content, HDL-C level, and AST/ALT ratio were signifi-

cantly decreased, and TG and gp91phox in liver were significantly higher than in the Sed group (p < 

0.05, p < 0.01). Compared with the Eth group, the AST/ALT ratio, MDA in the liver, and NOX4 and 

p47phox protein expression in the liver were significantly increased, and body weight decreased sig-

nificantly in the Eth + Ex group (p < 0.05, p < 0.01), as did TG in the liver and MDA in muscle. In the 

th + Ex + NOXI group, gp91phox expression in the liver and body weight were significantly decreased 

(p < 0.05, p < 0.01). In the Eth + Ex + NOXI group, the ratio of AST/ALT and MDA in muscle were 

increased when compared with the Eth + Ex group, and the protein expression of gp91phox and 

p47phox were much lower (p < 0.01). (4) Conclusions: 6 weeks of exercise intervention during the 

recovery phase of ALD ameliorates hepatocyte damage and dyslipidemia through the IL-6–p47phox 

oxidative–stress axis, and applying a NOX inhibitor in combination could optimize this. However, 

drinking alcohol during exercise exacerbates dyslipidemia and oxidative stress, with hepatocyte IL-

6–p47phox downregulated. 
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1. Introduction 

Excessive drinking has become an important public health problem worldwide with 

the increase in alcohol consumption, drinking frequency, binge drinking, and the change 

in people’s diet structures. Studies on the etiology of alcoholic liver disease (ALD) at the 

cellular and molecular levels suggest that the pathogenesis may be attributed to hepato-

toxic ethanol and its metabolites [1]. In addition, immune damage [2], oxidative stress 

response [3], inflammatory response of cytokines [4,5], endotoxin [6,7], heredity [8,9], and 

other factors have been proven implicated as well. Interleukin-6 (IL-6) plays a key role in 

the occurrence and development of liver diseases and the effects vary in different periods 

of disease progression [10]. At the early stage of ALD, high levels of IL-6 in serum suggest 

a good prognosis, and in hepatocytes, its downstream signal transducer and activator of 

transcription 3 (STAT3) activation ensues to regulate various hepatocyte-protective genes 

to reduce inflammatory response; however, high levels of serum IL-6 serve as a poor prog-

nostic indicator for patients at the terminal stage of ALD [11,12]. Therefore, targeting IL-6 

and its related signaling pathways in the liver could hint at a new target for the diagnosis 

and treatment of liver disease. Recently, microRNA-223 was reported to ameliorate ALD 

symptoms by inhibiting the neutrophil IL-6-p47phox (NADPH oxidase p47phox) oxidative-

stress pathway by Man et al., a research team from the American Institute on Alcohol 

Abuse, concluding that the phosphorylation of p47phox was induced by stimulating 

hepatocytes with inflammatory cytokine IL-6 [13]. NADPH oxidase (NOX) is an enzyme 

family that catalyzes the production of superoxide from oxygen and its excess activation 

was confirmed to cause oxidative stress in the liver and to aggravate inflammatory re-

sponse by producing a large number of reactive oxygen species in a very short period of 

time [14,15]. According to our preliminary data, the transcription and protein expression 

of NOX2 (gp91phox) and NOX4 were detected in stressed livers [16]. As a cytoplasmic sub-

unit of both NOX2 and NOX4, p47phox functioned under the conditions of inflammatory 

mediators and cytokines such as IL-6. Excessive alcohol consumption resulted in struc-

tural damage to hepatocytes and in the disruption of the tricarboxylic acid cycle, which 

activates Kupffer cells to induce phosphorylation and the nuclear translocation of tran-

scription factors. At the same time, a large number of inflammatory mediators are released 

to activate signaling pathways. Appropriate physical exercise and ischemia both enhance 

biological defense mechanisms [17,18]. Regular exercise is beneficial for our health and 

can improve the physiological and pathological changes from ALD. [19,20] Exercise ame-

liorates the sensitivity of liver tissue to insulin, including the rapid regulation of blood 

glucose levels, and promotes liver glycogen decomposition and the hydrolysis of fat [21]. 

