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Abstract: Live-cell imaging techniques are essential for acquiring vital physiological and patho-
physiological knowledge to understand and treat heart disease. For live-cell imaging of transient
alterations of [Ca2+]i in human cardiomyocytes, we engineered human-induced pluripotent stem
cells carrying a genetically-encoded Ca2+-indicator (GECI). To monitor sarcomere shortening and
relaxation in cardiomyocytes in real-time, we generated a α-cardiac actinin (ACTN2)-copepod (cop)
green fluorescent protein (GFP+)-human-induced pluripotent stem cell line by using the CRISPR-Cas9
and a homology directed recombination approach. The engineered human-induced pluripotent stem
cells were differentiated in transgenic GECI-enhanced GFP+-cardiomyocytes and ACTN2-copGFP+-
cardiomyocytes, allowing real-time imaging of [Ca2+]i transients and live recordings of the sarcomere
shortening velocity of ACTN2-copGFP+-cardiomyocytes. We developed a video analysis software
tool to quantify various parameters of sarcoplasmic Ca2+ fluctuations recorded during contraction
of cardiomyocytes and to calculate the contraction velocity of cardiomyocytes in the presence and
absence of different drugs affecting cardiac function. Our cellular and software tool not only proved
the positive and negative inotropic and lusitropic effects of the tested cardioactive drugs but also
quantified the expected effects precisely. Our platform will offer a human-relevant in vitro alternative
for high-throughput drug screenings, as well as a model to explore the underlying mechanisms of
cardiac diseases.

Keywords: hiPSCs; contractile velocity of cardiomyocytes; CRISPR-Cas9; genetically encoded
Ca2+-indicator; drug screening

1. Introduction

Heart failure (HF) is a major health problem with high morbidity and mortality rate
worldwide [1,2]. Inherited and non-inherited heart cardiomyopathies contribute to the
development of HF too [3,4]. Persistent cardiac architectural changes of the sarcomere
cytoskeletal cardiac proteins may cause dilated cardiomyopathy and, therefore, HF [3,4]. It
is well established that dysfunction of cardiac contractility and relaxation due to sarcomere
defects in the contractile apparatus, in combination with changes in intracellular Ca2+

homeostasis, are hallmark characteristics of HF and, therefore, ideal therapeutic targets [5,6].
Cellular cytoskeletal proteins are essential for contributing to the cell intact function [7,8].
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In particular, the sarcomere contraction/relaxation kinetics are of fundamental importance
to the development and progression of HF [6]. It is also well established that anticancer
drug-induced cardiotoxicity leads to HF.

Human-induced pluripotent stem cells (hiPSCs) have proven to be an efficient model
to study novel pathological mechanisms of genetic diseases and provide an unlimited
source for generating somatic cells for cellular therapy of degenerative diseases [9]. In
this context, one of the main advantages of using hiPSCs and their derivatives is their
human origin, which significantly minimizes physiological differences that normally exist
between humans and other animal species [10,11]. Moreover, hiPSCs and cardiomyocytes
(CMs) derived from hiPSCs (hiPSC-CMs) are proven as an efficient drug discovery model
for safety pharmacology [10,11]. Several hiPSC-CM-based in vitro assay platforms for
pharmacological screening have been described [11–13]. In this context, several genomic
biomarkers, characteristic for cancer drug-induced cardiotoxicity in hiPSC-CMs, were
identified [14–18].

In recent times, more advanced technologies, like video-based imaging and fluo-
rescence microscopy, in combination with hiPSC-CMs, have been developed for drug
cardiotoxicity screening and investigating mechanisms underlying cardiotoxicity [19–22].
However, technologies allowing live-cell imaging of the contractile functional parame-
ters, such as sarcomere length, contraction/relaxation velocity, and the Ca2+ homeostasis,
remain a challenge [10,11].

The classical non-live imaging procedures to monitor changes on the molecular level
(e.g., changes in the cytoskeleton) are inefficient, static methods, executed on fixed cells.
For more efficient (cost-effective and less time consuming) monitoring of the dynamic
changes of molecular parameters, such as the cytoskeleton or of intracellular free Ca2+

([Ca2+]i) under different pathological or pharmacological conditions, live-cell imaging of
these molecular parameters is needed. Live-cell imaging also delivers more physiologically
relevant information in comparison to fixed cell microscopy.

