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Abstract: Epicardial fat thickness is associated with cardiovascular disease. Mineralocorticoid
receptor antagonist (MRA), a pharmaceutical treatment for CVD, was found to have an effect on
adipose tissue. Our aim was to analyse the main epicardial fat genesis and inflammation-involved
cell markers and their regulation by risk factors and MRA. We included blood and epicardial or
subcutaneous fat (EAT or SAT) from 71 patients undergoing heart surgery and blood from 66 patients
with heart failure. Cell types (transcripts or proteins) were analysed by real-time polymerase chain
reaction or immunohistochemistry. Plasma proteins were analysed by Luminex technology or
enzyme-linked immunoassay. Our results showed an upregulation of fatty acid transporter levels
after aldosterone-induced genesis. The MRA intake was the main factor associated with lower
levels in epicardial fat. On the contrary, MRA upregulated the levels and its secretion of the anti-
inflammatory marker intelectin 1 and reduced the proliferation of epicardial fibroblasts. Our results
have shown the local MRA intake effect on fatty acid transporters and anti-inflammatory marker levels
and the proliferation rate on epicardial fat fibroblasts. They suggest the role of MRA on epicardial
fat genesis and remodelling in patients with cardiovascular disease. Translational perspective: the
knowledge of epicardial fat genesis and its modulation by drugs might be useful for improving the
treatments of cardiovascular disease.

Keywords: epicardial fat; parasympathetic dysfunction

1. Introduction

Some authors have already described the association between epicardial fat thickness
or volume and cardiovascular disease [1–4]. Although the adipogenesis ability is lower
in epicardial than in subcutaneous stromal cells [5], the increment of epicardial fat has a
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higher impact on cardiovascular disease [6]. Last year, a computed tomography angiog-
raphy and transcriptomic analysis of epicardial fat tissue demonstrated a fat attenuation
index as an indicator of inflammation, vascularity and fibrosis [7], which is associated
with the presence of high-risk plaques [8]. In fact, the same amount of tissue might re-
flect a different cellular remodelling and adipogenesis dysfunction [9]. The expansion of
adipose tissue starts with a differentiation of preadipocytes, which can be inhibited by
collagen type I [10] or inflammatory cells [11]. The inability to store triglycerides also
contributes to metabolic dysfunction and cardiovascular disease [12]. Some of the de-
scribed molecules as regulators of adipocytes’ genesis are CD36 and preadipocyte factor 1
(Pref-1). While CD36 is considered a marker of human adipose progenitors [13], with
an important role on triglyceride accumulation, Pref-1 [14] is a negative regulator and
a preadipocyte marker [15]. The main compounds of stromal vascular cells on adipose
tissue are preadipocytes, macrophages and endothelial cells [16]. CD68 and CD31 are
one of the macrophages [17] and endothelial [18] markers, respectively. Coronary artery
disease (CAD) is associated with a higher macrophage polarization in epicardial fat [19]
that could improve the angiogenesis and vascular density [20]. All these types of cells
express fatty-acid-binding protein 4 (FABP4) [21,22] that is involved in fatty acid trans-
porters and is upregulated in mature adipocytes. The epicardial fat-FABP4 is associated
with atherosclerosis [23] and its plasma levels with cardiovascular death [24]. In addition, a
higher infiltration of inflammatory cells (lymphocytes CD3 positive) and pro-inflammatory
macrophages in epicardial than subcutaneous fat is also associated with CAD [19,25]. The
inflammatory cells can develop a fibrotic remodelling in adipose tissue which is also associ-
ated with cardiovascular disease [26]. Thus, collagen type I, alpha 2 (COL1A2), fibroblasts
and adipocytes´ progenitor marker, or α-smooth muscle actin (α-SMA) andactivated fi-
broblast marker, might define the fibrosis stage on epicardial fat. Defensins alpha (DEFA)
are the antimicrobial peptides of neutrophils [27] which can be infiltrated into inflamed
adipose tissue through the chemokine receptor CXCR2 [28], and adhered to adipocytes,
through the integrin CD11b [29]. Thus, neutrophils are the most abundant granulocytes that
support pro-inflammatory processes in adipose tissue from obesity [30]. One of the anti-
inflammatory adipokines mainly expressed and secreted by epicardial fat is the intelectin-1
(ITLN-1), named also omentin [31,32], that could counteract these inflammatory processes
and reduce the cardiovascular disease risk [33].