Exercise alleviates lipid peroxidation by improving the activities of lipolytic enzymes in 

muscle and liver, enhances energy utilization [22], and improves the activity of circulating 

fatty acids and insulin [23]. In addition, exercise-stressed skeletal muscle secretes IL-6, 

serving as a “cytokine”, to play an anti-inflammatory role by downregulating the levels 

of pro-inflammatory factors in other tissues and by inhibiting the activation of pro-inflam-

matory mediators so as to exert anti-inflammatory functions [24]. To date, the role of IL-6 

is still undefined in ALD pathology derived from hepatocytes or skeletal muscle, and the 

effect of exercise on the IL-6–p47phox oxidative–stress axis during the ALD process and 

recovery needs to be further elucidated. In the present research, we explored the effects 

of aerobic exercise and a NOX inhibitor, apocynin, on both liver and skeletal muscle tissue 

after the recovery and during the formation of ALD, aiming to unveil the internal molec-

ular mechanism of the ALD amelioration induced by exercise and to pave a novel route 

for ALD treatment and prevention. 



Cells 2022, 11, 1305 3 of 18 
 

 

2. Materials and Methods 

2.1. Animal Grouping and Model Preparation 

The experimental subjects were male C57BL/6J mice, 6 weeks old, body weight (18.95 

0.38) g, purchased from Hunan SJA Laboratory Animal Co., LTD, Hunan, China, animal 

license number: SCXK:2019-0004. The experimental scheme was approved by the Animal 

Experiment Ethics Committee of Hunan University (Acceptance number: 

HNUBI0202101007). Feeding conditions: natural day and night light, ambient tempera-

ture (24 ± 2), relative humidity 55–60%, and good ventilation. 

In the first experiment, 23 mice were randomly divided into 5 groups, Con group (n 

= 5), ALD group (n = 4), ALD + NOXI group (n = 4), ALD + Ex group (n = 5), and ALD + 

Ex + NOXI group (n = 5). The ALD model was established by feeding with Lieber–DeCarli 

liquid diet for 6 weeks as recommended in the protocol by KJ Thompson [25] and Adeline 

Bertola [26]. Briefly, mice were first fed with TP4030C control liquid diet for 3 days ac-

commodation; then, mice in Con group were still fed with TP4030C control liquid diet till 

the end, while mice in other groups were fed with TP4030B (high-fat with 5.07% alcohol) 

and TP4030C mixture diet in the ratios of 1:4, 2:3, 3:2 and 4:1, respectively, for 4 days ac-

commodation, followed by feeding with TP4030B high-fat alcoholic liquid diet for the re-

maining 5 weeks, and the total ALD model establishing period lasted 6 weeks. After mod-

eling, the diet of all mice were switched from Liber–DeCarli liquid diet to free normal 

solid chow and water. Mice with exercise intervention (groupings labeled with Ex) under-

went a swimming aerobic training program, specifically including a pre-swim for 10 min 

the first day, with a gradual increase of 10 min each day until a total time of 1 h to sustain 

the level at 1 h/day, 6 days/week for another 6 weeks. By contrast, the other mice were 

kept sedentary. Mice with drug intervention (groupings labeled with NOXI) were intra-

peritoneally injected with NOX inhibitor apocynin at 10 mg/kg on each exercise training 

day, with the same amount of placebo for the remaining mice. 

In the secondary experiment, 28 mice were randomly divided into 4 groups, Sed 

group (n = 6), Eth group (n = 6), Eth + Ex group (n = 4), and Eth + Ex + NOXI group (n = 5). 

The exercise intervention protocol was following the first experiment instruction for mice 

grouping labeled with Ex. Totally different from experiment one, the alcohol dietary in-

tervention was executed synergistically with exercise training. Specifically, mice group-

ings labeled with Eth were fed with TP4030B high-fat alcoholic liquid diet from the sec-

ondary week according to the ALD modeling protocol in experiment one, while mice in 

Sed group were still fed with TP4030C control liquid diet, and the total experiment con-

sumption time was 6 weeks. The NOX inhibitor apocynin was injected following the same 

protocol of experiment one for mice groupings labeled with NOXI, and the remaining 

groups with the same amount of placebo. 

2.2. Feed and Reagents 

Solid normal chow was purchased from Hunan SJA Laboratory Animal Co., LTD. 