The clustered regularly interspaced short palindromic repeats (CRISPR) and associ-
ated (Cas)-9 technology efficiently facilitates genetic editing in human pluripotent stem
cells, including hiPSCs and human embryonic stem cells (hESCs), thereby dramatically
increasing the potential applications of hiPSCs as a disease model for monogenic, poly-
genic, and rare diseases, very often associated with gene mutations [9]. Thus, the impact
of the CRISPR/Cas9 technology opens several avenues of research into the underlying
mechanisms and therapy of cardiovascular diseases. Moreover, this technology in combi-
nation with hiPSC-CMs allows comprehensive cardiac research to identify drug-induced
cardiotoxicity (for review see [23]). Here, we generated two transgene hiPSC cell lines
allowing the production of hiPSC-CMs, enabling live-cell imaging of the sarcomeres and
transient changes of [Ca2+]i. Our novel video analysis software also allowed us to quantify
functional parameters related to contraction and relaxation. We validated the applicability
of our platform using Isoprenaline as a classic Adrenoreceptor agonist, the L-type agonist
Bay-K8864, the L-Type blocker Nifedipine, and the muscarinic agonist Carbachol. We firmly
believe that these sophisticated tools open new horizons to study the contractility of CMs
under pathological conditions. This technology can be applied to screen pharmacological
drugs and to study the mechanisms involved in the development of cardiac diseases.

2. Materials and Methods
2.1. Differentiation of hiPSCs to Cardiomyocytes

Experiments were performed with the IMR90 hiPSCs (authorized by the Robert-Koch
Institute; Berlin, Germany, license number: AZ 3.04.0210083). Cells were cultured on
matrigel-coated petri dishes. Cells were cultured in StemMACS™ iPS-Brew XF media
(Milteny Biotech, Bergisch Gladbach, Germany) supplemented with 50 U/mL penicillin
and 50 U/mL streptomycin (Thermo Fisher, Waltham, MA, USA), at 37 ◦C and 5% CO2.
After reaching a confluence of 90%, cells were dissociated by trypsinization using the
trypLE solution (Thermo Fisher, Waltham, MA, USA) and propagation of the cells was
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performed in StemMACS™ iPS-Brew XF media in the presence of 10 µM ROCK inhibitor.
Differentiation of hiPSCs to CMs was performed using a combination of two differentiation pro-
tocols [24,25] as described previously [26]. Briefly, culturing of the hiPSCs up to 70% confluence
was performed in StemMACS™ iPS-Brew XF media (day 0).Then, cells were cultured in Roswell
Park Memorial Institute (RPMI; Thermo Fisher, Waltham, MA, USA) RPMI1640/B-27 without
insulin in the presence of 10 µM of 6-[[2-[[4-(2,4-Dichlorophenyl)-5-(5-methyl-1H-imidazol-2-yl)-
2-pyrimidiyl]amino]ethyl]amino]-3-pyridinecarbonitriletrihydrochloride CHIR99021 (Tocris,
Bristol, UK) for 24 h (day 1). The culture medium was replaced with normal RPMI1640/B-27
without insulin and cells were cultured for further 24 h (day 2). Again, the culture medium
was replaced with RPMI1640/B-27 without insulin, containing 10 µM of N-(6-Methyl-
2-benzothiazolyl)-2-[(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno [3,2-d]pyrimidin-2-yl)thio]-
acetamide IWP2 (Tocris, UK) and cells were cultured for further 48 h (day 4). The medium
was replaced with basal RPMI1640/B-27 without insulin and was refreshed every 48 h.
Spontaneous beating in cardiomyocytes was observed from day 9 onwards. Enrichment
of the cardiomyocytes was performed by culturing of the cells with glycose-free Roswell
Park Memorial Institute (RPMI; Thermo Fisher, Waltham, MA, USA) containing 4 µM
sodium DL-lactate for 6 d. The efficiency of the differentiation of hiPSCs to obtain a purity
of CMs over 95% by flow cytometry and RT-qPCR and hiPSC-CMs was characterized
using immunocytochemistry, electrophysiology, electron microscopy, and calcium transient
measurements [26]. In all our experiments, the hiPSC-CMs were cultured for longer du-
rations of up to 30 d. The hiPSC-CMs were trypsinized and seeded into different plastic
materials, which were pre-coated with fibronectin. Seeding of the cells was performed
in Dulbecco’s Modified Eagle Medium (DMEM) containing 5% foetal calf serum. The
hiPSC-CMs were cultured in a modified cardiomyocyte maturation medium [27] in a 5%
CO2 incubator at 37 ◦C. The modified maturation medium was composed of glycose-free
RPMI medium supplemented with 4 mM of (2S)-2-hydroxypropanoate L-lactate (Sigma
Aldrich, St. Louis, MO, USA), 5 mM of 2-(1-Methylguanidino)acetic acid hydrate creatine
monohydrate (Sigma Aldrich, St. Louis, MO, USA), 2 mM of 2-aminoethanesulfonic acid
taurine (Sigma Aldrich, T0625), 2 mM of (3R)-3-Hydroxy-4-(trimethylammonio)butanoate
L-carnitine (Sigma Aldrich, St. Louis, MO, USA), 0.5 mM of (5R)-[(1S)-1,2-Dihydroxyethyl]-
3,4-dihydroxyfuran-2(5H)-one ascorbic acid (Sigma Aldrich, St. Louis, MO, USA), 1x
Linoleic Acid-Oleic Acid-Albumin 100x (Sigma, St. Louis, MO, USA), Non-Essential Amino
Acid (NEAA) (Thermo Fisher, Waltham, MA, USA), 1x B27 media, and 1% Knockout
serum replacement (KOSR) (Thermo Fisher, Waltham, MA, USA). The seeded hiPSC-CMs
were cultured for 48–72 h to obtain the uniform beating pattern in the flasks prior to
the experiments.

