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Abstract: The pregnane X receptor (PXR) regulates the metabolism of many xenobiotic and endobiotic
substances. In consequence, PXR decreases the efficacy of many small-molecule drugs and induces
drug-drug interactions. The prediction of PXR activators with theoretical approaches such as machine
learning (ML) proves challenging due to the ligand promiscuity of PXR, which is related to its large
and flexible binding pocket. In this work we demonstrate, by the example of random forest models
and support vector machines, that classifiers generated following classical training procedures often
fail to predict PXR activity for compounds that are dissimilar from those in the training set. We
present a novel regularization technique that penalizes the gap between a model’s training and
validation performance. On a challenging test set, this technique led to improvements in Matthew
correlation coefficients (MCCs) by up to 0.21. Using these regularized ML models, we selected
31 compounds that are structurally distinct from known PXR ligands for experimental validation.
Twelve of them were confirmed as active in the cellular PXR ligand-binding domain assembly assay
and more hits were identified during follow-up studies. Comprehensive analysis of key features of
PXR biology conducted for three representative hits confirmed their ability to activate the PXR.

Keywords: pregnane X receptor; activators; machine learning; regularization; virtual screening

1. Introduction

The pregnane X receptor (PXR, NR1I2) is a key regulator in the defense against
xenobiotic substances. The receptor transcriptionally regulates the expression of drug-
metabolizing enzymes and transporter proteins [1]. Target genes of PXR include cytochrome
P450 enzymes such as CYP3A4, as well as aldehyde dehydrogenases, multidrug resistance
efflux pumps, glutathione S-transferases, sulfotransferases, and transporters such as ATP
binding cassette efflux transporters [2,3]. Because of the mostly hydrophobic binding
pocket of PXR, a broad variety of substances bind to, and activate, the receptor. As well as
pregnanes, PXR is activated by bile acids [4], androstanes [5], cholesterol and its metabo-
lites [6], colupulone [7], and endocrine disruptors [8], as well as various pesticides [9–11].
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Moreover, PXR enables the metabolization of a large fraction of available prescription and
herbal drugs [1].

PXR offers hepatoprotection by preventing the toxic accumulation of potentially harm-
ful substances [12]. As a result, PXR decreases the severity of inflammatory bowel diseases
like ulcerative colitis and Crohn’s disease [13]. The receptor also displays neuroprotective
behavior by delaying the neurodegeneration in diseases such as Niemann-Pick type C1 [14].
However, PXR is also responsible for reducing the efficacy of drugs [15]: Drugs that are
cleared through CYP3A4 promote their own metabolism by activating PXR—a process
known as auto-induction [16]. More importantly, a drug can also induce the metabolism
of co-administered drugs, reducing their efficacy significantly [1]. Examples of PXR ac-
tivators include dexamethasone [17], paclitaxel [18], ciglitazone [19], troglitazone [19],
rifampicin [20], ritonavir [21], avasimibe [22], clotrimazole [21], and, most prominently,
hyperforin [23]. Hyperforin, which is the bioactive part of St. John’s wort and a potent
activator of PXR [23], reduces the efficacy of the HIV protease inhibitor indinavir [24] and
the anticancer therapeutic irinotecan [25].

In order to prevent drug–drug interactions it is important to understand which small-
molecules activate PXR. However, the experimental testing of compounds for PXR acti-
vation is time consuming and expensive. In silico methods represent an attractive option
to predict whether a given molecule is a PXR activator. The main challenge in the com-
putational prediction of PXR activation lies in the correct representation of the receptor’s
directed promiscuity, i.e., the property of binding a diverse but precise collection of sub-
stances [26].

A variety of different computational methods for the identification of PXR activators
have been introduced so far [27]. For example, pharmacophore models generated from
known ligands have been shown to be able to reflect the hydrophobic nature of the recep-
tor’s ligand-binding pocket (LBP) as well as the hydrogen bond acceptor feature present in
many activators [28–34]. Molecular docking has also been used for prediction of the binding
of small molecules to PXR [16,31,32,34–37]. However, there are multiple reports of poor
correlation between the docking score and biological activity [3,38]. Even the augmentation
of docking with machine learning (ML) was reported to not improve the classification
performance substantially [39]. QSAR methods including multiple-linear regression [40],
partial least squares regression [41–43], regression trees [44,45], and polynomial neural
networks [46] have been applied to predict the PXR activity of a substance. Higher-order
QSAR methods like CoMFA have also been explored [35,46] but they generally suffer from
similar problems to pharmacophore models because of the challenges involved in obtaining
biologically meaningful structural alignments.

ML models encompass the majority of recent approaches for the prediction of PXR ac-
tivation. Recursive partitioning [3,47,48], k-NN [40,47,49,50], Bayesian inference [37,51,52],
probabilistic neural networks [3,39,49], artificial neural networks [50], support vector ma-
chines (SVMs) [3,47,49,50], decision trees [44], and random forests (RFs) [3,47] have been
applied. On small data sets, SVMs and RFs proved to be effective [3,49]. When more
training data are available, naive Bayes is also applicable [47,51,52]. A typical problem of
ML models is their dependence on the training set. Especially for a complicated activity
landscape as observed in PXR, ML models are prone to overfitting on the training set. As a
result, such models typically pick structurally related compounds during virtual screening.

The goal of this work is the development of a machine learning approach that is able
to identify activators of the human PXR even when they are structurally distinct from
any of the PXR activators present in the training sets. To this end, we compiled a large
data set of experimentally confirmed activators and non-activators of human PXR from
public data sources on which we trained a number of ML models. A special feature of
the newly devised model development and validation process is a new scoring function
that promotes the generalization power of models over their performance in commonly
applied cross-validation tests. The result of this modeling strategy are models that are able
to predict PXR activation even for compounds that are structurally dissimilar from those
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represented in the training data, as we show in a large-scale virtual screening study of more
than 7 million compounds and subsequent biological testing of selected substances. The
computational approach can be employed, for example, in the optimization of screening
libraries, the (de-) prioritization of hits, and for compound optimization.

2. Materials and Methods
2.1. Data Sets

PubChem PXR data set: PubChem Bioassay AID 720659 (“qHTS assay for small
molecule activators of the human pregnane X receptor (PXR) signaling pathway”) was
downloaded from the PubChem BioAssay database [53,54] via the PUG REST interface.
Any entries lacking a compound ID (CID) or having the activity label “inconclusive” were
discarded. Subsequently, the SMILES representations of the remaining compounds were
retrieved via the PUG REST interface using the CIDs as queries.