The known studies suggest a differential cell composition between epicardial and
subcutaneous fat from patients with cardiovascular disease which could be regulated by
risk factors or treatments, such as mineralocorticoid receptor antagonists (MRA), involved
in adipogenesis and fibrosis modulation. Since both mechanisms participate in the cardio-
vascular disease progression, the knowledge of markers involved in cell types, epicardial
adipocyte genesis and their main regulators might improve the therapeutical management
of these patients.

2. Material and Methods
2.1. Human Open-Heart Surgery Samples

Epicardial adipose tissue (EAT) of right ventricle, subcutaneous adipose tissue (SAT)
and/or blood were obtained from 71 patients who underwent open-heart surgery. The
exclusion criteria were previous heart surgery or severe infectious diseases. All patients
signed informed consent. The Galician Clinical Research Ethics Committee approved the
study protocol, which was carried out in accordance with the Declaration of Helsinki.
Before extra-corporeal pulmonary circulation, small fat biopsies or blood were taken and
immediately processed or stored at −80 ◦C until being used.

2.2. Human Heart Failure Samples

We also included 66 consecutively admitted patients at Cardiology Department for
acute heart failure (HF), excluding those with pregnancy, severe chronic liver or kidney
disease, autoimmune or chronic inflammatory diseases, as was described before [34]. Dual-
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energy X-ray absorptiometry (DEXA) (Prodigy, General Electric Medical Systems, Madison,
WI, USA) and scans, using enCore™ software (platform version 13.6, General Electric
Medical Systems, Madison, WI, USA) were used for body fat mass determination. The
Galician Clinical Research Ethics Committee approved the study protocol, which was
carried out in accordance with the Declaration of Helsinki.

2.3. Adipogenesis Induction for 14 Days

After washing the fat pads three times, the stromal vascular cells (SVC) from consec-
utive SAT and EAT of 17 patients were isolated and cultured following the collagenase
digestion protocol [5]. Then, cells were or were not induced to adipogenesis with M199
medium (Lonza Biologics, Porriño, Spain) supplemented with 10% foetal bovine serum
(FBS), and the adipogenesis cocktail, composed of 5 µg/mL insulin, 250 nM dexamethasone,
0.5 mM methylisobutylxanthine and 1 µM thiazolidinedione (IDMT). All pharmacological
drugs were obtained from Merck Life Science S.L.U. (Madrid, Spain). In dedifferentiated
epicardial or subcutaneous adipocytes from 4 patients, we performed an adipogenesis
treatment with IMT (insulin, methylisobutylxanthine, thiazolidinedione) supplemented or
not with aldosterone (1 µM) and/or mineralocorticoid receptor antagonist (MRA) (spirono-
lactone 5 µM).

2.4. Cell-Type RNA Transcripts on Fat Biopsies and Adipogenesis Assay

Biopsies from epicardial and subcutaneous fat or stromal cells with or without adipo-
genesis induction were lysed with AllPrep DNA/RNA/protein mini kit (Qiagen, Hilden,
Germany) and RNA was obtained, following the manufacturer’s protocol. After retro-
transcription, using the Maxima First Strand cDNA Synthesis Kit (Thermo Fisher Scientific,
Waltham, MA, USA), 2 µL of cDNA was used for gene expression analysis with the
following primers: adiponectin (ADIPOQ), fatty acid binding protein 4 (FABP4), CD36,
preadipocyte factor 1 (PREF1), collagen 1A2 (COL1A2), CD68, CD31, ACTA (a-SMA), CD3,
DEFA3, CD11b, CXCR2, ITLN1 and ACTB (β-actin) and FastStart SYBR Green Master
(Roche Diagnostics, Mannheim, Germany). Primers are detailed in Supplementary Table S1.
These primers were amplified by real-time polymerase chain reaction at 40 cycles (95 ◦C
for 30 s, 60 ◦C for 60 s and 72 ◦C for 30 s) in a QuantStudio 3 (Thermo Fisher Scientific,
Waltham, MA, USA). The cycle threshold (Ct) values of the genes were normalized by the
Ct values of ACTB (∆Ct). The differential expression levels were represented as arbitrary
units (a.u.) based on 2-(ACTB/gene) algorithm.