2.2. Generation of the GECI-eGFP+-hiPSCs

For live-cell imaging of transient alterations of the [Ca2+]i in CMs, we generated
genetically-encoded Ca2+-indicator (GECI)-enhanced green fluorescent protein (eGFP+)-
hiPSCs (IMR90), as indicated in Figure 1. The transgenic GECI-eGFP+-hiPSCs were then
differentiated to GECI-eGFP+-CMs for further experiments.

In brief, first the CmR gene from pB-TAC-ERP2 plasmid was replaced with the GCaMP6s
gene using LR clonase. Next, the DNA construct was confirmed by DNA sequencing and then
transfected into the hiPSCs along with the pCAGPBase plasmid. These transfected cells were
cultured in the presence of 2 µg/mL puromycin and positive clones (generated clones labeled
as generation of the genetically encoded Ca2+ indicator (GECI-eGFP+-hiPSCs) were selected
and expanded. Then, we differentiated the hiPSCs to transgenic GECI-eGFP+-CMs, allowing
live-cell imaging of alterations of [Ca2+]i during contraction of CMs. Expression of GECI in CMs
was induced by adding 500 nM of (4S,4aR,5S,5aR,6R,12aR)-4-(dimethylamino)-1,5,10,11,12a-
pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4H-tetracene-2-carboxamide;ethanol;
hydrate;hydrochloride Doxycycline (). The binding of Ca2+ to GECI results in a conforma-
tional change of CaM, thereby binding to target proteins, such as M13, and enhancing the
fluorescence signal of eGFP (by de-protonation of the eGFP chromophore). In the absence of
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Ca2+, the eGFP chromophore is protonated and the fluorescence intensity is very poor. Plas-
mids and the gateway adapter sequences required for generation of GECI-eGFP+-hiPSCs
are shown in Figure S1 (Supplemental Information).
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Figure 1. Generation of Tet-inducible GECI-eGFP+-hiPSCs -enhanced green fluorescent protein
(eGFP+)-human-induced pluripotent stem cell (hiPSCs) for live calcium flux measurements in hiPSC-
cardiomyocytes (CMs). GCaMP6 is a GECI generated from a fusion of the eGFP, calmodulin (CaM),
and a short peptide from myosin light chain kinase (M13). To generate the Tet-inducible GECI plasmid,
we amplified the GCaMP6s sequence from pGP-CMV-GCaMP6s (40753; Addgene, Watertown, MA,
USA) by adding a gateway adapter sequence at both 5′ and 3′ end. The amplified GCaMP6s was
cloned into the Piggybac (PB), PB-TAC-ERP2 vector (80478; Addgene, Watertown, MA), using the
Gateway™ LR Clonase™ II enzyme mix (Thermo Fisher, Waltham, MA, USA). The hiPSCs were
transfected with the PB-TAC-ERP2-GCaMP6s plasmid (Donor plasmid; Addgene, Watertown, MA,
USA) and the piggybac transposase vector (pCAGPBase; Addgene, Watertown, MA, USA) applying
the magnetofection method (Magnetofectamine O2, OZ Biosciences, Marseille, France) to generate
the GECI hiPSC line. The transposase enzyme facilitates the integration of the DNA elements in ITR
sites present in the genome at random location The selection was performed with puromycin at a
concentration of 2 µg/mL. After generation of the GECI-eGFP+-hiPSCs, cells were differentiated into
GECI-eGFP+-CMs. Induction of GECI in CMs was induced by adding Doxycycline (500 nM) for 6 h
(attL-recombination site left, attR-recombination site right, attB-attachment site bacteria).

2.3. Generation of ACTN2-copGFP+-hiPSC Line

To monitor CM sarcomeres contraction and relaxation in real-time, we generated an
ACTN2-copGFP+-hiPSC line using the CRISPR-Cas9 and the homology-directed recombi-
nation approach, as indicated in the Figure 2.