ToxCast PXR data set. The ToxCast & Tox21 database (“InvitroDB”) summary files were
retrieved from the web site of the United States Environmental Protection Agency [55]. The
archive provides activation data for PXR in four different Attagene assays: ATG_PXRE_CIS_up,
ATG_PXRE_CIS_dn, ATG_PXR_TRANS_up, and ATG_PXR_TRANS_dn. The keywords
“CIS” and “TRANS” indicate the mode of activation whereas “up” and “dn” denote the
direction of assay measurement. Since PXR has low basal activity, we excluded the “dn”
assays. The remaining two assays, ATG_PXRE_CIS_up and ATG_PXR_TRANS_up, were
used to infer a binary activation label for each substance. For the purpose of this study, a
compound was defined to be an activator (non-activator) if it has a hitc value of one (zero)
in both assays. Compounds with disagreeing hitc values in both assays were considered
inconclusive and removed. Using the chemical summary file from the ToxCast archive,
compounds were linked to the registration number in the Chemical Abstract Service (CAS).
Based on the CAS registration number, the respective InChIs were obtained with the
NCI/CADD Chemical Identifier Resolver [56].

Literature PXR data set: Matter et al. [44] have compiled a set of 434 small molecules
with binary PXR activation data from the literature. These data were obtained directly from
the authors in SD file format.

Reference data sets of drugs, cosmetics, and pesticides. The complete database of
approved, experimental, and withdrawn drugs was obtained from the DrugBank web
site [57,58]. The COSMOS DB cosmetics database (COSMOSDB) and the pesticide chemical
search database (EPAPCS) were retrieved from the CompTox dashboard [59–61].

Compound library for virtual screening: The subset of in-stock compounds of the
MolPort compound library was obtained from the vendor’s website [62].

2.2. Data Preprocessing

Unless stated otherwise, all data sets were processed separately according to the
following protocol: After removal of the minor components (e.g., salts), the structures were
standardized with the methods fragment_parent and tautomer_parent of the MolVS Python
module [63]. Molecules with molecular weight below 200 Da and molecules containing an
element other than H, B, C, N, O, Si, P, S, Se, F, Cl, Br, or I were discarded (these filtering
steps were not applied to the compounds from the reference data sets). Duplicate molecules
were identified by generating and comparing InChIs with RDKit [64]. For a set of molecules
with identical InChIs, one instance was kept if the activity values were identical; otherwise,
all instances were removed. Table 1 shows the number of compounds included in the
raw and the preprocessed data sets, and the number of compounds removed during the
individual steps.



Cells 2022, 11, 1253 4 of 26

Table 1. Filter criteria and number of compounds removed during each step of the data preprocessing.

PubChem PXR
Data Set

ToxCast PXR
Data Set

Literature PXR
Data Set

Initial data set 2864 3626 434

Missing identifier (CID/CAS
number) or SMILES 14 308 0

Inconclusive activity 488 776 0

MW ≤ 200 Da 1219 1339 16

Presence of inorganic elements 23 2 0

Contradicting class labels 24 5 0

Duplicates 155 17 9

Final PXR data set 941
(A: 202, N: 739) 1

1179
(A: 642, N: 537)

409
(A: 250, N: 159)

1 Numbers in parenthesis indicate the number of activators (A) and non-activators (N) in the final PXR data set.

2.3. Feature Calculation

For each molecule of the PubChem, ToxCast, and literature PXR data set, 17 physico-
chemical descriptors were computed with RDKit: number of heavy atoms, oxygen atoms,
nitrogen atoms, sulfur atoms, hydrogen bond acceptors, hydrogen bond donors, rings,
rotatable bonds, halogens, sp3 hybridized carbons, and aromatic atoms, topological polar
surface area (TPSA), molecular weight, refractivity, logP, estimated solubility, and fraction
of rotatable bonds.

2.4. Experimental Approaches
2.4.1. Chemicals and Reagents

Rifampin was provided by Merck Chemicals (Darmstadt, Germany); DMSO and 1α,25-
dihydroxyvitamin D3 were purchased from Sigma-Aldrich (Munich, Germany); CITCO and
SPA70 were obtained from ENZO Life Sciences (Lörrach, Germany) and Axon Medchem
(Groningen, The Netherlands), respectively. Minimum essential medium (MEM), William’s
E medium and Trypsin-EDTA solution were purchased from Thermo Fisher Scientific
(Waltham, MA, USA). L-glutamine, non-essential amino acids, sodium pyruvate and
penicillin-streptomycin mixture were provided by Biozym (Hessisch Oldendorf, Germany).
Fetal bovine serum (FBS) was obtained from Biowest (Nuaillé, France).

2.4.2. Compound Purity Checks

The three compounds selected for comprehensive biological characterization were
subjected to purity checks using a UHPLC-DAD-CAD-MS system -UHPLC (ultra-high pres-
sure liquid chromatography) coupled to three detectors: (1) UV-DAD (diode array detector)
(2) CAD (corona aerosol detector) (3) MS (mass spectrometer). The Ultimate 3000 UHPLC-
DAD–CAD system (Thermo Fisher Scientific, San Jose, CA, USA) was equipped with a
reversed-phase C18 column (Kinetex, Torrance, California, CA, USA; 2.1 mm × 15 cm,
2.6 µm, C18 100 Å). Mobile phase A (H2O/FA, 100:0.01) and mobile phase B (ACN) were
degassed prior to their usage. A 20 min binary gradient with flow rate set to 350 µL/min
was applied as follows: 0–1 min, 5% mobile phase B; 2–12 min, 5–95% mobile phase B;
13–17 min, 95% mobile phase B; 18–20 min re-equilibration with 5% mobile phase B. Five
microliters of each compound (DMSO stock solutions diluted 1:100 in MeOH) were in-
jected followed by a blank injection to ensure proper column washing and equilibration.
DAD and CAD detection provided the chromatograms used to assess the purity of the
compounds. Mass spectrometric detection, to confirm the identity of the compounds, was
performed with an LTQ-XL linear ion trap mass spectrometer (Thermo Fisher Scientific)
using the HESI source (300 ◦C heater temperature, 40/10/1 arb. units for the sheath, aux
and sweep gasses respectively and 3.5 Kv spray voltage at 275 ◦C capillary temperature) to
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achieve negative/positive ion mode ionization. MS scans were performed with an m/z
range from 150 to 2000. MS/MS scans of the 3 most abundant ions were achieved through
collision-induced dissociation (CID) fragmentation at 30% normalized collision energy.

2.4.3. Cell Culture

HepG2 (HB-8065, ATCC, Manassas, VA, USA) and H-P cells (HepG2 cell clone stably
overexpressing human PXR) [65] were cultivated in MEM, supplemented with 10% FBS,
2 mM L-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin. In drug treatments,
dextran-coated charcoal-stripped FBS replaced regular FBS.