Liber–DeCarli liquid feed (TP4030C and TP4030B) was purchased from Trophic Animal 

Feed High-tech Co., LTD, Jiangsu, China, and the TP4030C (1 kcal/mL) energy distribu-

tion was composed of 18% fat, 47% protein, and 35% other carbohydrates, while TP4030B 

comprised 35% fat, 28% alcohol, 18% protein, and 19% other carbohydrates. 

Apocynin (A606538-0025) was purchased from Sangon Biotech (Shanghai, China). 

Alanine transaminase (ALT), aspartate transaminase (AST), malondialdehyde (MDA), tri-

glycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein 

cholesterol (HDL-C) kits were purchased from Nanjing Jiancheng Bioengineering Insti-

tute (Nanjing, China). NOX4 (SC-518092), gp91phox (SC-130543), p47phox (SC-17844), and IL-

6 (SC-57315) primary antibodies were purchased from Santa Cruz (Shanghai, China). β-

actin (BS6007MH) primary antibody was purchased from Xianzhi Biotechnology Co., LTD 

(Hangzhou, China). HRP-labeled secondary antibody (BST13IO7A50) was purchased 

from Boster Biological Technology Co., LTD (Wuhan, Chian). 
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2.3. Mice Keeping and Harvesting 

All animals’ general behaviors and living conditions were observed and recorded 

daily, including appetite, hair, mental state, urine, feces, etc. The mice’s body weights 

were measured once a week. Before sacrifice, a glucose tolerance test was conducted after 

16 hours’ fasting. The whole liver, epididymis fat, bilateral gastrocnemius muscles, and 

serum were obtained for future detection after the mice been euthanized under anesthetic. 

2.4. Glucose Tolerance Testing 

Mice were given 20% glucose solution to detect a change in blood glucose with a 

Roche blood glucose meter, with 10 mg/mL intragastrically or intraperitoneally adminis-

tered at 0, 30, 60, 120 min after glucose administration. 

2.5. Spectrophotometric Density Value Analysis 

Liver and skeletal muscle tissue stored at −80 °C were homogenized by Phosphate 

Buffer Saline to prepare samples for examination. Commercialized kits from Nanjing 

Jiancheng Institute of Biological Engineering (Nanjing, China) were used to detect serum 

ALT, AST, TG, LDL-C, HDL-C, and TG in liver, according to the instructions. The level of 

MDA was determined by the thiobarbituric acid method, and the activity of superoxide 

dismutase (SOD) was determined by pyrogallol. Chemical colorimetry was applied to 

measure the optical density values. 

2.6. HE and Oil Red O Staining 

Paraffinized sections of liver tissues were successively dewaxed, hydrated, stained 

with hematoxylin, differentiated, washed with water, stained with eosin, dehydrated, 

made transparent, and sealed. The sampling and fixation procedures of Oil Red O were 

consistent with HE staining but used frozen sections to cut. The sliced tissue sections were 

10μm. The stained slides were observed under light microscope for tissue steatosis, vacu-

oles, structural disorder, cell-like necrosis and inflammatory infiltration. 

2.7. Western Blotting 

Tissues were homogenized using a protein extraction RIPA buffer, with proteinase 

and phosphatase inhibitors (Beyotime Biotechnology, Shanghai, China), and the sample 

protein concentration was evaluated by BCA protein assay. Electrophoresis was per-

formed on a 10–12% sodium dodecyl sulfate polyacrylamide gel, and then transferred to 

a PVDF membrane (Merck, Shanghai, China). The membranes were incubated with 5% 

non-fat milk in TRIS-buffered saline (pH 7.4) containing 0.1% Tween (TBST) for 2 h blot-

ting. After washing several times with TBST buffer, the membranes were incubated in 

blocking solution with primary antibodies, including NOX4, gp91phox, p47phox and IL-6 (an-

tibody dilution rate of NOX4, gp91phox and p47phox were 1:500, IL-6 was 1:200, and β-actin 

1:10,000) overnight at 4 °C Then, the goat anti-rat IgG with HRP-conjugated (1:5000) sec-

ondary antibody was applied for primary–secondary antibody reaction. Finally, enhanced 

chemiluminescence (ECL) was facilitated to detect protein expression. The densities of all 

bands on membranes were captured and quantified by using Image J software. 