In brief, the ACTN2-gRNA was cloned into the pX330 plasmid and confirmed by DNA
sequencing. Next, ACTN2 homology arms were cloned in the universal donor vector and
confirmed by DNA sequencing. Then, the donor and gRNA plasmids were transfected
in the hiPSCs and positive clones were selected using 2 µg/mL puromycin. The DNA
sequences of the ACTN2-gRNA with the PAM sequence (underlined), the donor plasmid
with the left and right 600 bp 5′ and 3′ homology arms (LHA and RHA, respectively),
and the Gly-linker are shown in Table S1 (see Supplemental Information). Lastly, we
differentiated the hiPSCs to transgenic ACTN2-copGFP+-CMs for live-cell imaging.
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Figure 2. Generation of α-actinin (ACTN2)-copepod green fluorescent protein (copGFP+)-human-
induced pluripotent stem cell line (IMR90) by the CRISPR-Cas9 and the homology-directed re-
combination (HDR) approach. The overall CRISPR-Cas9-based strategy to generate the transgenic
ACTN2-copGFP-IMR90 line was by copGFP knock-in at chromosome. First, gRNA targeting of
the ACTN2 3′ end was designed to delete the stop codon in exon 21 of the native ACTN2, located
into chromosome 1. The donor plasmid with ~600 bp 5′ and 3′ homology arms was designed and
ordered from ALSTEM, LLC San Francisco, US. The homology arms were designed in such a way
that upon HDR the stop codon from the native ACTN2 gene could be deleted, whereas the reading
frame remained as it was. These homology arms were then cloned into the pUC57 plasmid backbone
along with the copGFP and LoxP flanked puromycin resistance gene with the EF1α promoter. To
avoid any interference from copGFP with the ACTN2 functions and vice-versa, a glycine-rich linker
(GGGGSGGGGSGGGGS) sequence was added. The linker provided a flexible connection between the
two proteins, while avoiding interference in their functional properties (cloning sequences are shown
in the Table S1, Supplemental Information). The donor plasmid along with ACTN2-gRNA plasmid
was transfected into IMR90 cells using the magnetofectamine method (OZ Biosciences, Marseille,
France) and positive clones were selected using puromycin (2 µg/mL). Positive clones were expanded
and knock-in of copGFP was confirmed by differentiating the cells into cardiomyocytes by following
our standard differentiation protocol.

2.4. Video Analyzer 1.9

We developed a software tool to image live changes of [Ca2+]i during contraction of
CMs, as well as the contractile sarcomere activity of the CMs. The software is based on the
LabVIEW (ni.com: https://www.ni.com/de-de.html, accessed on 3 March 2022) applica-
tion, where we have programmed the Vision Module to monitor and record fluorescence
signals of microscopic live-cell imaging records. The software can be used to calculate the
contraction/relaxation velocity of the CM sarcomeres, as well as changes in [Ca2+]i, based
on video-image recordings. All videos were recorded using a frame rate of 50 fps. The
velocity field was calculated for each frame, using the Horn and Schunck algorithm [28].
The velocity points of the top 1/3000 fraction of the whole velocity field were used for
further analysis. The signal processing for the sarcomere contraction/relaxation velocity
was performed as follows: (1) Only peaks greater than 5% of the maximum peak level
above the baseline in the respective velocity distributions were included; (2) The baseline

https://www.ni.com/de-de.html
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was defined at the 10% percentile; (3) Peaks were matched into pairs, when the end of the
first peak was close to the beginning of the second peak. A pair was considered to represent
a contraction followed by a dilation; (4) The start and endpoints of a peak were selected
to be the points 20% above the baseline level on each side of the peak; and (5) The delay
between the end of a contraction and the start of dilation was taken as the interval between
the end of the first peak and the start of the second peak.

The calculation of the velocity of the intracellular changes of Ca2+ was performed after
subtraction of the background on color video images. The average intensity of the green
image frames was normalized to the maximum of 255 and calculated excluding zero-pixel
values. The difference in intensity between successive frames was leveraged to define
transient Ca2+ sparks in fluorescence. The difference was thresholded to a fixed minimum
value of 10, and the average intensity was calculated by normalizing values to a maximum
of 255 (Sp_Intensity). The relative area that the sparks occupied in the whole image was
calculated (Sp_Area). The signal processing was performed as follows: (1) The baseline
was set at the 10% percentile, the peak widths of the green pulses were set at 10% height
above the baseline, and the peak heights were set relative to the baseline; (2) The spark
event count before each green peak was calculated from the number of peaks in the spark
intensity data; and (3) The steepness (∆F/∆t)max was calculated as the largest increase in
intensity on the rising edge of each peak within a video frame (∆T).

All image analyses technology described in this study were developed in LabVIEW
(www.ni.com, accessed on 1 December 2021). Modification of the code requires a full
development version of LabVIEW 2012 or newer as well as the NI Vision Development
Module. Although the code is distributed in this study for users to further modify, under
GNU license, users who simply wish to apply the code can do so without programming
knowledge using the supplied application, which can be freely installed https://github.
com/nblackburn123/Video-Analyser/releases/tag/v1.9 (accessed on 4 March 2022) on
any Windows operating system (if you use the software please cite this article).

2.5. Statistical Analysis

For all experiments, the statistical errors were represented as mean ± standard error
of the mean (SEM). To calculate the p-value of significance, Two-tailed Student’s t-tests or
ANOVA were used and p values ≤ 0.05 were considered statistically significant.

