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Abstract: Hepatocarcinogenesis is frequently accompanied by substantial metabolic reprogramming
to maximize the growth and proliferation of cancer cells. In this study, we carried out a compre-
hensive study of metabolomics and lipidomics profiles combined with gene expression analysis
to characterize the metabolic reprogramming in hepatocellular carcinoma (HCC). Compared with
adjacent noncancerous liver tissue, the enhanced aerobic glycolysis and de novo lipogenesis (DNL)
and the repressed urea cycle were underscored in HCC tissue. Furthermore, multiscale embedded
correlation analysis was performed to construct differential correlation networks and reveal patho-
logically relevant molecule modules. The obtained hub nodes were further screened according to the
maximum biochemical diversity and the least intraclass correlation. Finally, a panel of ornithine, FFA
18:1, PC O-32:1 and TG (18:1_17:1_18:2) was generated to achieve the prognostic risk stratification
of HCC patients (p < 0.001 by log-rank test). Altogether, our findings suggest that the metabolic
dysfunctions of HCC detected via metabolomics and lipidomics would contribute to a better under-
standing of clinical relevance of hepatic metabolic reprogramming and provide potential sources for
the identification of therapeutic targets and the discovery of biomarkers.

Keywords: metabolomics; lipidomics; metabolic reprogramming; hepatocellular carcinoma; prognosis

1. Introduction

Liver cancer is the sixth most common cancer and the third leading cause of cancer-
related death worldwide in 2020, with 905,677 new cases and 830,180 deaths [1]. Among
them, hepatocellular carcinoma (HCC) accounts for about 75–85% of all primary liver
malignancies. The past decade has brought considerable advancements in the discovery of
biomarkers for the diagnosis, prognosis and prediction of treatment responses of HCC pa-
tients [2,3]. However, the underlying molecular mechanism of HCC onset and progression
remains elusive, which seriously impedes the effective translation of scientific advances
into clinical practice.

The liver is the central metabolic organ, orchestrating the interplay of multiple
metabolic processes and maintaining metabolic homeostasis. Hepatocarcinogenesis is
frequently accompanied by substantial metabolic rearrangements to meet the requirements
of exponential growth and proliferation, which has been considered as an emerging hall-
mark of malignancy [4] and has aroused extensive interest. Evidence linking alterations
of cancer metabolism to clinically relevant characteristics such as disease progression and
therapeutic liabilities is often based on molecular profiling platforms, like the genomic and
proteogenomic profiles of key signaling and metabolic pathways in HCC [5,6] that don’t
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directly reflect the functional consequences of measurable interactions. As the end-point of
biological information flux, the metabolome has been widely accepted as a key link between
the upstream genomics, transcriptomics and proteomics and phenotype to understand
the molecular context of a biological system. Due to the advantages of high sensitivity,
high throughput, and broad coverage, mass spectrometry-based metabolomics has been
placed at the forefront of biomarker and mechanistic discoveries for pathophysiological
processes. We previously reported the metabolic characteristics and their potential in
clinical diagnosis based on 50 sets of matched liver tissues including HCC tissues and
adjacent and distal noncancerous tissues by liquid chromatography–mass spectrometry
(LC-MS)-based nontargeted metabolomics, but metabolite coverage was restricted owing
to the limited instrumental detection and metabolite identification at that time [7]. A recent
investigation from Fiehn’s lab [8] focused on the lipid remodeling in HCC and contrasted
the findings in blood and matched malignant and nonmalignant liver tissues. Indeed,
emerging insights have revealed that metabolomics is not only complementary to other
upstream omics but also a direct regulator of biological processes and phenotypes by
interacting with and actively modulating other omics [9,10]. Corroborating this, a variety of
oncometabolites involved in reprogrammed cancer metabolism have been identified, such
as 2-hydroxyglutarate [11,12], fumarate [13], succinate [14], lactate [15] and polyamines [16],
which creates promising metabolic vulnerabilities for therapeutic interventions.

In this study, a comprehensive metabolomics and lipidomics profiling of 166 paired tu-
mor and adjacent liver tissues together with gene expression analysis of the TCGA database
was conducted to identify the reprogrammed metabolic activities and potential bioactive
metabolites in HCC. The disrupted urea cycle and lipid metabolism were emphasized by
the integrative differential expression and correlation analyses. Additionally, a molecule
panel based on the metabolic network alterations was identified to stratify the prognostic
risk of HCC patients. To sum up, our study suggested that the metabolic dysfunctions of
HCC detected via metabolomics and lipidomics could advance our understanding of the
clinical relevance of reprogrammed hepatic metabolism and provide potential sources for
the identification of therapeutic targets and discovery of disease biomarkers.