HepaRG cells (Biopredic, Rennes, France) were cultivated in phenol red-free William’s
E medium, supplemented with 10% FBS, 2 mM glutamine, 100 U/mL penicillin, 100 µg/mL
streptomycin, 5 µg/mL insulin, and 50 µM hydrocortisone. For chemical treatment, per-
formed in technical triplicates, 1.0 × 105 cells were seeded per well of a 12-well plate.
At confluence, the growth medium was supplemented with 2% DMSO and cells were
cultivated for a further 2 weeks to differentiate them into hepatocytes [66]. Then, cells were
adapted for 48 h to induction medium (growth medium with only 2% FBS and 0.2% DMSO).
Chemical treatment was started for another 48 h, with daily medium change. Experiments
were conducted 3 times independently.

Cells were routinely tested by PCR for mycoplasma contamination using the VenorGeM
Classic kit (Minerva Biolabs, Berlin, Germany).

2.4.4. Cell Viability

HepG2 or H-P cells were seeded into white flat-bottom CELLSTAR® 96-well plates
with µClear® bottom (Greiner Bio-One, Frickenhausen, Germany), with 4.0 × 104 cells per
well in a volume of 100 µL. The next day, cells were treated with compounds, ranging from
1 to 50 µM, or vehicle only (0.1–0.17% DMSO). Each treatment was performed in technical
triplicates. After 24 h of treatment, cell viability was determined using the CellTiter-
Glo® luminescent cell viability assay (Promega, Madison, WI, USA), as specified by the
manufacturer. Luminescence was measured with the 2300 EnSpire multimode plate reader
(Perkin Elmer, Rodgau, Germany). Experiments were conducted 3 times independently.

2.4.5. Plasmid Constructs

Expression plasmids encoding human nuclear receptors CAR1 and CAR3 [67] and
RXRα [68] and VDR [69] have all been described previously.

Expression plasmids encoding fusion proteins of GAL4-DNA binding domain (DBD)
and the receptor interaction domains (RID) of nuclear receptor co-activator (NCOA)
1 (residues 583-783) [70], nuclear receptor co-repressor (NCOR) 2 (residues 1109-1330),
or PXR ligand binding domain (LBD) helix 1 part (residues 132-188), as well as expression
plasmids encoding fusion proteins of the VP16 activation domain (AD) and the whole
(residues 108-434) or part (189-434) of the PXR-LBD [69] have been described earlier.

The following firefly luciferase reporter gene plasmids were used: CYP3A4 enhancer/
promoter reporter gene plasmid pGL4-CYP3A4(7830∆7208-364) [71]; CYP2B6 enhancer/promoter
reporter gene plasmid pB-1.6k/PB/XREM [72]; pGL3(DR3)3Tk, with a trimer of CYP3A23
direct repeat (DR) 3 motif [73]; GAL4-dependent pGL3-G5 [70].

For normalization of transfections, Renilla luciferase expression plasmid pGL4.75[hRLuc/
CMV] (Promega) was used.

2.4.6. Transient Transfections, Promoter Reporter Gene, and Mammalian
Two-Hybrid Assays

Transient transfections of HepG2 and H-P cells were set up according to the batch
protocol for jetPEI® (Polyplus, Illkirch, France), as described previously [74]. The following
plasmid amounts (per well of 96-well plate) were used:

For mammalian two-hybrid PXR LBD assembly assay, 0.24 µg pGL3-G5, 0.03 µg each
of expression plasmids encoding GAL4-DBD/PXR(132-188) and VP16-AD/PXR(189-434)
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fusion proteins; for mammalian two-hybrid co-factor interaction assays, 0.225 µg or 0.24 µg
pGL3-G5, 0.03 µg expression plasmid encoding VP16-AD/PXR-LBD(108-434) fusion and
0.03 µg expression plasmids encoding GAL4 DBD/NCOR2-RID or GAL4 DBD/NCOA1-
RID fusions. Additionally, 0.015 µg of RXRα expression plasmid was added in NCOR2
co-repressor interaction; in CYP3A4 reporter gene assay conducted in H-P cells: 0.3 µg
pGL4-CYP3A4(-7830∆7208-364); in nuclear receptor selectivity assays: 0.26 µg/0.23 µg pB-
1.6k/PB/XREM (as reporter for CAR1/CAR3) or pGL3(DR3)3Tk (as reporter for VDR) and
0.03 µg either CAR1, CAR3, or VDR expression plasmids. In addition, 0.03 µg RXRα expres-
sion plasmid was added to CAR3 transfections. For all assays, 0.01 µg of Renilla luciferase
expression plasmid pGL4.75[hRLuc/CMV] was added to allow for normalization.

24 h after transfection, cells were treated with chemicals. After a further 24 h, cells were
lysed, and Firefly and Renilla luciferase assays were performed as described previously [74].
All transfections were done independently for 3–5 times, each in technical triplicates, and
with at least two different preparations of plasmids.

2.4.7. RNA Preparation and Reverse Transcription Quantitative Real-Time PCR Analysis

The NucleoSpin RNA kit (Machery-Nagel, Düren, Germany) was used to prepare
total RNA from chemically treated differentiated HepaRG cells. Integrity of the isolated
RNA was analyzed by formaldehyde-agarose gel electrophoresis. cDNA was synthesized
as described previously [75].

Relative quantification analyses (∆∆Ct) were conducted in technical triplicates with
TaqMan RT-PCR using the BioMark HD system and Flex Six Gene Expression Integrated Flu-
idic Circuits (Fluidigm, South San Francisco, CA, USA), as described previously [75]. Taq-
Man gene expression assays were either the commercial predesigned assays Hs00184500_m1
(ABCB1) and Hs00604506_m1 (CYP3A4) (Thermo Fischer Scientific) or, in the case of
CYP2B6, have been described earlier [69]. Data were analyzed as described before [75] and
gene expression levels were normalized to corresponding 18S rRNA levels, as determined
using the 18S rRNA assay previously described [76].