2.5. Immunohistochemistry

Samples were immersion fixed in 10% neutral buffered formalin for 24 h and embed-
ded in paraffin routinely. Sections 4 µm-thick were mounted on FLEX IHC microscope
slides (Agilent, Carpinteria, CA, USA). After deparaffination and epitope retrieval (for
20 min at 97 ◦C in EnVision FLEX target retrieval solution at low pH for FABP4 and high
pH for the remaining antibodies), immunohistochemistry was automatically performed
using an AutostainerLink 48 immunostainer (Agilent). Briefly, the slides were incubated
at room temperature in: (1) rabbit polyclonal antibodies to: FABP4 (Cloud-Clon Corp.,
Houston, TX, USA, at 1:1000 for 30 min), Omentin (Bioss Antibodies, Woburn, MA, USA,
at 1:500 for 30 min) or CD36 (Invitrogen, Waltham, MA, USA, at 1:1000 for 30 min) or
mouse monoclonal antibody to CD68-clone PGM1 (Agilent, ready to use for 20 min);
(2) EnVision®+ Dual Link System-HRP (Agilent Technologies, Inc., Santa Clara, CA, USA,
dextran polymer conjugated with horseradish peroxidase and affinity-isolated goat anti-
mouse and goat anti-rabbit immunoglobulins) (Agilent, K4065) for 20 min; (3) DAB+
substrate-chromogen solution (1 mL of substrate buffer solution containing hydrogen per-
oxide and 20 µL of 3,3′-diaminobenzidine tetrahydrochloride chromogen solution) (Agilent)
for 10 min; and (4) EnVision FLEX hematoxylin (Agilent) for 15 min.
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2.6. Wound Healing Assay

Epicardial and subcutaneous stromal cells from 4 patients were seeded in 24 mul-
tiwell plates until reaching the 90% of confluence. Then, a wound was perpendicularly
and longitudinally performed through the well by a plastic pipette tip. Migration and
proliferation cells were recorded with (Olympus Provi CM20 Incubation Monitoring Sys-
tem, Shinjuku-ku, Tokio, Japan) for 24 h and underwent aldosterone (1 µM) and/or MRA
(spironolactone 10 µM) treatment in M199 medium with or without foetal bovine serum
(FBS) 10%. The area at the edge of the lesion was quantified and adjusted with the basal
area at different times (3, 6, 12 and 24 h) with the Fiji ImageJ software (v1.53f51, National
Institutes of Health, Bethesda, MD, USA, RRID:SCR_002285) [35]. The experiment was
performed by duplicating with the first passage of cells.

2.7. Released and Expression ITLN-1 by Epicardial Stromal Cells

Epicardial stromal cells from 4 patients were seeded in 6 multiwell plates until reach
the 90% of confluence. Then, cells were washed with saline solution, for removing FBS,
and cultured with M199 for 24 h. Afterwards, supernatants were collected and concen-
trated with Amicon Ultracentrifugal 3K columns (Merck KGaA, Darmstadt, DE, Germany).
Released ITLN-1 levels were analysed by enzyme-linked immunoassay (ELISA) and cells
were lysed with RLT buffer and RNA was extracted as it was indicated above for ITLN-1
expression levels analysis.

2.8. Blood Analytes Measurements

After centrifuging at 1800× g for 10 min, plasma samples were stored at −80 ◦C until
use. A magnetic Luminex test kit (R & D Systems, Minneapolis, MN, USA) was used for
analysing FABP4 levels (1:2 dilution). The omentin levels were determined with diluted
plasma (1:100) using a commercially available ELISA kit (Cloud-clone corp. (CCC, Wuhan,
China)), according to the manufacturers’ protocols. Measurements were performed in
duplicate, and the results were represented as means.

2.9. Statistical Analysis

Normal distributions were assessed by Shapiro–Wilk test. Continuous variables
were presented as mean ± standard deviation and categorical variables were presented
as frequency and percentage. Paired comparisons between control and treatment were
determined by paired t test. Differences between patients with respect to treatments or
risk factors were determined by unpaired t test. Logistic regression analysis was used for
analysing the best predictor associated with FABP4. Statistical significance was defined
as p < 0.05. All analyses were performed using SPSS v22.0. (Software SPSS Inc.; Chicago,
IL, USA).