2.8. Statistical Analysis 

Data are presented as the mean ± standard error (SE). Analysis was performed by 

GraphPad Prism version 6.01′s one-way ANOVA or t test, with statistical significance set 

at p < 0.05 and p < 0.01. 
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3. Results 

3.1. Exercise Training Ameliorates Dyslipidemia and Inflammation 

The main physiological indexes and lipid metabolism levels of ALD mice under ex-

ercise and drug intervention are shown in Figure 1. The ALD model in mice was estab-

lished 6 weeks before the experiment, and intervention was performed within 6 weeks of 

the recovery period after modeling (Figure 1A). The ALD + Ex + NOXI group gained 

weight more significantly than the ALD + NOXI group (p < 0.01, Figure 1B). Reaching the 

peak of blood glucose at about 30 min and returning to normal at about 120 min in each 

group, the range of blood glucose changes was small in mice after exercise intervention. 

(Figure 1E). Compared with the Con group, the level of TG in serum was increased sig-

nificantly in the ALD group (p < 0.05). After exercise and drug intervention, serum TG 

levels of mice decreased significantly (p < 0.05, p < 0.01), but there were no significant 

differences in TG levels in liver tissues (Figure 1G,J). The levels of HDL-C in the ALD + 

Ex + NOXI group were decreased more significantly than in the ALD + Ex group (p < 0.05, 

Figure 1I). 

3.2. Exercise Reduces Oxidative Stress Levels in Liver Tissue 

The effects of exercise and drug intervention on liver injury and oxidative stress of 

liver and gastrocnemius muscle tissue in ALD mice are shown in Figure 2. Compared with 

the ALD group, ALT and AST levels in the ALD + Ex group and the ALD + Ex + NOXI 

group were increased, and in the ALD + Ex + NOXI group, the levels of ALT and AST 

were increased significantly compared with those in the ALD + NOXI group and the ALD 

+ Ex group (p < 0.01, Figure 2A,B). Compared with the ALD group and ALD + NOXI group, 

the AST/ALT values in the ALD + Ex + NOXI group were decreased significantly (p < 0.05, 

p < 0.01, Figure 2C). Exercise stress caused organ hypertrophy in mice liver, and the liver 

index of the ALD + Ex + NOXI group was significantly decreased after apocynin interven-

tion (Figure 2D). Compared with the ALD + NOXI group, SOD levels in liver tissue were 

decreased after exercise intervention (p < 0.01, Figure 2F). In the ALD + Ex + NOXI group, 

the level of MDA in gastrocnemius muscle tissue was increased more than that in the ALD 

and ALD + Ex groups (p < 0.05), and also significantly more than that in the ALD + NOXI 

group (p < 0.01, Figure 2G). 

3.3. Exercise Significantly Improved Fat Accumulation and Inflammatory Injury in Liver Tissue, 

and Its Positive Effect Is Involved with the Liver IL-6–p47phox Axis 

The liver pathology of ALD mice mainly showed hepatocyte steatosis and inflamma-

tory damage. In the ALD group, the cell morphology was chaotic, the structure was in-

complete, and there were a lot of red aggregations of inflammatory factors, and a large 

number of lipid droplets were accumulated in the hepatocytes. After exercise interven-

tion, the degree of steatosis and inflammatory infiltration of the liver cells in mice were 

improved, and the cytoplasm of the liver cells was compact. The improvement was better 

when exercise and apocynin were combined, but inflammatory cell infiltration still existed 

(p < 0.05, p < 0.01, Figure 3A). In liver tissue, the expression of IL-6 protein in the ALD 

group was significantly higher than in the Con group (p < 0.05, Figure 3B,F), and the ex-

pression of p47phox protein in the ALD + NOXI group and IL-6 protein in the ALD group 

were higher than in the ALD + Ex + NOXI group (p < 0.05, Figure 3B,E,F). There was a 

positive correlation between IL-6 and p47phox in liver tissue, with a correlation coefficient 

of 0.7913, indicating a strong correlation between IL-6 and p47phox (Figure 3G). In gas-

trocnemius muscle tissue, compared with the ALD group, the expression of p47phox pro-

tein was increased in the ALD + NOXI group (p < 0.05, Figure 3H,K), and the expression 

of IL-6 protein was decreased in the ALD + Ex + NOXI group (p < 0.01, Figure 3H,L). The 

level of p47phox protein in the ALD + Ex + NOXI group was significantly lower than that in 

the ALD + NOXI group (p < 0.01, Figure 3H,K). There was a low correlation between IL-6 

and p47phox protein in muscle tissue, with a correlation coefficient of 0.3000 (Figure 3M). 
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Figure 1. Inhibition of NOX affects the normal weight gain of mice, and exercise training ameliorates 

dyslipidemia and hepatocyte inflammatory damage. (A) Grouping of experimental animals. (B) 