3. Results and Discussion
3.1. Analysis of the Data Available for Model Development

For the purpose of model development and testing, sets of compounds with measured
PXR activation data were retrieved from the PubChem Bioassay database, the ToxCast
database, and the literature (Table 1; see Methods for details). In order to understand
how well the individual PXR data sets represent the chemical space relevant to biomedical
research, we compared them with established reference data sets of approved, withdrawn,
and experimental drugs (DrugBank) and a collection of cosmetics and pesticides (CompTox
dashboard). As shown in Figure 1, at a similarity threshold of 0.7 (calculated as the
Tanimoto coefficient of the corresponding Morgan fingerprints with a radius of 2 and a
length of 2048 bits), which indicates that two molecules are in a close structural relationship,
the PubChem PXR data set covers 4% of the approved drugs data set, 12% of the cosmetics
data set, and 20% of the pesticides data set. The ToxCast PXR data set shows similar
coverage to the PubChem PXR data set, whereas coverage is lower for the literature PXR
data set (which is expected, given its smaller size).
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Figure 1. Fraction of molecules (y-axis; (A) drugs, (B) cosmetics, (C) pesticides) in each reference data
set covered by the PubChem, ToxCast, and Literature PXR data sets (indicated by color) at different
similarity thresholds (x-axis).

In terms of molecular scaffolds (described as Murcko frameworks), the PXR data sets
cover in the range of 3 to 4% of the scaffolds observed in the approved drug set, 5 to 22%
of the scaffolds observed in cosmetics, and 7 to 25% of scaffolds observed in pesticides
(Table 2). It is noteworthy that, despite its smaller size, the literature PXR data set covers
approximately the same portion of the scaffolds observed in drugs as the other data sets.
However, the PubChem and ToxCast PXR data sets have coverage that is more than three
times higher that of the scaffolds observed in cosmetics and pesticides than the literature
PXR data set. With Murcko scaffolds representing, on average, just ~1.6 molecules, the
literature PXR data set is clearly more diverse than the PubChem and ToxCast data sets, in
which Murcko scaffolds represent, on average, ~2.5 molecules each.

Table 2. Overview of the Composition of PXR Data Sets Utilized in this Work.

PubChem PXR
Data Set

ToxCast PXR Data
Set

Literature PXR
Data Set

No. compounds 941 1179 409

No. scaffolds 387 470 259

No. drugs scaffolds 187 (4%) 1 224 (4%) 145 (3%)

No. cosmetics scaffolds 108 (15%) 154 (22%) 36 (5%)

No. pesticides scaffolds 170 (25%) 171 (25%) 51 (7%)
1 Numbers in parenthesis indicate the percentages of scaffolds with respect to the reference set.

In order to obtain a better understanding of the molecular diversity of the individual
PXR data sets we performed a dimensionality reduction and projection onto a 2D sur-
face with Uniform Manifold Approximation and Projection (UMAP, n_epochs = 50,000,
n_neighbors = 40, min_dist = 0.3, metric = “jaccard”) [77]. UMAP largely preserves local
structure, meaning, in the specific context, that similar molecules are placed in proximity to
each other on the 2D surface. The distribution of the points shown in Figure 2 indicates
that the PubChem PXR data set and the ToxCast PXR data set are very similar on a global
scale. In contrast, the literature PXR data set is characterized by multiple analogue series
(visible as clusters of data points) that do not have structurally related compounds in the
ToxCast and PubChem PXR data sets.
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Figure 2. 2D embedding of the molecules contained in the PubChem, ToxCast, and literature PXR
data sets. For almost every molecule (99%), all of its neighbors that have a Tanimoto similarity (based
on Morgan fingerprints with a radius of 2 and a length of 2048 bits) greater than 0.7 are within a
distance of 0.4 in the embedding.

Based on these observations, we selected the PubChem PXR data set as the training
set for machine learning. Not only does this data set cover the chemical space spanned
by all data sets but it also is the largest consistent PXR data set available in the public
domain (note that the ToxCast database contains more PXR bioactivity data points, but
they originate from two different assays). Henceforth, we refer to the PubChem PXR data
set as the training set for ML. The ToxCast and the literature PXR data sets served as test
sets. From these test sets we removed any compounds present in the training set (based on
InChI representations). This reduced the ToxCast PXR data set by 393 compounds down to
768 compounds and the literature PXR data set by 39 compounds down to 370.

3.2. Model Development and Internal Validation

A total of six binary models for the prediction of PXR activators and non-activators
were optimized and trained on the PubChem PXR data set. These models result from the
combination of two ML algorithms (RF, SVMs) with three sets of molecular descriptors
(physicochemical descriptors (PCs), fingerprints (FPs), and the combination of both). The
hyperparameters of the individual models (see Table S1) were optimized during a grid
search within a 5-fold cross-validation framework maximizing the average Matthews
correlation coefficient (MCC) on all validation folds, i.e.,

validation per f ormance =
1
k ∑ k

i=i MCC(i)
val , (1)
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where k = 5 is the number of folds in the cross-validation, and MCC(i)
val is the model’s MCC

on the i-th validation fold.
During cross-validation we observed a high discrepancy between training and vali-

dation performance for all models. Figure 3 shows that each of the classifiers performed
worse on the validation fold compared to the training folds for each cross-validation split.
This is an indication that the models are likely overfitting on the training examples. Since
the training and validation examples originate from the same data set, cross-validation can
be seen as a moderately challenging testing scenario. The performance of these models
will decrease even further if they are tested on molecules that differ substantially from the
compounds in the PubChem PXR data set.

Figure 3. The MCC on the training and validation set of each ML model (denoted by the sub chart
titles) and cross-validation split (indicated by color).

Our aim was to develop models that perform well also on unseen data and hence are
able to identify PXR activators that are structurally distinct to those represented by the
training data. In order to identify the best model, we devised a scoring function that takes
both CV performance and the generalization capabilities of a model into account:

gap penalized per f ormance =
1
k ∑ k

i=i MCC(i)
val −

1
k ∑ k

i=i

∣∣∣MCC(i)
train − MCC(i)

val

∣∣∣, (2)

where MCC(i)
train is the model’s MCC on the i-th training fold. Apart from the average

validation score (expressed as MCC(i)
val averaged over the CV-folds), the function uses the

average train-validation gap (expressed as the difference between MCC(i)
train and the MCC

obtained on the validation fold, MCC(i)
val) as a penalty term. In this setup, a model with a

large discrepancy between training and validation score can be outperformed by a weaker
model with an agreement in training and validation performance.

The ToxCast and literature PXR data sets serve as two different test sets, each demon-
strating a distinct setup. As described above, the ToxCast and PubChem PXR data sets
show a highly similar distribution of compounds and scaffolds. This indicates that these
two data sets fulfill the iid condition that is sufficient for an ML model to successfully learn
a structure-activity-relationship on the training set that can be transferred to the test set.
However, the literature PXR data set differs from the PubChem PXR data set to a degree
that both data sets can be assumed to originate from different generating distributions.