3. Results

3.1. Live-Cell Imaging of Intracellular Ca2+ Alterations during Contraction of GECI-eGFP+-CMs

Imaging of eGFP fluorescence waves related to Ca2+ in beating CMs was initiated by
the addition of Doxycycline (500 nM) for 6 h (Figure 3A). Representative video recordings
(recorded with imaging frame rates of 50 fps) of Ca2+ dynamics in control GECI-eGFP+-CMs
(referred to as c-CMs) are shown in Video S1. As indicated, the maximal [Ca2+]i occurred
after 0.1 s and the (time to 90% of peak) T90 time was approximately 0.4 s. The video records
of the [Ca2+]i fluctuation curves were automatically analyzed using the software Video An-
alyzer 1.9 (VA1.9; for further details see Materials and Methods). Figure S2 (Supplemental
Information) shows representative analyses of the regular transient fluctuations in [Ca2+]i
waves of fluorescence in c-CMs during contraction in the absence (end concentration of
Dimethylsulfoxid: 0.05%) and presence of Bay-K8864, Isoprenaline, Nifedipine, and Carba-
chol (end concentration of Dimethylsulfoxid: 0.05%). Temporal parameters of the [Ca2+]i
fluorescence signals are shown in Figure 3B.

www.ni.com
https://github.com/nblackburn123/Video-Analyser/releases/tag/v1.9
https://github.com/nblackburn123/Video-Analyser/releases/tag/v1.9
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(CMs). (A), Induction of genetically encoded calcium indicator (GECI)-enhanced green fluorescent
protein (eGFP+)-CMs was induced by adding Doxycycline (500 nM) for 6 h. Live-imaging of [Ca2+]i

fluctuations during contraction of GECI-eGFP+-control-CMs in the presence and absence of the
distinct agents were captured with the Olympus FluoView1000 confocal system (50 fps; 10 to 30 s;
60× objective; Em/Exit: 488:510 nm; see also Videos S1, S2 and S4). The video recordings of the [Ca2+]i

transient fluctuations were analyzed with the software Video Analyzer 1.9, allowing determination
of all the experimental parameters between the time points 1 to 3 in the figure (for the control CMs;
c-CMs). Parameters were used to calculate the Time-to-peak (TTP), (∆F/∆T)max and (time to 90%
of peak)T90 in the presence and absence of different drugs. (B), Diagrams show the effects of the
different agonists and antagonists on (∆F/∆T)max and T90 values of the Ca2+ transient. Values are
expressed as a percent of the c-CM values, which were set to 100% (mean ± SEM, n = 6, * p < 0.05;
6 independent experiments).

T0 represents the time point immediately before a rise in [Ca2+]i. Time-to-peak (TTP)
represents the time required for the transient to reach a maximum (Figure 3A). T90 repre-
sents the time required for the fluorescence signal to return from its maximum to 10% of
the amplitude. We calculated the maximum slope of the rise in [Ca2+]i, using (∆F/∆T)max;
this value was used as indicator for inotropic effects (Figure 3A). Normalization of the
six different, independent experiments was performed by expressing (∆F/∆T)max and T90
values, calculated for experiments where different agents had been used, as percentages of
the values calculated for c-CMs, whereby the latter were set to 100%. A representative video
recording after stimulation of the c-CMs with 1 µM of adrenoreceptor agonist [1-hydroxy-
2-(propan-2-ylamino)ethyl]benzene-1,2-diol;hydrochloride Isoprenaline (Sigma Aldrich,
St. Louis, MO, USA) and subsequently with 1 µM of L-Type channel blocker dimethyl 2,6-
dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate;hydrochloride Nifedip-
ine (Sigma Aldrich, St. Louis, MO, USA) is shown in Video S2. As seen in the video, the
velocity of the Ca2+-waves was significantly increased by Isoprenaline treatment; while,
as expected, addition of Nifedipine not only reduced the velocity, but also the resting
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sarcoplasmic Ca2+ level (CM beating also stopped). A representative video recording of
the control (c-CMs) followed by addition with Isoprenaline (1 µM) and subsequently by
addition of 1 µM of acetylcholine receptor agonist 2-carbamoyloxyethyl-trimethyl-azanium
Carbachol (Sigma Aldrich, St. Louis, MO, USA) is shown in Video S3. Again, Isopre-
naline significantly increased the velocity of Ca2+-fluorescence waves, while Carbachol
significantly reduced the velocity of the Ca2+ fluctuations as well as the Ca2+ fluores-
cence correlated with high [Ca2+]i. A representative video recording of the c-CMs treated
with the L-type calcium channel agonist 1 µM of (±)-1,4-Dihydro-2,6-dimethyl-5-nitro4-
(2-[trifluoromethyl]-phenyl)pyridine-3-carboxylic acid methyl ester Bay-K8864 (Sigma
Aldrich, St. Louis, MO, USA) is shown in Video S4. As expected, Bay-K8864 drastically
increased the velocity of the fluctuations of Ca2+-fluorescence. As indicated in Figure 3B,
Isoprenaline and Bay-K8864 caused an 51% and 30% increases in (∆F/∆T)max over the
values for c-CMs (= 100%), respectively. The addition of Carbachol or Nifedipine to the
Isoprenaline-stimulated c-CMs resulted in a significant reduction of (∆F/∆T)max compared
with the c-CM value, reducing these values from 100% to 59% and 19%, respectively. Iso-
prenaline alone resulted in the reduction of the T90 value, compared with that of the c-CM
value, from 100% to approximately 78%, whereas Bay-K8864 induced a 20% increase in the
T90 value over the c-CM value.