Changes in body weight over 12 weeks. (C) Ratio of epididymal fat to body weight. (D) Gastrocnem-

ius muscle weight. (E,F) Glucose change and area-under-the-curve in glucose tolerance test. (G,J) 

TG content in serum and liver tissue. (H) LDL-C in serum. (I) HDL-C in serum. (A–J) Con group, n 

= 5; ALD group, n = 4; ALD + NOXI group, n = 4; ALD + Ex group, n = 5; ALD + Ex + NOXI group, n 

= 5. The molding effect is represented by *, * p < 0.05. The exercise effect is denoted by a, a p < 0.05 

and aa p < 0.01. The drug effect is denoted by b, b p < 0.05. The effect of combined exercise and drug 

intervention is indicated by c, cc p < 0.01. 
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Figure 2. With the combined intervention of apocynin and exercise, oxidative stress levels were 

reduced in liver tissue and increased in gastrocnemius muscle tissue. (A,B) ALT and AST levels in 

serum. (C) Serum AST/ALT values. (D) The level index. (E,F) MDA and SOD levels in liver tissue. 

(G,H) MDA and SOD levels in gastrocnemius muscle tissue. The exercise effect is denoted by a, a p 
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< 0.05, aa p < 0.01. The drug effect is denoted by b, b p < 0.05, bb p < 0.01. The effect of combined exercise 

and drug intervention is indicated by c, c p < 0.05, cc p < 0.01. 

 

Figure 3. Exercise significantly improved fat accumulation and inflammatory injury in liver tissue. 

Exercise inhibited the expression of p47phox and IL-6 proteins, and they were highly correlated in 
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liver tissue. (A) The upper row is the result of HE staining, and the lower row is the result of Oil 

Red O staining. (B–F) NOX4, gp91phox, p47phox, and IL-6 protein expression levels in liver tissue by 

WB. (G) Correlation between IL-6 and p47phox protein expression in liver tissue. (H–L) NOX4, 

gp91phox, p47phox, and IL-6 protein expression levels in skeletal muscle tissue by WB. (M) Correlation 

between IL-6 and p47phox protein expression in skeletal muscle tissue. The molding effect is repre-

sented by *, * p < 0.05. The exercise effect is denoted by a, aa p < 0.01. The effect of combined exercise 

and drug intervention was indicated by c, c p < 0.05 and cc p < 0.01. 

3.4. Drinking Alcohol during Exercise Aggravates Dyslipidemia, Which Had No Significant 

Effect after Apocynin Intervention 

The changes in the main physiological indexes and lipid metabolism levels in mice 

induced by exercise under the drinking state are shown in Figure 4. Exercise intervention 

was performed for 6 weeks after 1 week of adaptive feeding, and alcohol and apocynin 

interventions were initiated simultaneously at week 3 of the trial (Figure 4A). The Eth + 

Ex group and Eth + Ex + NOXI group exhibited more significant weight loss than the Eth 

group (p < 0.01, Figure 4B). The epididymal relative fat content of the Eth group decreased 

significantly compared with the Sed group (p < 0.05, Figure 4C). Compared with the Sed 

group, the level of HDL-C in the Eth group was decreased significantly (p < 0.01, Figure 

4I). In liver tissue, the level of TG in the Eth group was increased significantly compared 

with the Sed group (p < 0.01), and the Eth + Ex + NOXI group was higher in TG than the 

Eth group (p < 0.05, Figure 4J). 