For each of the six types of classifiers, we selected the model that maximizes the new
scoring function in the hyperparameter search (see optimal parameters in Tables S2 and S3).
As the new scoring scheme has analogies with regularization techniques, the models
obtained by optimizing the new score are called regularized models.
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Together with the six models from the previous hyperparameter optimization, we
tested all twelve models on the ToxCast and literature PXR data sets. The cross-validation
as well as results obtained on the test sets are reported in Table 3 for all models.

Table 3. Performance of Different ML Models and Feature Sets. 1.

Model Cross-Validation on the
PubChem PXR Data Set

Testing on the
ToxCast PXR Data Set Literature PXR Data Set

ML Algo-
rithm

Feature
Set(s)

Gap-
Penalization 2 MCC 3 AUC 3 MCC AUC MCC AUC

RF

PC
no 0.43 (±0.04) 0.83 (±0.04) 0.41 0.82 0.10 0.59

yes 0.43 (±0.05) 0.80 (±0.04) 0.46 0.81 0.21 0.57

FP
no 0.45 (±0.07) 0.82 (±0.03) 0.25 0.75 0.09 0.55

yes 0.31 (±0.04) 0.76 (±0.01) 0.28 0.72 0.02 0.55

PC + FP
no 0.48 (±0.06) 0.83 (±0.03) 0.35 0.81 0.03 0.56

yes 0.42 (±0.06) 0.81 (±0.03) 0.47 0.82 0.24 0.59

SVM

PC
no 0.41 (±0.06) 0.80 (±0.03) 0.40 0.77 0.14 0.56

yes 0.41 (±0.06) 0.80 (±0.02) 0.44 0.81 0.13 0.56

FP
no 0.46 (±0.07) 0.82 (±0.03) 0.31 0.77 0.00 0.54

yes 0.32 (±0.06) 0.77 (±0.03) 0.34 0.74 0.06 0.52

PC + FP
no 0.48 (±0.10) 0.86 (±0.03) 0.44 0.82 0.00 0.55

yes 0.42 (±0.03) 0.81 (±0.02) 0.45 0.82 0.15 0.55
1 The model performing best on unseen data (RF classifier trained on physicochemical features and fingerprints,
with gap-penalization) is indicated in bold. 2 Indicates whether the optimization score penalized the train-test
performance gap. 3 Numbers in parentheses indicate standard deviations. The bold formatted text marks the
overall best model.

The models were optimized on the MCC score. MCCs reached from 0.41 to 0.48 in
the cross-validation scenario. Including the train-validation gap in the optimization score
resulted in models achieving an MCC ranging from 0.31 to 0.43, never exceeding the cross-
validation performance of their counterpart models that were optimized on the pure MCC
score. On the contrary, four out of six models recorded a drop in MCC and AUC value of at
least 0.06 and 0.02 when switching to the score including the penalization term. However,
the test MCC scores indicate that the models obtained from the new scoring function have
an advantage on unseen data. The RF classifier built on all available features benefits most
from the new optimization score, with an increase of 0.21 and 0.12 in MCC on the literature
and ToxCast PXR data sets, respectively. On the other hand, the AUC values increase in
only two of the six model templates when gap penalization is included.

The regularized models differ fundamentally in their hyperparameters (see Table S2).
For the RF models, the min samples split and the min samples leaf parameters were at least a
factor of 4 times higher for the models selected based on the score including the gap penalty
as compared to those selected based on the MCC. The min samples split and min samples
leaf parameters affect the height of the resulting decision trees, and, in consequence, the
number of training examples landing in the leaves of the decision trees and the agreement
of the training labels. Using the RF model template with physicochemical and fingerprint
features as an example, Figure 4 shows that its decision trees are deep (with a median
height of 28) and have few samples per leaf (with a median of 31 samples per leaf) when
optimized without gap penalization. Including the training-validation gap in the scoring
function results in the selection of models with more shallow trees (with a median height
of 4), containing more samples per leaf (median of 172). These models are more robust and
capable of learning general rules of PXR activation instead of relying only on the nearest
neighbors of a compound.
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Figure 4. Comparison of an RF model optimized with (orange) or without (blue) a gap penalization
term. (A) Number of decision trees (y-axis) having a certain height (x-axis); (B) Probability of the
selection of a leaf in the RF (y-axis) containing a specific number of training samples (x-axis).

Likewise, in the case of SVMs, the models selected based on the score including the
gap penalty have a C value that is at least a factor of 10 lower than that of the SVMs selected
based on the MCC. The parameter C controls the regularization of the model. By definition,
an SVM penalizes observations that are incorrectly classified by a factor of C. A large
penalty term forces the model to find a perfect separation between PXR activators and
non-activators. Consequently, decreasing C leads to models that allow errors on the training
set in order to avoid overfitting. Overall, the observations for the RF and SVM models
indicate that the addition of the train-validation gap enforces the selection of models that
are less complex.

The different model structures have an impact on the classification process. To demon-
strate this, we evaluated the classifiers on different portions of the test data that vary in their
similarity to the training set. For each molecule in the test set, we calculated the maximum
similarity with respect to all molecules in the training set. Then, for each threshold t from
0.1 to 1.0 (in steps of 0.1) we created a subset St of the test set that includes all molecules with
a maximum similarity of at most t. Using the RF model based on molecular fingerprints
as an example, we computed the MCC score on all subsets of each test set as shown in
Figure 5. Although both the baseline and regularized model have similar MCC on the full
test sets at a similarity threshold of 1, the regularized model gains most of its performance
on non-similar molecules while the baseline model is best at predicting similar molecules.

3.3. Analysis of Feature Importance

We investigated the impact of the different feature sets and individual features on
model performance. As shown in Table 3, models trained on the combined set of physico-
chemical descriptors and molecular fingerprints do not perform substantially better than
those trained on physicochemical descriptors only. The benefit in terms of MCC values
did not exceed 0.04. This indicates that the 17 interpretable physicochemical features (such
as molecular weight and TPSA; see Methods) already suffice for classification and adding
the 8192 fingerprint features does not add much value. In order to provide a quantitative
assessment, we computed the feature importances of both RF models that were trained on
physicochemical and fingerprint features. For the model optimized with gap penalty, only
84 of the 8209 features have a positive feature importance value (Table S4), indicating that
these are the only features the model uses for classification. All 17 physicochemical features
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are present in this list, leaving room for only 67 relevant fingerprint features (Figure 6). The
three highest-ranked physicochemical features are esol, molecular refractivity, and logP
with feature importance values greater than 0.1 (see Table S4). In contrast, the most relevant
fingerprint features reach a feature importance value of at most 0.018.

Figure 5. Performance of the regularized model (orange) and the baseline model (blue) as a function
of the maximum similarity of the test molecules to the compounds in the training set, for (A) the
ToxCast PXR data set and (B) the literature PXR data set. The percentage of compounds of the full
test data set (computed as subset size/test set size) is visualized with gray bars.