3.2. Live-Time Imaging of the Contractile Velocity of ACTN2-copGFP+-CMs in the Presence or
Absence of Different Agonists and Antagonists

Generation of the α-actinin (ACTN2)-copepod (cop) GFP+-hiPSCs was performed as
described in Figure 2, and transgenic cells were differentiated to CMs as described in the
Material and Methods.

Figure 4 shows the Z-discs of ACTN2-copGFP+-CMs (ACTN2 is enriched in Z-discs
of the sarcomeres of CMs; see also Video S5).

The video recordings of the fluctuations of the contraction and relaxation velocity
were analyzed using the software: VA1.9 (for representative fluorescence contraction-
relaxation cycles, see Figure S3, Supplemental Information). All videos were recorded at
50 fps rate. Figure 4A shows one representative contraction-relaxation cycle divided into
contraction and relaxation phases. As indicated, the program allowed us to determine all
experimental parameters between time points 1 to 5 in Figure 4A. The key parameters, such
as TTP, (∆F/∆T)max, and the durations of contraction and relaxation, as well as the beating
frequency, were calculated. Values are expressed as percentages of the c-CM values, which
were set to 100%. Videos S6 and S7 show that the contractile velocity of the c-CMs after
stimulation with Isoprenaline and Bay-K8864, was significantly increased.

As indicated in Figure 4B, after stimulation of the c-CMs with Bay-K8864 both con-
traction and relaxation phases were slightly decreased to 88%, compared to c-CM val-
ues, although this effect was not statistically significant. Stimulation of the c-CMs with
Isoprenaline caused a 37% and 25% inhibition of the contraction and relaxation phases,
respectively. Subsequent addition of Carbachol almost recovered the inhibitory effect of
Isoprenaline for the contraction phase but reduced the relaxation time of Isoprenaline to
40% of the c-CM value induced by Isoprenaline. As shown in Figure 4B, Isoprenaline and
Bay-K8864 treatments resulted in an increase in the CM beating rate by 2.2- and 1.4-fold, re-
spectively, compared to that of c-CMs. In contrast, consecutive treatments with Isoprenaline
and Carbachol resulted in only a 1.5-fold increase in the CM beating rate, indicating that
Carbachol, to some extent, inhibited the Isoprenaline-induced increase in the beating rate.
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Figure 4. Live-imaging of contraction and relaxation velocity activity of α-actinin (ACTN2)-copepod
green fluorescent protein (copGFP+)-cardiomyocytes (CMs). Live-imaging of the contractile and
relaxation velocities of the ACTN2-copGFP+-CMs in the presence and absence of the distinct agents.
Video recordings were captured with the Olympus FluoView1000 confocal system (50 fps; 10 to 30 s;
60× oil objective). (A), ACTN2 is enriched in Z-discs of the sarcomeres of ACTN2-copGFP+-CMs
(see also Videos S5–S7). The video recordings of the fluctuations of the contractile and relaxation
velocities were analyzed with the software Video Analyzer 1.9, allowing determination of all the
experimental parameters between the time points 1 to 5 in the figure (for control CMs; c-CMs).
Parameters were used for the calculation of time-to-peak (TTP), slope (∆F/∆T)max, T90, and the
contraction and relaxation times for c-CMs. (B), Diagrams show the effects of the different agonists
and antagonists on (∆F/∆T)max, on the contraction/relaxation times and on the beating frequency in
the presence and absence of the different drugs. Values are expressed as a percentage of the c-CM
values, which were set to 100% (mean ± SEM, n = 6, * p < 0.05; 6 independent experiments).

4. Discussion

There is no doubt about the superiority of non-invasive live-cell imaging methods over
classical methods for investigating cellular and intracellular biological processes. Given
their advantages, live-cell imaging techniques were recently applied in several disciplines,
including biomedicine, cell biology, pharmacology, and developmental biology, to obtain
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more reliable results than from fixed cells and tissues (for review see [29,30]). Live-cell
imaging techniques were used for real-time investigation of intracellular structures and
cellular processes. These real-time techniques not only enabled visualization of intracellular
organelles, e.g., mitochondria, in real-time but also facilitated the study of dynamic pro-
cesses in cells under conditions of physiological, pathophysiological and drug toxicity. In
general, these techniques produced more reliable and physiological findings in comparison
to fixed cell microscopy (for review see [30]).