2. Materials and Methods
2.1. Subjects

A total of 166 patients who underwent hepatectomy at the Eastern Hepatobiliary
Surgery Institute of the Second Military Medical University (Shanghai, China) between June
2013 and June 2014 were recruited in this study. Among them, 30 patients have no available
follow-up information. Detailed clinical information for all subjects and 136 patients with
follow-up information are listed in Table 1. Hepatocellular carcinoma tissue (HCT) and
paired adjacent noncancerous tissue (ANT) from all patients were collected during the
operation. The tissue samples were immediately placed into liquid nitrogen after surgical
resection and stored at −80 ◦C until analysis. The overall survival was defined as the time
interval from the date of surgical treatment to death or date of the last follow-up. This
study was approved by the ethics committee of the Eastern Hepatobiliary Surgery Hospital
of the Second Military Medical University and conformed to the standards of Declaration
of Helsinki. Written informed consent was provided by all patients.

2.2. Nontargeted Metabolomics and Lipidomics Analysis

The LC-MS-based nontargeted metabolomics and lipidomics profiling of tissue sam-
ples were performed as described previously [17,18]. Briefly, 20 mg of tissue was ho-
mogenized and extracted with the methanol/methyl tert-butyl ether (MTBE) /water sys-
tem [19,20] containing internal standards. After centrifugation for two-phase formation, a
300 µL aliquot from the upper layer of the solution was drawn for lipidomics analysis, and
a mixture of 150 µL aliquot from the lower layer and 200 µL from upper layer was drawn
for metabolomics analysis. To monitor the robustness of batch analysis, QC samples were
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constructed from all tissue extracts to reflect an aggregated metabolite composition. All
samples were lyophilized and stored at −80 ◦C prior to analysis.

Table 1. Clinical and pathological features of HCC patients.

Characteristic All
(n = 166)

Patients with Follow-Up
(n = 136)

Age, mean ± SD 49.3 ± 10.9 49.6 ± 11
Gender, n (%)

Female 21 (12.7%) 19 (14.0%)
Male 144 (86.7%) 117 (86.0%)

na 1 (0.6%) 0
Smoking, n (%) 80 (48.2%) 66 (48.5%)

Alcohol abuse, n (%) 33 (19.9%) 27 (19.9%)
Family History 34 (20.5%) 29 (21.3%)
HBsAg +, n (%) 136 (81.9%) 112 (82.4%)

AFP, >400 µg/L, n (%) 67 (40.4%) 55 (40.4%)
PLT (×10/L, mean ± SD) 164.5 ± 63.4 165 ± 63.3

TBA (umol/L, mean ± SD) 11.6 ± 15.4 10.6 ± 13.3
CEA (µg/L, mean ± SD) 2.8 ± 2.8 3 ± 2.9

CA19-9 (U/mL, mean ± SD) 19.6 ± 17.1 19.8 ± 17.9
Tumor Nodules, n (%) 69 (41.6%) 58 (42.6%)

MVI, n (%) 63 (38.0%) 54 (39.7%)
Multiple Tumor, n (%) 26 (15.7%) 19 (14.0%)

Maximum Tumor Diameter,
mean ± SD 7.1 ± 4.6 7 ± 4.5

TNM Stage, n (%)
I 76 (45.8%) 64 (47.1%)
II 39 (23.5%) 31 (22.8%)
III 11 (6.6%) 7 (5.1%)
IV 39 (23.5%) 34 (25%)
na 1 (0.6%) 0

BCLC Stage, n (%)
A 107 (64.5%) 91 (66.9%)
B 19 (11.4%) 11 (8.1%)
C 39 (23.5%) 34 (25.0%)
na 1 (0.6%) 0

ALBI Grade, n (%)
1 122 (73.5%) 104 (76.5%)
2 136 (81.9%) 29 (21.3%)

na 8 (4.8%) 3 (2.2%)
Data are presented as mean ± SD or n (%) values as appropriate. na: not available. Abbreviations: HBsAg,
hepatitis B surface antigen; AFP, alpha-fetoprotein; PLT: platelet; TBA: total bile acids; CEA, carcinoembryonic
antigen; CA 19-9: carbohydrate antigen 19-9; MVI, microvascular invasion; TNM: tumor-node-metastasis; BCLC,
Barcelona Clinic Liver Cancer; ALBI, albumin-bilirubin.