3.5. Drinking Alcohol during Exercise can Increase the Level of Inflammation and the Oxidative 

Stress in Tissues 

The influence of exercise on liver injury and the oxidative stress levels of the mice 

under the drinking state is shown in Figure 5. The level of ALT in the Eth group was 

higher than the Sed group (p < 0.01). Compared with the Eth group, the ALT level was 

decreased significantly in the Eth + Ex and Eth + Ex + NOXI groups. (p < 0.01, p < 0.05). 

The level of ALT was increased significantly after apocynin intervention (p < 0.01, Figure 

5A). The level of AST in the Eth + Ex group was higher than that in the Eth group (p < 0.05, 

Figure 5B). The ALT levels in Eth group were lower than in the Sed group, and the Eth + 

Ex group was higher in ALT levels than the Eth group (p < 0.01). ALT levels were increased 

significantly after apocynin intervention (p < 0.05, Figure 5C). Compared with the Eth 

group, MDA levels in both liver tissue of the Eth + Ex group and the gastrocnemius muscle 

tissue of the Eth + Ex + NOXI group were significantly increased (p < 0.01, Figure 5E,G). 

Compared with the Eth + Ex group, after apocynin intervention, the levels of MDA in liver 

tissue decreased (p = 0.057, Figure 5E), and in gastrocnemius muscle tissue they increased 

significantly (p < 0.01, Figure 5G). 
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Figure 4. Drinking alcohol during exercise aggravates dyslipidemia, which had no significant effect 

after apocynin intervention. (A) Grouping of experimental animals. (B) Changes in body weight 

over 7 weeks. (C) Ratio of epididymal fat to body weight. (D) Gastrocnemius muscle weight. (E,F) 

Glucose change and area-under-the-curve in glucose tolerance test. (G,J) TG content in serum and 

liver tissue. (H) The level of LDL-C in serum. (I) The level of HDL-C in serum. (A–J) Sed group, n = 

6; Eth group, n = 6; Eth + Ex group, n = 8; Eth + Ex + NOXI, n = 8. The molding effect is represented 

by *, * p < 0.05 and ** p < 0.01. The exercise effect is denoted by a, aa p < 0.01. The effect of combined 

exercise and drug intervention is indicated by c, c p < 0.05 and cc p < 0.01. 
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Figure 5. Exercise during drinking can increase levels of inflammation and aggravate the oxidative 

response of liver and skeletal muscle tissues. (A) The level of ALT in serum. (B) The level of AST in 

serum. (C) Serum AST/ALT values. (D) The level index. (E,F) MDA and SOD levels in liver tissue. 

(G,H) MDA and SOD levels in gastrocnemius muscle tissue. (A–H) The molding effect is repre-

sented by *, ** p < 0.01. The exercise effect is denoted by a, a p < 0.05 and aa p < 0.01. The drug effect 

is denoted by b, bb p < 0.01. The effect of combined exercise and drug intervention is indicated by c, 
c p < 0.05 and cc p < 0.01. 

3.6. Exercise-Mediated Protein Expression of IL-6 and p47phox in Liver Tissue 

The influence of exercise on protein expression levels in liver tissue in mice under the 

drinking condition and the correlation between IL-6 and p47phox are shown in Figure 6. 

The expression of gp91phox protein in Eth group was higher than the Sed group (p < 0.01, 

Figure 6B,E). Compared with the Eth group, the expression of NOX4 protein was in-

creased in the Eth + Ex group (p < 0.05, Figure 6A,E), gp91phox protein was decreased sig-

nificantly in the Eth + Ex + NOXI group (p < 0.01, Figure 6B,E), and p47phox protein was 

increased significantly in the Eth + Ex group (p < 0.01, Figure 6C,E). Compared with the 

Eth + Ex group, gp91phox and p47phox protein expression decreased significantly after 

apocynin intervention (p< 0.01, Figure 6B,C). The dispersion degree of IL-6 protein expres-

sion in liver tissue was large after exercise intervention, and there was no significant dif-

ference among all groups (Figure 6D,E). IL-6 was positively correlated with p47phox protein 

in liver tissue, and the correlation coefficient was 0.6333 (Figure 6F). It can be observed 

through the two experiments in this study that we found that exercise after abstinence can 

ameliorate hepatocyte damage and dyslipidemia, promote liver glycogen decomposition, 

and reduce liver function injury and fat accumulation. However, drinking alcohol during 

exercise can influence normal lipid metabolism and increase oxidative inflammation of 

the liver tissue. Exercise intervention significantly reduced p47phox protein levels in liver 

tissue, and it improved ALD through the IL-6–p47phox oxidative–stress axis (Figure 6G). 