The application of single fluorescent protein-based genetically encoded biosensors is
based on allosteric modulation of the fluorescence of a single fluorescent protein [31]. An
example of such a genetically encoded biosensor is the Ca2+ biosensor/GCaMP biosensor,
which has been successfully applied in neurosciences for imaging of neuronal activities [31].
Moreover, also other groups generated biosensor/GCaMP hiPSC-CMs [32–34]. However,
our study differs significantly in the way that the GCaMP donor vector is created and
expressed in the hiPSCs. With the use of our construct, the user can precisely control the
expression of the GCaMP using Tet-on system. We also opted for directional insertion
of the GCaMP in AAVS1 site. Therefore, an advantage of our genetically encoded Ca2+

biosensor/GCaMP hiPSC-CMs is the real-time monitoring of transient fluctuations of
[Ca2+] in a Tet-on inducible manner.

Multiple advantages of using genetically encoded biosensors for Ca2+-imaging (based
on protein fluorescence, such as eGFP) over synthetic dyes, such as fluo-2, are outlined
below. Clearly, in comparison to new technologies, the loading procedure of Ca2+ indicators,
such as fluo-2, is invasive and time-consuming [35]. In addition, control of the cellular
permeabilization and concentration of the cytosolic Ca2+ fluorescent dyes is limited [36].
In contrast, changes in intracellular Ca2+ in GECI CMs are evident in all CMs and do
not depend on the variances of the uptake of Ca2+ dyes in CMs [37,38]. The genetically
encoded biosensor cell lines, such as the GECI hiPSCs, can be easily distributed to different
laboratories. Therefore, findings with the GECI hiPSC-derived CMs will be more robust
and reliable, compared to invasive and time-onsuming experiments with fluo-2 and other
similar Ca2+ dyes [31]. Another major drawback of using such dyes, if not the most
important, is that experiments with fluo-2 (and fluo-4, which we have used extensively in
our lab) are final, i.e., the cells are harmed severely by subcellular accumulation, or even
precipitation, of the fluorophore in a time-dependent manner (personal observations), so
that cells cannot be re-used, e.g., in their latter stage of development. It is also known
that fluorescent Ca2+ dyes exert off-target effects by inhibiting ATPases. In contrast, long-
term recording of the fluctuations of the Ca2+ in GECI CMs is possible without inducing
deleterious off-target effects [39,40]. In this context, monitoring of Ca2+ in GECI CMs can
be controlled by switching the detection on or off.

More recently, the CRISPR/Cas9 technology was used as an efficient technology for
tagging transcriptionally silent endogenous genes in hiPSCs, enabling live visualization of
cytoskeletal proteins. In this context, an eGFP fusion tag and a constitutively expressed
mCherry fluorescence selection cassette were delivered via homology directed repair to the
endogenous cardiac cytoskeleton specific genes, such as ACTN2 into hiPSCs, allowing live
imaging of sarcomeres after differentiation of the hiPSCs to CMs [41].

To date, several gene editing lines have been reported applying established tech-
niques [41,42]. However, we believe that the key advantage of our line is that we have
edited the native ACTN2 gene by removing its stop codon and replacing it with copGFP.
This is very different from many other reported lines generated using traditional methods,
because they use the promoters from either ACTN2 or MYH genes to express copGFP. Thus,
the traditional approach incorporates excess DNA material at random loci in the cellular
genome DNA that may lead to inconsistent results.

There are several other recently developed software’s to analyse the contractility of
hiPSCs-derived CMs [7,43–46].

For example, software’s like SarcTrack [46] and CalTrack [44] use MatLab-based
algorithms which needs expertise in setting up the software’s as well as high-end computing
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systems to process the MatLab data sets. Whereas softwares like Musclemotion [45] and
SarcOptim [43] are relatively easy to use but needs imageJ-based plugins which the user has
to download and install. In contrast, our user-friendly interface allows any user to upload
and analyse the data with normal computer set-ups without needing any software code
optimization or need to install any specific plugins. In addition, when we used SarcTrack
in our analysis, we noticed several limitations. For example, many times the software
fails to recognize the true sarcomere bands and, hence, cannot follow the sarcomeric
contractions properly causing program to re-plots the sarcomeric bands with incorrect
readings/data. Another advantage of our software is that it is designed to analyse both
sarcomeric contractions and calcium flux in CMs as a 2-in-1 system whereas with the
other systems are designed to perform single function analysis for example, SarcTrack can
only do sarcomere length measurements and the CalTrack can only measure calcium flux
in CMs.

The contractility of CMs is regulated by [Ca2+]i. The binding of Ca2+ to troponin
C, a protein of the troponin complex (troponin C, troponin I, and troponin T) initiates
contraction of the sarcomeres and can be visualized as a shortening of the distance between
Z-discs (systolic phase). Dissociation of Ca2+ from troponin C initiates the relaxation of
CMs, which can be monitored by the increase in the Z–Z distance. (diastolic phase). To
investigate the dynamic changes of the contractility of CMs, pending on the [Ca2+]i, we
also generated a transgenic hiPSC cell line, allowing live-imaging of the transient changes
in [Ca2+]i. The applicability of the transgenic hiPSC-CMs as a cellular platform for live
imaging of beneficial or adverse functional effects of different drugs was tested using the
sympathomimetic drug, Isoprenaline, and the parasympathomimetic drug, Carbachol,
as well as an agonist Bay-K8864 and antagonist Nifedipine of the L-type channel. In
parallel, we developed a 2-in-1, user friendly software VA1.9 to quantify the contraction
and relaxation kinetics, as well as the kinetics of transient fluctuations of [Ca2+]i during
contraction and relaxation phases of the CMs.