3. Results
3.1. Stromal Fat Cell Adipogenesis and Cell-Type RNA Transcripts

Out of 71, 17 fat biopsies were also used for adipogenesis assay. The clinical character-
istics of all included patients are described on Table 1. Our results showed that the main
differential markers on stromal cells between epicardial and subcutaneous fat were ITLN1
(1.62 ± 0.11 vs. 1.46 ± 0.10, p < 0.001), which is higher expressed in epicardial stromal
cells and CD36 (1.69 ± 0.10 vs. 1.60 ± 0.06, p < 0.01), with higher levels in subcutaneous
cells. After adipogenesis induction, the adipocyte marker and fatty-acid transporter levels
(adiponectin (ADIPOQ), fatty-acid-binding protein 4 (FABP4)) and CD36) were increased
in cells coming from subcutaneous and epicardial fat. The increment was even higher in
subcutaneous than epicardial cells (1.28 ± 0.10 in SAT vs. 1.16 ± 0.08 in EAT, p < 0.001
for FABP4, 1.27 ± 0.11 in SAT vs. 1.21 ± 0.10 in EAT, p < 0.05 for AdipoQ). However,
a higher increase in fibroblast marker COL1A2 was detected in epicardial stromal cells
after adipogenesis induction in comparison with adipogenised-subcutaneous stromal cells
(1.05 ± 0.05 vs. 1.01 ± 0.04, p < 0.05) (Figure 1A). A high increment of fatty acid transporter
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levels after adipogenesis was related to high levels of preadipocytes (Pref-1), macrophages
(CD68), epithelial (ITLN1) and endothelial (CD31) markers in the stromal basal fraction
(Figure 1B).
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Figure 1. Adipogenesis assays (A) Hierarchical clustering heatmap represents the mRNA expression
levels of genes on epicardial (EAT) and subcutaneous fat (SAT) stromal cells from patients with
cardiovascular disease with or without adipogenesis induction. (B) Correlation plots between mRNA
expression levels of genes on epicardial (EAT) or subcutaneous fat (SAT) stromal cells from patients
with cardiovascular disease with (IDMT) or without adipogenesis induction (NIDMT).

3.2. Cell-Type RNA-Transcripts in Epicardial and Subcutaneous Fat

We studied a huge population of 71 epicardial and subcutaneous fat biopsies from
patients who underwent open-heart surgery. Clinical characteristics are specified in Table 2.
Fatty acid transporters (FABP4 and CD36), fibroblasts (COL1A2), endothelial (CD31) and
myofibroblast (a-SMA) markers were highly expressed in epicardial and subcutaneous
fat pads. The main important differences between epicardial and subcutaneous was
regarding epithelial marker (ITLN-1). This transcript was highly expressed in epicardial fat
(1.91 ± 0.17 vs. 1.69± 0.12 a.u., p < 0.001). Other genes with higher expression in epicardial
than subcutaneous fat biopsies were the myofibroblast (a-SMA) (1.85 ± 0.05 vs. 1.82 ± 0.06
a.u., p < 0.01) and neutrophil markers (DEFA3) (1.71 ± 0.11 vs. 1.66 ± 0.09 a.u., p < 0.05).
However, the fatty acid transporters (FABP4 and CD36) were higher in subcutaneous than
in epicardial fat (2.27 ± 0.10 vs. 2.19 ± 0.10 and 2.01 ± 0.05 vs. 1.96 ± 0.05 a.u., p < 0.001,
respectively) (Figure 2A). The immunohistochemistry demonstrated that the fatty acid
transporters are mainly expressed in adipocytes, with a higher size in SAT than EAT, and
ITLN-1 is detected in mesothelial cells of EAT (Figure 2B). The high adipocyte size is
concordant with their higher ability to be differentiated with aldosterone (down).
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Table 1. Clinical characteristics for primary culture adipogenesis assays.