Figure 6. Examples of fingerprint features used by the regularized RF model. For each fingerprint bit,
blue shades indicate the central atom, and yellow shades indicate aromatic environment atoms. The
asterisk (*) denotes adjacent aliphatic or aromatic atoms. Feature importance values are noted below
each substructure.

3.4. Prospective Screening for PXR Activators

The in-stock collection of the MolPort database, containing 7,233,399 compounds, was
screened for new potential PXR activators with the model that showed the best performance
on unseen data (i.e., RF model trained on physicochemical descriptors and fingerprint
optimized with gap penalization). We henceforth refer to this model as the guiding model.
All five other models optimized with gap penalization were used to create a consortium of
models supporting decision making.
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The virtual screening resulted in a rank-ordered list of compounds. From the top-
ranked positions of this list we selected a total of 31 compounds for purchasing and
experimental validation (Table 4), taking the following aspects into account:

1. High confidence in predictions: Any selected compound must be predicted as a PXR
activator by all of the three RF and three SVM models.

2. Novelty: The selected compounds must be structurally distinct to any known PXR
ligands. This means that, at the time of selection, chemical structure similarity searches
with CAS Scifinder did not result in the retrieval of any known, structurally related
PXR ligands. More specifically, a minimum similarity threshold of 70 was used for
the searches in CAS Scifinder, meaning that the platform would report literature even
for rather distantly related PXR agonists.

3. Purchasability: The selected compounds must be available from MolPort in sufficient
quantities (5 mg) and at moderate costs.

Table 4. Overview of Compounds Selected by Virtual Screening.

ID Hit Compounds Nearest Neighbor in
Training Set

Similarity of Hit
Compound to

Nearest Neighbor

Cluster
ID

Measured
Activity 1 S.D. 2

1
MolPort-001-946-370 PubChem

0.57 A 0.15 1.09

2
MolPort-009-220-213 ToxCast

0.52 A 1.41 1.59

3
MolPort-003-820-268 PubChem

0.47 A 9.41 4.72

4
MolPort-001-823-879 ToxCast

0.51 A 1.59 1.66

5
MolPort-001-529-219 PubChem

0.48 A 1.10 0.02

6
MolPort-001-545-599 PubChem

0.45 A 2.78 0.80

7
MolPort-000-993-714 PubChem

0.54 A 8.65 7.57

8
MolPort-000-993-856 PubChem

0.59 A 4.25 1.97

9

MolPort-001-838-155 PubChem
0.71 A 32.77 13.01

10

MolPort-002-238-843 PubChem

0.52 A 5.88 0.38
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Table 4. Cont.

ID Hit Compounds Nearest Neighbor in
Training Set

Similarity of Hit
Compound to

Nearest Neighbor

Cluster
ID

Measured
Activity 1 S.D. 2

11

MolPort-000-279-714 ToxCast

0.47 A 33.00 19.54

12
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Table 4. Cont.

ID Hit Compounds Nearest Neighbor in
Training Set

Similarity of Hit
Compound to

Nearest Neighbor

Cluster
ID

Measured
Activity 1 S.D. 2

21

MolPort-000-196-136
ToxCast

0.34 B 7.21 3.28

22

MolPort-000-431-925 ToxCast

0.26 singleton 91.00 36.91

23

MolPort-000-690-666 PubChem

0.30 singleton 11.08 5.40

24

MolPort-005-280-909
ToxCast

0.58 singleton 1.34 0.71

25

MolPort-006-630-224
PubChem

0.36 singleton 136.87 28.01

26

MolPort-001-619-443 ToxCast

0.46 singleton 20.11 9.51

27

MolPort-002-547-842 PubChem

0.39 singleton 10.14 1.55

28

MolPort-002-656-531
PubChem

0.31 singleton 0.34 0.63

29

MolPort-001-991-071 PubChem

0.47 singleton 4.49 1.11
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Table 4. Cont.

ID Hit Compounds Nearest Neighbor in
Training Set

Similarity of Hit
Compound to

Nearest Neighbor

Cluster
ID

Measured
Activity 1 S.D. 2

30

MolPort-004-004-399
PubChem

0.29 singleton 0.02 1.81

31

MolPort-007-570-291 ToxCast

0.41 singleton 15.32 14.08

1 HepG2 cells were co-transfected with expression plasmids encoding GAL4-DBD/PXR-LBD (132-188) and VP16-
AD/PXR-LBD (189–434) fusion proteins and GAL4-dependent firefly luciferase reporter gene plasmid pGL3-G5.
Transfected cells were treated with 0.1% DMSO, 10 µM rifampicin or 10 µM of respective test compounds (1 to 31)
for 24 h. Data are shown as means ± S.D. (n = 3) of % activation. Activity obtained by 10 µM rifampicin was set
as 100%. 2 Standard deviation of the measurements.

Among the 31 selected compounds are a cluster of 11 diphenylamines (“cluster
A”) and a cluster of 10 chrysanthemic acid esters (“cluster B”). Five of the chrysan-
themic acid esters are characterized by a 4-{[(5Z)-4-oxo-2-sulfanylidene-1,3-thiazolidin-5-
ylidene]methyl}benzyl substituent.

Experimental Validation

The selected compounds were tested for their ability to bind to PXR using the cellular
mammalian two-hybrid PXR ligand binding domain (LBD) assembly assay (Table 4), which
can be regarded as a cellular equivalent of biochemical PXR ligand binding assays [71].

Two of the eleven compounds of the diphenylamine cluster (9 and 11) showed moder-
ate activity in the PXR-LBD assembly assay, with 33% activation by both compounds. The
other compounds of this cluster were inactive with activity of less than 10%). Compounds
9 and 11 are characterized by more bulky, hydrophobic alkyl or aryl substituents in ortho
position of one of the benzene moieties.

Within the cluster of chrysanthemic acid esters, four compounds showed activity in
the PXR-LBD assembly assay: 13 (28%) and 15 (26.5%), both characterized by nitrogen-rich,
five-membered heteroaromatic rings, and 18 (40%) and 17 (45%), both characterized by a
substituted 4-{[(5Z)-4-oxo-2-sulfanylidene-1,3-thiazolidin-5-ylidene]methyl}benzyl moiety.
Thiazolidin-4-one-derivatives have been previously reported as potent agonists of the
constitutive androstane receptor (CAR) [78].

Among the singleton (virtual) hits, 22 and 25 were identified as most promising in the
PXR-LBD assembly assay, with activities of 137% and 91%, respectively.