Bay-K8864 is a potent inotropic compound that increases the action potential duration
(APD) in adult animal ventricular heart muscles and Purkinje fibers [47]. It is established
that the Bay-K8864-induced Ca2+-influx via the L-type channel induces a Ca2+-release from
the sarcoplasmic reticulum [48] (Ca2+-induced Ca2+-release mechanism). CMs from mouse
ESCs showed prolonged APD [49] and Bay-K8864 induced a 27% increase of the APD90 in
ventricular human ESCs-derived CMs [22], as well as in hiPSC-derived CMs [20]. Similarly,
we demonstrated that Bay-K8864 slightly but significantly increased the T90 period that
correlates positively with the APD90. Moreover, we demonstrated that Bay-K8864 increased
(∆F/∆T)max, indicative of an inotropic effect. In a comparative electrophysiological study
in which several positive inotropic agents were tested on hiPSC-CMs, it has been shown
that Isoprenaline slightly decreased APD90, whereas Bay-K8864-induced a prolongation
of the APD90 [19]. Isoprenaline (alias isoproterenol) is a positive inotropic, lusitropic and
chronotropic drug, acting by binding to the β1-Adrenoreceptors of cardiac cells (ventricular,
atrial, and pacemaker) and elevating the intracellular cAMP level, thereby activating protein
kinase C [19,50]. In another study, Isoprenaline shortened the APD90 of hiPSC-CMs [21].
Our findings show positive inotropic effects of Isoprenaline that significantly elevated the
(∆F/∆T)max, and significantly shortened the T90 period, which correlates well with ADP90
values. Carbachol not only abolished the effect of Isoprenaline on the (∆F/∆T)max, and on
the T90 value, but also significantly reduced the (∆F/∆T)max value, even below that of the
c-CM value.

Our findings with the ACTN2-copGFP+-CMs demonstrated that both Bay-K8864 and
Isoprenaline elevated (∆F/∆T)max values, again proving the inotropic effects of both drugs.
As expected, Carbachol almost eliminated the effect of Isoprenaline on the basal values
of c-CMs. Moreover, Isoprenaline induced a significant shortening of the contraction and
relaxation phases, as observed by other authors in rat, mouse, and human engineered
heart tissues [51]. The lusitropic effect of Isoprenaline was not observed in hiPSC-CMs
obtained by Cellular Dynamics (iCell International, Madison, WI). According to these
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authors, the lack of the lusitropic effect of Isoprenaline might be explained by a low
expression of phospholamban in these hiPSC-CMs [19]. Our data confirm that there are
inotropic and lusitropic effects of Isoprenaline on heart tissues and CMs. No significant
effect was observed for Bay-K8864 on the contraction and relaxation phases of the c-
CMs. As shown in Figure 4, our findings are compatible with the beating frequencies
of c-CMs in the presence of Isoprenaline and Bay-K8864, both of which significantly
increased the beating rate, although the effect of Isoprenaline was partly abolished by
Carbachol (Nifedipine completely inhibited the beating activity of c-CMs). In conclusion,
our live-imaging platform is applicable to screening and testing of potential drugs and
toxicants on human cardiomyocyte function. Moreover, our platform will contribute to
better understanding of the underlying mechanisms of the development and therapy of
heart diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11081280/s1, Figure S1: Plasmids required for generation
of GECI-eGFP+-hiPSCs; Figure S2: Representative analysis of the different video recordings of the
transient changes of intracellular free Ca2+ in GECI-eGFP+-CMs by the video analyser 1.9 tool;
Figure S3: Representative analysis of the different video recordings of the contractile velocity of
ACTN2-eGPF+-CMs by the video analyser 1.9 tool; Table S1: DNA sequences required for generation
of ACTN2-enhanced green fluorescent protein (eGFP+)-hiPSC by the CRISPR-Cas9 and the homology-
directed recombination (HDR) approach; Video S1: Representative video recordings of the velocity of
the Ca2+-waves in control GECI-eGFP+-CMs; Video S2: A representative video recording shows the
velocity of the Ca2+-waves after treatment of the GECI-eGFP+-CMs with Isoprenaline (1 µM) and
subsequently with Nifedipine (1 µM); Video S3: The representative video shows the velocity of the
Ca2+-waves in the GECI-eGFP+-CMs followed by addition with Isoprenaline (1 µM) and subsequently
by addition of Carbachol (1 µM); Video S4: The representative video recording shows the velocity
of the Ca2+-waves in GECI-eGFP+-CMs after treatment with the L-type calcium channel agonist
Bay-K8864 (1 µM); Videos S5, S6 and S7 show the contractile velocity of the ACTN2-eGPF+-CMs in
the presence and absence of Isoprenaline and Bay-K8864.
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