Variables Mean ± SD N (Yes/No) % (Yes/No)

Age (years) 66 ± 8
Gender (male/female) 14/3 82/18

BMI (kg/m2) 29 ± 4
AHT 9/8 53/47

T2DM 2/15 12/88
Dyslipidemia 9/8 53/47

Smoking 9/8 53/47
HF 8/9 47/53

Valvulopathy 15/2 88/12
CAD 6/11 35/65
AF 7/10 41/59

CRF 1/16 6/94
ACEi 6/11 35/65

b-blockers 10/7 59/41
Statin 9/8 53/47
MRA 3/14 18/82

Oral antidiabetics 2/15 12/88
BMI: body mass index; AHT: arterial hypertension; T2DM: type 2 diabetes mellitus; HF: heart failure; CAD: coro-
nary artery disease; AF: atrial fibrillation; CRF: chronic renal failure; ACEi: angiotensin converting enzyme
inhibitor; MRA: mineralocorticoid receptor antagonists.

Table 2. Clinical characteristics of all patients for biopsies.

Variables Mean ± SD N (Yes/No) % (Yes/No)

Age (years) 70 ± 8
Gender (male/female) 48/23 32/68

BMI (kg/m2) 29 ± 4
Arterial hypertension 47/24 66/34

T2DM 14/57 20/80
Dyslipidemia 56/15 79/21

Smoking 26/45 37/63
HF 42/29 59/41

Valvulopathy 62/9 87/13
CAD 48/23 34/66
CRF 7/64 10/90
ACEi 19/52 27/73

b-blockers 48/23 68/32
Statin 52/19 73/27
MRA 18/53 25/75

Oral antidiabetics 14/57 20/80
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Figure 2. Cell-RNA expression level fat pads (A) Hierarchical clustering heatmap represents the
mRNA expression levels (a.u.) of genes in epicardial (EAT) and subcutaneous (SAT) fat from patients
with cardiovascular disease. (B) Immunohistochemistry of EAT and SAT with antibodies against
FABP4, ITLN-1, CD36, and CD68 (objective magnification, ×20 and ×40). In numbers, under
the immunohistochemistry, the mean ± SD mRNA expression levels of the total analysed biopsies
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regarding each molecule are represented. (C) Dot plots and mean ± SD represent the mRNA
expression levels of FABP4 in epicardial and subcutaneous fat stromal cells treated or not treated with
aldosterone and mineralocorticoid receptor antagonist (IMT: insulin, IBM and Thiazolidinediones;
Aldo: aldosterone; MRA: mineralocorticoid receptor antagonist). Unpaired t test showed statistical
differences between groups ** p < 0.01.

3.3. Cell Types RNA-Transcripts on Epicardial and Subcutaneous Fat with MRA

After 15 days of adipogenesis with IMT, an upregulation of FABP4 was detected after
aldosterone addition in subcutaneous stromal cells (1.8 ± 0.2 vs. 1.5 ± 0.7 a.u., p < 0.01),
but not in epicardial stromal cells (Figure 2C). However, in biopsies, our results showed
epicardial fat-FABP4, CD36 and ITLN1 differences between patients who were taking or not
taking MRA. Thus, epicardial fat biopsies from patients who were taking MRA expressed
lower levels of CD36 (1.93 ± 0.03 vs. 1.97 ± 0.05 a.u.; p < 0.01) and FABP4 (2.14 ± 0.09
vs. 2.20 ± 0.11). On the contrary, there was a higher level of ITLN1 in epicardial fat
from patients who were taking MRA (1.98 ± 0.16 vs. 1.90 ± 0.15, p < 0.05). However, it
was not detected regarding subcutaneous fat (Figure 3). We did not find other different
clinical characteristics between patients who were taking or not taking MRA, except atrial
fibrillation (AF) presence (Table 3). However, the logistic regression analysis determined
that MRA was the best associated factor with FABP4 (β = −0.070; p < 0.05) or CD36 levels
(β = −0.042; p < 0.01) on EAT. Plasma FABP4 levels had a tendency to decrease in those
patients with MRA intake (Figure 4). However, it did not reach statistical significance.

In 66 acute HF patients, the circulating FABP4 at discharge, but not ITLN1, was
associated with body fat mass (gr), measured by DEXA (r = 0.59, p < 0.0001), (Figure 5A).
The clinical characteristics of these patients are described in Table 4. However, the low
percentage of patients without MRA treatment did not allow us to visualize differences in
total body fat between patients with or without MRA intake.

Table 3. Clinical characteristics of patients with /without MRA.