Cells 2022, 11, 1305 13 of 18 
 

 

 



Cells 2022, 11, 1305 14 of 18 
 

 

Figure 6. Verification of the correlation between IL-6 and p47phox protein in liver tissue. (A–E) NOX4, 

gp91phox, p47phox, and IL-6 protein expression levels in liver tissue by WB. (F) Correlation between 

IL-6 and p47phox protein expression in liver tissue. (G) Schematic diagram of effects of drinking al-

cohol during exercise and exercise intervention during the recovery phase of ALD on liver oxidative 

stress response and liver-cell inflammation damage. The molding effect is represented by *, ** p < 

0.01. The exercise effect is denoted by a, a p < 0.05 and aa p < 0.01. The drug effect is denoted by b, bb 

p < 0.01. The effect of combined exercise and drug intervention is indicated by c, cc p < 0.01. 

4. Discussion 

TheLiber–DeCarli feeding model was closest to the pathway of alcohol intake and 

digestion after drinking, which could objectively reflect the normal metabolism of alcohol 

in the body [25,26]. In our experiment, we observed that compared with the Con and Sed 

groups, the alcohol-drinking mice were shown to be more irritable, react more slowly, 

exhibited poor appetite, lethargy, poor balance, and slow weight gain. In addition, mice 

in the ALD and Eth groups presented similar alcoholic steatosis and inflammatory pathol-

ogies, as reported in the study [27,28]. Although the ALD and ALD + NOXI groups un-

derwent 6 weeks of self-recovery and drug therapy at the later stages of modeling, they 

were still unable to rapidly process glucose in the blood, and the structures of the hepato-

cytes were swollen and overlapping, and the hepatocyte cells were filled with fat vacuoles. 

TG levels in serum and liver tissue increased, and the levels of LDL-C and HDL-C also 

changed to varying degrees. Our results showed that liver injury was still in the early 

stage of ALD after 6 weeks of natural reversal and apocynin intervention, and the lipid 

metabolism of the mice was abnormal after alcohol intervention. 

The content of ALT in liver tissue is about 100 times that in the serum. AST is mainly 

distributed in the myocardium, followed by the liver, skeletal muscle, and kidney, and its 

sensitivity is slightly weaker than that of ALT [29,30]. When the liver is in a pathological 

state, swelling and necrosis of the hepatocytes, aggravated inflammation, and other fac-

tors., result in increased permeability of the cell membranes, leakage of ALT into the cy-

toplasm and leakage of the AST in mitochondria into the blood, and increased content of 

both enzymes in the serum [31]. Mild liver injury is mainly caused by elevated ALT. AST 

increases only when liver cells are seriously damaged and pathological changes appear in 

the mitochondria [32]. Therefore, if AST/ALT decreases, it is mainly seen in the early stage 

of acute hepatitis or mild chronic hepatitis; when the hepatocyte damage is serious, AST 

and ALT significantly increased, and the higher the ratio is, the more serious the hepato-

cyte damage is. In this article, the AST and ALT values in the ALD + Ex + NOXI group 

were lower than in the ALD and ALD + NOXI groups (p < 0.05, p < 0.01), which showed 

that the liver function of mice recovered better under the combined intervention of exer-

cise and apocynin. Surprisingly, drinking alcohol during exercise had little effect on lipid 

metabolism and aggravated liver injury (p < 0.01). The results of experiment 2 are the op-

posite of experiment 1 in these regards. 

Jakob G Knudsen et al. fed mice with a high-fat diet which changed the regulating 

energy pathway; through 16 weeks of treadmill exercise training, the abnormal expression 

of the hepatocyte cytochrome P450 enzyme system was reversed, and the metabolic state 

of the liver was regulated [33]. Compared with the ALD and ALD + NOXI groups, the 

mice after exercise showed blood glucose rises that occurred more slowly and returned to 

the normal state more quickly, and the liver metabolism of the ALD mice was regulated 

and the lipid metabolism disorder was significantly improved. In experiment 2, drinking 

alcohol during exercise also produced similar changes in blood glucose as those observed 

in experiment 1. Compared with the Eth group, the Eth + Ex group increased lipid metab-

olism disorders, which were alleviated by the apocynin intervention during exercise. 