For LC-MS based metabolomics analysis, the samples were reconstituted in 80 µL
acetonitrile/water (v/v, 1:4) and a 5 µL aliquot of each sample was injected into a BEH C8
and a HSS T3 column (2.1 mm × 100 mm, 1.7 µm particle size) (Waters Corp, Milford, CT,
USA) coupled with Q Exactive HF mass spectrometry (Thermo Fisher Scientific, Rockford,
IL, USA) in positive and negative ion mode, respectively.

For LC-MS-based lipidomics analysis, the samples were resuspended in 30 µL chlo-
roform/methanol (2:1, v/v) and diluted with 60 µL of isopropanol/acetonitrile/water
(30/65/5, v/v/v) for negative ion mode. For positive ion mode, a further 2 times dilution
was performed. The injection volume was 5 µL. A BEH C8 column (2.1 mm × 100 mm,
1.7 µm particle size) (Waters Corp, Milford, CT, USA) coupled with Q Exactive mass spec-
trometry (Thermo Fisher Scientific, Rockford, IL, USA) was operated in both positive and
negative ion mode.

After the data acquisition, automated peak detection and integration were performed
by Tracefinder software (Thermo Fisher Scientific, Waltham, MA, USA). All the raw peak
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areas were further normalized by their corresponding internal standards and tissue weight.
The metabolite annotation was based on our in-house database [18] and online databases
(HMDB and Metlin). The lipid identification was achieved according to our prior study [21],
which was based on the retention time, extract m/z and MS2 fragments in combination
with LipidSearch software (Thermo Fisher Scientific, Waltham, MA, USA).

2.3. Gene Expression Analysis

The TCGA Liver Cancer cohorts were obtained from The Cancer Genome Atlas
(TCGA) database, and the gene expression data by RNAseq and corresponding pheno-
typic information were downloaded from UCSC Xena (http://xena.ucsc.edu accessed on
11 October 2021). In total, 373 tumor tissue samples and 50 solid tissue normal samples
were included in this study. Statistical significance was performed using a Mann–Whitney
U test with false discovery rate correction.

2.4. Statistical Analysis

All statistical analyses and visualization were conducted using Microsoft Excel, Graph-
Pad Prism 8.0 or R software version 4.1.0, unless otherwise noted. Clinical characteristics
are presented as mean ± SD or n (%) as appropriate. The multivariate partial least square
discriminant analysis (PLS-DA) with 200 times permutation tests was conducted using
SIMCA-P 14.1 (Umetrics, Sweden). For univariate analysis, a Wilcoxon Signed-rank test for
matched samples was performed using MATLAB (R2014a, MathWorks, Natick, MA, USA)
software to evaluate the difference of identified ion features and lipid classes between ANT
and HCT. The Benjamini-Hochberg method was employed to control the false discovery
rate (FDR). Adjusted p values below 0.05 were considered as significant. Because lipid
alteration between ANT and HCT can differ based on acyl chain length and the unsatura-
tion degree, lipids were grouped and further analyzed based on the numbers of carbon
atoms and double bonds. A Spearman correlation analysis was performed to determine
correlations between identified features and clinical parameters.

Subsequently, a multiscale embedded correlation network analysis (using R pack-
age MEGENA) [22] was used to illustrate the differentially correlated molecular pairs
in distinct conditions to decipher the dysregulated pathway in HCT compared to ANT.
Differential correlation was calculated using R package DGCA [23]. Only molecular pairs
with significantly differential correlation (p < 0.05) were included for the following network
construction. The hub nodes identified by MEGENA were further sieved based on their
chemical classes and correlation to build a metabolic panel. And then the patients were
divided into three different risk groups using the optimal cut-off points according to the
quantile distribution. Finally, the Kaplan-Meier survival curve for the cases with different
risk was generated.

3. Results

From June 2013 to June 2014, a total of 166 pairs of tumor and adjacent nonmalignant
tissues from HCC patients were collected in this study to map out the metabolic landscape
and assess the association of metabolic phenotypes with the prognostic risk. Among the
136 patients with follow-up information, 47 patients (34.6%) died and 89 patients (65.4%)
survived during the follow-up after operation. The median follow-up was 48.5 months
(range, 2–67.6 months). The primary aim of this study is to reveal the metabolic reprogram-
ming in malignant transformation and explore the prognostic value of related features for
HCC patients.

3.1. Comprehensive Characterization of the Liver Tissue Metabolome and Lipidome

In this study, LC-MS-based nontargeted metabolic and lipidomics analyses were
performed in both positive and negative ion modes to characterize the metabolite and lipid
profiles of liver tissues. The precision of the overall analytical method was evaluated by
the calculation of coefficient of variation (CV) in quality control (QC) samples as shown

http://xena.ucsc.edu
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in Figure S1. Finally, a total of 625 ion features with CV less than 30% were retained
and identified, and they consisted of 128 metabolites and 497 lipids. These identified ion
features were further categorized into subclasses that reflect their chemical structure and
function, as shown in Figure S2.