Variables MRA No MRA p

Gender (male/female) 13 (72%)/5 (28%) 35 (66%)/18 (34%) 0.63
AHT (Yes/No) 14 (78%)/4 (22%) 33 (62%)/20 (38%) 0.23

T2DM (Yes/No) 6 (33%)/12 (67%) 8 (15%)/45 (85%) 0.09
Dyslipidemia (Yes/No) 16 (89%)/2 (11%) 40 (75%)/13 (25%) 0.23

Smoking (Yes/No) 7 (39%)/11 (61%) 19 (36%)/34 (64%) 0.82
Heart Failure (Yes/No) 13 (72%)/5 (28%) 29 (55%)/24 (45%) 0.19
Valvulopathy (Yes/No) 17 (94%)/1 (6%) 45 (85%)/8 (15%) 0.29

CAD (Yes/No) 6 (33%)/12 (67%) 18 (34%)/35 (66%) 0.96
CRF (Yes/No) 3 (17%)/15 (83%) 4 (7%)/49 (93%) 0.26
AF (Yes/No) 12 (67%)/6 (33%) 20 (38%)/33 (62%) 0.03

ACEi (Yes/No) 6 (33%)/12 (67%) 13 (25%)/40 (75%) 0.47
b-blockers (Yes/No) 13 (72%)/5 (28%) 35 (66%)/18 (34%) 0.63

Statin (Yes/No) 16 (89%)/2 (11%) 36 (68%)/17 (32%) 0.08
Oral antidiabetics (Yes/No) 6 (33%)/12 (67%) 36 (68%)/17 (32%) 0.09

BMI: body mass index; AHT: arterial hypertension; T2DM: type 2 diabetes mellitus; HF: heart failure; CAD: coro-
nary artery disease; AF: atrial fibrillation; CRF: chronic renal failure; ACEi: angiotensin converting enzyme
inhibitor; MRA: mineralocorticoid receptor antagonists.



Cells 2022, 11, 1264 9 of 17

Cells 2022, 11, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 3. MRA on FABP4, CD36 and ITLN-1 Dot plots and mean±SD represent the mRNA expres-
sion levels of FABP4, CD36 or INTL-1 in epicardial and subcutaneous fat in a.u. from patients with 
or without mineralocorticoid receptor antagonist (MRA). Unpaired t test showed statistical differ-
ences between groups ** p < 0.01, * p < 0.01. 

  

Figure 3. MRA on FABP4, CD36 and ITLN-1 Dot plots and mean ± SD represent the mRNA
expression levels of FABP4, CD36 or INTL-1 in epicardial and subcutaneous fat in a.u. from patients
with or without mineralocorticoid receptor antagonist (MRA). Unpaired t test showed statistical
differences between groups ** p < 0.01, * p < 0.01.
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Table 4. Clinical characteristics of patients with HF.

Variables Mean ± SD N/% MRA (n = 54) No MRA (n = 12) p

Age (years) 71 ± 11 25/62 72 ± 12 71 ± 11 0.80
Gender (male) (n/%) 19/35 6/50 0.34

BMI (kg/m2) 32 ± 8 31±7 29 ± 6 0,52
AHT (n/%) 53/80 44/81 10/83 0.88

T2DM (n/%) 33/50 26/48 7/58 0.52
Dyslipidemia (n/%) 39/59 29/54 10/83 0.06

Smoking (n/%) 16/24 14/26 2/17 0.48
CAD (n/%) 15/23 13/24 2/17 0.58
LVEF ≥ 50% 18/27 12/22 6/50 0.05

AF (n/%) 2/ 2/4 0/0 0.50
ACEi (n/%) 43/65 36/67 7/58 0.58

b-blockers (n/%) 55/83 46/85 9/75 0.39
Statin (n/%) 41/62 33/61 8/67 0.72

Oral antidiabetics
(n/%) 24/36 17/31 7/58 0.08
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Figure 5. FABP4 and ITLN-1 plasma levels and body fat (A) Correlation plot represents the circulating
FABP4 or ITLN-1 levels with body fat mass, measured by DEXA, in patients with HF. (B) FABP4
or ITLN-1 plasma levels from heart failure patients with or without mineralocorticoid receptor
antagonist (MRA). Unpaired t test did not show statistical differences between groups.