Overall, twelve of the selected compounds showed at least weak activity (>10%
activation in comparison to rifampicin). Compound 22 almost reached the activity level of
rifampicin and 25 even exceeded the activity induced by rifampicin.

3.5. Hit Follow-Up and SAR Analysis

In order to further investigate the influence of molecular structure on compound
activity in the PXR-LBD assembly assay, we purchased analogs of the most interesting
compounds, 17, 22 and 25.

Among the compounds structurally related to 25, the initial hit (25) and 34 exhibited
the highest activities in the PXR-LBD assembly assay (Table 5). From the SAR analysis,
we learn that the -CF3 moiety at R1 is likely beneficial but certainly not essential for
activity. Subtle changes of the substituent in R3 can have profound effects on the bioactivity
of the compound. For example, the replacement of the N,N-ethyl-2-methylallyl moiety
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in R3 (25) by a 4-phenyl-3,6-dihydropyridine moiety (37) led to the abolishment of the
biological activity.

Table 5. Compounds tested in follow-up experiments related to 25.

ID R1 R2 R3 Measured
Activity 1 S.D. 2

32
MolPort-006-630-016 CF3 H 13.19 4.02

33
MolPort-006-630-300 CF3 H 37.32 5.57

34
MolPort-006-629-818 CF3 H 100.91 15.25

35
MolPort-006-630-013 CF3 H 56.85 7.23

36
MolPort-006-629-816 CF3 H 12.59 4.53

37
MolPort-006-629-973 CF3 H 4.79 1.33

38
MolPort-006-630-273 H OCH2CH3 14.11 2.52

39
MolPort-006-630-110 H F 80.37 25.75

40
MolPort-006-630-237 H 6.43 1.57

1 % activation of rifampicin activity, achieved by 10 µM of respective test compounds (32 to 40), was determined
by PXR-LBD assembly assay in transfected HepG2 cells, as described in the legend of Table 4. 2 Standard deviation
of the measurements.
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In contrast to the follow-up on 25, in the case of 22, the testing of analogs (all
diphenylthiazolimines) resulted in the identification of three compounds (42, 43, 44) that
were more potent than the initial hit (Table 6). From the SAR analysis, we can learn that
the moiety in R3 is decisive for bioactivity; a small, hydrophobic moiety is preferred at
this location.

Table 6. Compounds tested in follow-up experiments related to 22.

ID R1 R2 R3 R4 R5 Measured
Activity 1 S.D. 2

41
MolPort-003-179-500 H H H COH H 6.27 0.87

42
MolPort-000-431-927 H H Cl Me Cl 115.84 17.76

43
MolPort-000-431-934 H H Me Me Me 71.67 15.93

44 *
MolPort-020-176-525 Me Me H Me H 215.49 31.07

45
MolPort-004-827-215 Me Me H 4-BrC6H4 H 9.25 4.38

1 % activation of rifampicin activity, achieved by 10 µM of respective test compounds (41 to 45), was determined
by PXR-LBD assembly assay in transfected HepG2 cells, as described in the legend of Table 4. 2 Standard deviation
of the measurements. * Note that during subsequent MS analyses 44, the most promising compound related to 22,
did not meet the required purity threshold of ≥90%.

The follow-up on the benzylidenethiazolidinone 17 also resulted in more potent hits,
in particular 53 and 57 (Table 7). Neither 53 nor 57 carry the chrysanthemic ester moiety
that is prominent among the initial hits. The bioactivity data indicate that R3 and R4 have a
decisive impact on bioactivity (cp. 53 and 55).

3.6. Characterization of Prototypical Compounds

Nuclear receptor LBD assembly assays do not discriminate between agonists and
antagonists, which both result in LBD assembly [79]. In order to differentiate these two
types of ligands we performed follow-up analyses with one prototypical, strong PXR-
interacting compound of each analog series. For the follow-up study, we chose 25, 42
and 53. Compound 25 is the strongest tested effector of its kind. Compound 42 is the
second-strongest effector of its class (we needed to discard the strongest effector of its class,
44, as we found, during mass spectrometry analysis of the substance, that it did not meet
the purity threshold of a minimum of 90%; mass spectrometry data for 25, 42 and 53 is
provided in Figure S1). Compound 53 is the second strongest effector of its class (also in
this case, the strongest effector of its class, 57, needed to be discarded due to purity issues).
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Table 7. Compounds tested in follow-up experiments related to 17.

ID R1 R2 R3 R4 Configuration Measured
Activity 1 S.D. 2

46
MolPort-002-173-405 S H (CH2)2OCH3 E 12.45 5.06

47
MolPort-003-881-006 S H Z 21.96 2.87

48
MolPort-003-881-001 S H Z 19.72 4.24

49
MolPort-000-419-900 S H Z 8.54 2.04

50
MolPort-003-880-748 S OCH3 Z 6.66 1.30

51
MolPort-003-881-514 NH OCH3 H Z 4.10 1.63

52
MolPort-044-415-081 S OCH3 E/Z 15.73 4.05

53
MolPort-002-216-386 S OCH3 Prop Z 84.18 23.30

54
MolPort-001-899-455 S OCH3 Et E 19.46 8.00

55
MolPort-001-552-801 S OCH3 Et Et Z 18.65 6.09
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Table 7. Cont.

ID R1 R2 R3 R4 Configuration Measured
Activity 1 S.D. 2

56
MolPort-039-019-225 S OCH2CH3 Prop Z 22.63 10.48

57 *
MolPort-001-634-394 S OCH2CH3 Et Z 95.59 45.14

1 % activation of rifampicin activity, achieved by 10 µM of respective test compounds (46 to 57), was determined
by PXR-LBD assembly assay in transfected HepG2 cells, as described in the legend of Table 4. 2 Standard deviation
of the measurements. * Note that during subsequent MS analyses 57, the most promising compound related to 17,
did not meet the required purity threshold of ≥90%.

First, we analyzed the capacity of the selected compounds to modulate the interaction
of PXR with co-factors, using mammalian two-hybrid assays. Similarly to rifampicin, all
novel PXR effectors resulted in the release of co-repressor NCOR2 from PXR and, by that,
demonstrated agonist activity (Figure 7A). While 42 was as efficient as rifampicin, 25 and
53 demonstrated reduced capacity to release the co-repressor. Figure 7B shows that the
novel compounds resulted also in the recruitment of co-activator NCOA1, with 25 being
as efficient as rifampicin, and 42 and 53 showing reduced recruitment. These results add
further evidence that the compounds act as PXR agonists.