This paper mainly observed the effect of exercise intervention on an ALD mouse 

model. Measuring MDA and SOD levels in liver tissue and gastrocnemius muscle tissue, 

respectively, which can indirectly reflect the body’s ability for free radical scavenging and 

its levels of antioxidants [34,35]. The experimental results showed that MDA levels in the 
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gastrocnemius tissue increased in the exercise group because skeletal muscle is the effec-

tive organ of exercise, and positive changes inevitably occur [36,37]. Mauro Robson Torres 

de Castro et al. suggested that physical activity can change the oxidative inflammatory 

state of the liver, and exercise can reduce the expression of IL-6 in the liver [38]. The results 

of our paper confirm this conclusion. In liver tissue, SOD levels in the ALD + Ex + NOXI 

group were lower than the ALD + NOXI group (p < 0.01), and MDA levels in the Eth + Ex 

group were higher than the Eth and Eth + Ex + NOXI groups (p < 0.05). It was confirmed 

that exercise or exercise combined with apocynin could reduce liver tissue peroxidation 

damage during the recovery period of ALD and can interfere with the body’s ability to 

resist free radicals during alcohol consumption, which is similar to the conclusion ob-

tained by Shen F [39]. 

Apocynin suppressed NOX4 and gp91phox in normal mouse liver tissues, but this was 

not observed for p47phox [13], and apocynin was more effective in NOX inhibition in ALD 

modeling [40–42]. Our research group reviewed the role of IL-6 in alcoholic liver disease 

and determined the relationship between IL-6 and p47phox [43]. It is suggested that the 

mechanism of exercise-induced improvement of alcoholic liver disease is mediated by the 

IL-6–p47phox oxidative-stress pathway. In this article, we tested our hypothesis with two 

experiments. In experiment 1, we changed the diet and activity levels of mice after the 

ALD model had been established to explore the effects of exercise and drugs on glucose 

and lipid metabolism, oxidative stress, and inflammatory injury in the recovery process 

of alcoholic liver disease. Western blot results showed that exercise intervention signifi-

cantly downregulated the expression of IL-6 and p47phox proteins in tissue, and the corre-

lation was significantly higher in liver tissue than in gastrocnemius muscle tissue, with a 

correlation coefficient of 0.7913. Subsequently, we carried out experiment 2, which con-

firmed that exercise could regulate the expression of IL-6 and p47phox in liver tissue 

through drinking alcohol during exercise. Western blot results were similar to experiment 

1. Under the condition of drinking alcohol during exercise, there was a significantly posi-

tive correlation with p47phox and IL-6 in liver tissue, and the correlation coefficient is 

0.6333. Therefore, we believe that the internal molecular mechanism of long-term aerobic 

exercise in improving chronic inflammation in ALD is the IL-6–p47phox axis. 

5. Conclusions 

Exercise, as a stress response, stimulates temporary inflammation and then puts the 

body in a state of long-term anti-inflammatory adaptation [44,45]. In the process of exer-

cise stress, skeletal muscle is no longer regarded as a simple motor organ but also pos-

sesses endocrine function. IL-6 produced and released by skeletal muscle circulates to the 

corresponding target organs (such as the liver) through the blood, thereby improving im-

mune function, maintaining central excitability, regulating enzyme activity, and improv-

ing the sensitivity of inflammatory mediators and other biological functions [46]. In this 

article, ALD mice were used as research objects to explore the effect of exercise regulation 

on the effects of the IL-6–p47phox oxidative–stress axis on hepatocyte inflammatory dam-

age. The conclusions were as follows: (1) 6 weeks of exercise intervention during the re-

covery phase of ALD may ameliorate hepatocyte damage and dyslipidemia through the 

IL-6–p47phox oxidative–stress axis, and administering apocynin in combination could op-

timize this effect; (2) Drinking alcohol during exercise exacerbates dyslipidemia, oxidative 

stress, and downregulated expression of the IL-6–p47phox axis–related protein in hepato-

cytes. 
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