3.4. MRA on Epicardial Stromal Cells and ITLN-1

The released ITLN-1 levels in epicardial fat were incremented in epicardial stromal cells
after MRA treatment. A post hoc Bonferroni test indicated that the aldosterone combined
with MRA treatment was significantly different than control (8.7 ± 2.4 vs. 3.3 ± 1.2 ng/mL,
p = 0.018). Similar levels of ITLN-1 were released by epicardial stromal cells after aldos-
terone or control treatment (Figure 6A). However, the gene expression levels of ITLN-1
in epicardial stromal cells were not regulated by MRA treatment after 24 h treatment
(Figure 6A).

Regarding epicardial and subcutaneous stromal cell proliferation in a wound healing
assay, our results showed that the proliferation rate was not affected at 3 h, 6 h and 24 h
after aldosterone treatment. Meanwhile, it was inhibited after MRA treatment (Figure 6B).
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Figure 6. ITLN-1 in epicardial stromal cells and MRA (A) Dot plots and mean ± SD represent the
released ITLN-1 levels (ng/mL) or mRNA expression levels of ITLN-1 in epicardial fat stromal cells
treated or not treated with aldosterone and MRA (B) Wound healing assay. Bar plots and mean ± SD
represents percentage of healing area of dedifferentiated epicardial and subcutaneous adipocytes (ad-
SVC) with or without aldosterone and MRA treatment. ANOVA t test showed statistical differences
among groups and Bonferroni post hoc test showed differences between control and MRA treatment
* p < 0.05.

4. Discussion

For the first time, our results show a local effect of MRA intake on epicardial fat from
patients with cardiovascular disease, specifically on fatty acid transporters and on the
anti-inflammatory epithelial marker, ITLN-1. Levels of the fatty acid transporter CD36
were higher in subcutaneous stromal cells than epicardial. This might explain their higher
adipogenicity. After subcutaneous or epicardial adipogenesis induction, we observed an
upregulation of both fatty acid transporters, CD36 and FABP4. The latter, that experienced
the highest increment, was related to higher levels of macrophages, endothelial, epithelial
and preadipocyte markers in epicardial stromal cells but not in subcutaneous. Thus, the
genesis-involved mechanisms of epicardial fat might differ from those of subcutaneous
tissue with a macrophage leadership [36,37]. Although, we did not observe differential
expression levels of macrophage markers between EAT and SAT biopsies. Higher levels of
fatty acid transporters were detected in subcutaneous fat tissue than epicardial. In contrast,