Secondly, as PXR agonists have to activate the transcriptional activity of the receptor,
we analyzed activation of transiently transfected CYP3A4 enhancer/promoter reporter
gene by compound treatment in cells with stable PXR overexpression. Figure 7C shows
that transactivation of the CYP3A4 reporter by the novel compounds was weaker than
by rifampicin. Dependency on PXR was demonstrated unequivocally by co-treatment
with the specific PXR antagonist SPA70 [80], which completely blocked reporter activation
in all cases. Concentration response analyses, using up to 30 µM of the compounds,
further confirmed that the maximal effect of the novel compounds was weaker than that
of rifampicin (Figure 7D). It should be noted that the decline in activation by 30 µM of
compound 42, as compared to 10 µM, might result from beginning cytotoxicity in H-P cells
(see Figure S2). Comparison of the EC50 values of the compounds, which have been derived
from the concentration response analyses, to rifampicin EC50 showed that 25 is less potent
in PXR activation than rifampicin (Figure 7E). A similar trend was observed for 42 and
53, however with p values of 0.1126 (paired t-test) and 0.1027, respectively, failed to reach
statistical significance. Thirdly, we analyzed the induction of endogenous PXR target gene
expression by compound treatment of differentiated HepaRG hepatocytes. Figure 7F shows
that the prototypical PXR agonist rifampicin induced the expression of ABCB1, CYP2B6,
and CYP3A4. In contrast, 25 and 53 demonstrated induction of CYP2B6 and CYP3A4 only,
while they did not, or only very weakly, induce ABCB1. The extent of CYP2B6 induction by
the novel compounds was as high as by rifampicin, while induction of CYP3A4 tended to
be weaker.
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Figure 7. Characterization of novel PXR effectors by analysis of co-factor interaction assays, CYP3A4
reporter gene activation and induction of endogenous PXR target genes. (A,B) HepG2 cells were
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co-transfected with expression plasmid encoding VP16-AD/PXR-LBD (108–434) fusion protein
and expression plasmids encoding fusion proteins of (A) GAL4-DBD/NCOR2-RID or (B) GAL4-
DBD/NCOA1-RID. Transfected cells were treated with 0.1% DMSO or 10 µM of the indicated
compounds for 24 h. (C,D) H-P cells were transfected with the CYP3A4 promoter/enhancer reporter
gene plasmid and treated for 24 h with (C) 0.1 % DMSO or 10 µM of the indicated compounds in
the absence (-SPA70) or presence (+SPA70) of 5 µM SPA70 or (D) with increasing concentrations of
the indicated compounds. The fold induction values of normalized luciferase reporter gene activity
of co-transfected pGL3-G5 (A,B) or CYP3A4 promoter/enhancer (C,D) by chemical treatment, as
compared to vehicle DMSO only (designated as 1 and indicated by red, dotted lines), are presented as
scatter plots with means (columns) ± S.D. (n = 5) (A–C) or as nonlinear fit of concentration-dependent
response with means ± S.D. (n > 5) (D). (E) shows scatter plots with means (columns) ± S.D. (n = 5)
of EC50 values derived from the experiments shown in (D). (F) Differentiated HepaRG cells were
treated with 0.1% DMSO or 10 µM of the indicated compounds for 48 h. mRNA expression of the
indicated genes was determined by TaqMan RTqPCR and normalized to the expression of 18S rRNA.
Data are presented in scatter plots with means and S.D. (n = 3). Expression was calculated as fold
induction by chemical treatment. Differences to respective treatment with rifampicin were analyzed
by repeated measures using one-way ANOVA (A,B,E) or repeated measures using two-way ANOVA
(C) with Dunnett’s multiple comparisons test. * p < 0.05; ** p < 0.01; *** p < 0.001.

The difference in CYP2B6 and CYP3A4 induction may indicate that the novel com-
pounds may also act on the constitutive androstane receptor (CAR, NR1I3), of which
CYP2B6 is the prototypical target gene [81]. As vitamin D receptor (VDR, NR1I1) activation
also results in induction of hepatic cytochrome P450 genes [82], we analyzed the specificity
of the novel compounds with regard to the activation of these two receptors, which are
the closest relatives of PXR (NR1I2). Neither of the compounds activated VDR per se
nor interfered with vitamin D activation of the receptor (Figure S3). Regarding CAR, we
analyzed effects on the two main hepatic isoforms [83], the constitutively active reference
variant CAR1, and the ligand-dependent isoform CAR3. Of the three compounds, 25 and
53 demonstrated activation of CAR1, which in case of 53 was confirmed further by its
ability to resolve inhibition of CAR1 by the inverse agonist CINPA1 (Figure S3). All three
novel compounds demonstrated activation of CAR3, whereby 25 enhanced the activation
by the prototypical CAR ligand CITCO even synergistically. In conclusion, the novel PXR
agonists identified here also demonstrated activation of CAR, which might explain that
they activated CYP2B6 in hepatocytes more strongly than CYP3A4.

4. Conclusions

Due to the large size and flexibility of the ligand binding pocket of the PXR, the
discrimination of activators and non-activators is a challenging task, also for machine
learning approaches. In order to improve the performance of machine learning models
in PXR activator prediction, we designed a new regularization technique that penalizes
the performance gap between training and validation data during the model selection in
hyperparameter tuning. We deployed this technique on RF models and SVMs using finger-
print as well as physicochemical properties as the underlying training features. Whereas
the regularized models showed a comparable performance on the training data, their
MCC values for the test set were up to 0.21 higher than those of the baseline models. In a
prospective screening experiment with the regularized models, 12 of the 31 purchased and
tested compounds were confirmed in a PXR-LBD assembly assay to exhibit an activation of
more than 10% of rifampicin activity, thereby indicating ligand binding to PXR. Importantly,
these compounds are structurally distinct from any known PXR ligands. Hit follow-up
studies resulted in a number of bioactive compounds, of which we studied three represen-
tatives, 25, 42, and 53, in detail, to further corroborate interaction with PXR and distinguish
between agonists and antagonist properties, as the PXR-LBD assembly assay does not dis-
criminate respectively. According to the combined results from (1) mammalian two-hybrid
interaction assays with co-repressor and co-activator proteins, (2) PXR-dependent reporter
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gene assays and (3) chemical induction experiments in differentiated hepatocytes, the
representative compounds proved to act as agonists for PXR. Future research is however
required to confirm direct physical interaction, i.e., ligand binding, to the receptor using a
biochemical assay.

In summary, we have demonstrated the successful development and application of
machine learning models to identify novel PXR activators. The presented regularization
technique is widely applicable and is expected to be particularly useful when modeling
targets with complex activity landscapes or training on highly biased data sets.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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Figure S1: Mass-spec data; Figure S2: Cell toxicity of novel compounds. Figure S3: Selectivity of
novel compounds within the NR1I group of nuclear receptors.
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