Cells 2022, 11, 1264 13 of 17

the epithelial marker ITLN-1 was higher in epicardial fat tissue as well as neutrophil
markers. This last result might indicate a higher inflammatory cell compound in EAT
as was described by other groups [31,38]. We demonstrated that ITLN-1 can be released
by epicardial stromal cells and upregulated by MRA intake. It might exert a protective
role since its low levels were associated with CAD [39]. Moreover, the MRA enhances its
secretion levels which could modulate the macrophage activity on the cardiac system [40].
MRA intake was also associated with a lower level of fatty acid transporters, FABP4 and
CD36, in epicardial fat. These results might suggest a lower adipocyte size, since both
molecules are increased after adipogenesis induction, or lipid accumulation by other non-
adipocyte cells in epicardial fat biopsies. Although FABP4 levels are also detected on
plasma and they are associated with fat mass in patients with HF, we did not observe
any statistical differences between patients with or without MRA treatment. These results
might lead the MRA effect into a modulation of inflammatory state on epicardial fat.
However, since most patients in the MRA group were also taking statins, which modulate
macrophage polarization and fatty acid accumulation [41,42], a synergic effect of both
drugs might improve the regulation of FABP4 and CD36 levels in epicardial fat. Moreover,
the MRA effects on the reduction in epicardial stromal cell proliferation and migration rate
might suggest a remodelling effect, as was described in cardiac tissue [43] or subcutaneous
fat [44]. Although, further mechanistic studies are needed. The epicardial fat volume is
associated with cardiovascular disease. Some authors have suggested that the dysfunction
of subcutaneous fat involves fatty acid deposition on ectopic fat [45]. This procedure
includes adipogenesis of stromal vascular cells. At the beginning, it is a protection of the
organ against excessive energy [46]. However, its enlargement contributes to metabolic
dysfunction. Our previous results have demonstrated that subcutaneous fat has a higher
ability to induce adipogenesis than epicardial stromal vascular cells [5]. The differential
transcripts between both fat pads have demonstrated a higher CD36 expression level
in subcutaneous than in epicardial stromal cells. Since this is a fatty acid transporter, it
might be the main cause of higher adipogenesis induction in subcutaneous cells than
epicardial. Because FABP4 was highly expressed after adipogenesis induction, it was
used as an adipocyte genesis marker. We performed associations between FABP4 levels
after adipogenesis and cell markers in stromal cells. Our results showed that CD36 and
Pref-1 were positively correlated with adipocyte genesis (measured by FABP4 levels) in
subcutaneous fat cells. Although CD36 was already described as a progenitor of white
adipose tissue [13], this is the first time that it was verified in patients with cardiovascular
disease. However, the highest epicardial adipogenesis, as was indicated by FABP4 levels,
was correlated with FABP4, CD36, CD68 and CD31 levels in epicardial stromal cells. The
lack of association between epicardial FABP4 levels, after adipogenesis induction, and
the preadipocyte marker Pref-1, might suggest a differential fat accumulation process
with respect to subcutaneous cells. Moreover, while IDMT is a well-known adipogenic
cocktail for subcutaneous stromal cells, other factors, i.e., atrial natriuretic peptide, might be
needed for the epicardial preadipocytes’ differentiation [47]. After adipogenesis induction,
there is an increase in Pref-1 and COL1A2 in epicardial cells. It might inhibit faster the
adipocytes’ genesis in epicardial cells than in subcutaneous, since Pref-1 is a gatekeeper
of adipogenesis [48] and explain its lower differentiation ability and higher fibrosis on
this fat tissue. After validating the CD36 and FABP4 levels in epicardial fat biopsies, we
observed that they were downregulated in patients who were taking MRA. Since CD36
is incremented after epicardial adipogenesis, as well as FABP4, it might indicate an MRA
effect on adipocyte number or lipid accumulation. This hypothesis is based on the described
effect of the antimineralocorticoid drospirenone on adipocyte genesis inhibition through
transcriptional control [49]. However, since blood cells express CD36 [50], MRA might also
modulate the presence of inflammatory cells in epicardial fat. The fact that high fat feeding
upregulates CD36, MRA might modulate it and mimic a fasting state [51]. In patients
with HF, the circulating FABP4 levels was a good indicator of body fat mass. However,
they were not modified in patients with MRA intake. In this sense, plasmatic FABP4
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levels were not demonstrated to be a good indicator of MRA effects on epicardial fat from
patients with cardiovascular disease. Although our population had no long-term follow-up,
several studies have tried to demonstrate the preventive MRA benefits on new-onset atrial
fibrillation [52] and progression [53]. Thus, the MRA effects on cell-type RNA transcript
composition of epicardial fat might be one of the mechanisms involved in this protection
since its association with atrial fibrillation risk is already known [26,54]. In fact, a recent
clinical trial was designed for studying the effect of MRA treatment on post-operative atrial
fibrillation of patients undergoing open-heart surgery [55]. Perhaps, the short period of
time with MRA will be not enough for detecting changes in epicardial fat cells’ composition
but it might inhibit the aldosterone produced by the epicardial adipocytes [56]. Further
studies will be necessary for confirming this hypothesis.

Limitations

This is a single-centre study. Primary culture cells from patients take a long period of
time. This is the main reason for the low number of included patients. This default did not
allow us to study the effect of multiple factors on gene expression levels. Subcutaneous fat
was not obtained from all included patients. A long-term follow-up was not performed in
the study population. Epicardial fat thickness was not quantified in patients undergoing
open-heart surgery or hospitalized patients for HF. The duration of MRA treatment before
surgery for most patients was not determined and varied from days to years.

5. Conclusions

A differential cell-type RNA transcript and adipogenesis function define the epicardial
and subcutaneous fat from patients with cardiovascular disease. While higher adiposity
is represented in subcutaneous fat, higher epithelial, fibroblast, and neutrophil, markers
are found in epicardial fat. MRA intake might modulate the epicardial adiposity and
increase the anti-inflammatory profile outstanding to the low FABP4 and ITLN-1 expression
levels, respectively.
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