To achieve a comprehensive overview of possible metabolic alterations between HCT
and ANT, supervised discrimination models were established based on partial least squares
discriminant analysis (PLS-DA). As shown in the score plot of PLS-DA (Figure 1A), there is
a clear separation between the two groups, with accumulative R2Y = 0.755 and Q2 = 0.71,
indicating that the model possessed a good fit and predictive power. No overfitting was
observed from the cross-validation by a 200 times permutation test. The intercepts of R2
and Q2 in the model were 0.14 and −0.166, proving the model is reliable and effective and
that there are great differences existing between the two groups.

Figure 1. Comparative metabolomics and lipidomics profiles of adjacent noncancerous tissue (ANT)
and hepatocellular carcinoma tissue (HCT) samples from HCC patients. (A) Score plot of PLS-DA
model for ANT samples (orange dots) and HCT samples (green dots) separation (R2X = 0.177,
R2Y = 0.755, Q2 = 0.71). Volcano plots of metabolomics (B) and lipidomics data (C) discriminating
ANT and HCT samples. Log2 fold change values of normalized mean peak area are plotted against
the respective −log10 transformed p values. Ion features with adjusted p < 0.05 were considered as
significantly differential expression. The metabolites with |fold change| > 1.5 and lipids with |fold
change| > 2 are highlighted with compound name. Detected compounds were compared using a
Wilcoxon Signed-rank test for matched samples and the raw p values were adjusted to false discovery
rate (FDR) using the Benjamini–Hochberg method.

3.2. Metabolic Disruptions in HCT Compared to ANT

To identify the specific differential features in tumor tissue compared to nonmalignant
tissue from the same HCC patient, a Wilcoxon matched-pairs signed rank test was further
conducted on all detected metabolites, lipids, and the biologically meaningful indexes
including metabolite ratios, lipid ratios and the total amount of each lipid class. The
univariate analysis revealed that a total of 105 metabolites (38 elevated and 67 decreased)
and 408 lipids (179 elevated and 229 decreased) had significant changes (adjusted p < 0.05)
in HCC tissue as illustrated by volcano plots (Figure 1B,C). To give a holistic view of
metabolic reprogramming in HCT, the major dysregulated pathways based on differential
metabolites and lipids were mapped in Figure 2.
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3.2.1. Metabolites

The main metabolic alterations based on metabolites was related to carbohydrate
metabolism, urea cycle and acylcarnitine metabolism. Firstly, we observed upregulation
of glucose-6-phosphate, Fructose-1,6-bisphosphate and phosphoenolpyruvate (PEP) in
HCC tissue compared with adjacent noncancerous tissue. Meanwhile, the significantly
elevated expression of hexokinase 2 (HK2), glucose phosphate isomerase (GPI), aldolase,
fructose-bisphosphate A (ALDOA), glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
phosphoglycerate kinase 1 (PGK1) and enolase 1 (ENO1) were found in the gene expression
analysis based on the 423 liver tissue samples in the TCGA database. These findings
demonstrated a shift in carbohydrate metabolism from oxidative phosphorylation to aero-
bic glycolysis, which is a predominant characteristic of tumor cell known as the Warburg
effect [24]. Concurrently, the expression elevation of gene glucose-6-phosphate dehydro-
genase (G6PD) and the decline of ribulose-5- phosphate were also found in this study,
suggesting the upregulated pentose phosphate pathway and nucleotide synthesis. Besides,
lower glutamine levels were detected in HCT than ANT accompanied by the increase
of the glutamate/glutamine ratio and the glutaminase 1 (GLS1) gene expression level,
probably owing to a high metabolic dependency on glutamine for the cancer cell sur-
vival and proliferation [25,26]. In addition, accumulated glucosamine-6-phosphate and
N-acetylglucosamine-6-phosphate (GlcNAc-6P) suggested the increased flux of glutamine
and glucose to the hexosamine biosynthetic pathway.

Another crucial metabolic dysregulation is the urea cycle, by which excessive nitrogen
is converted into urea in liver. The gene expression analysis showed that almost all essential
genes encoding the urea cycle enzymes have a lower level in tumor tissue including
argininosuccinate synthase 1 (ASS1), argininosuccinate lyase (ASL), arginase 1 (ARG1),
ornithine transcarbamylase (OTC), arginine deiminase (ADI), and carbamoyl-phosphate
synthase 1 (CPS1), indicating the downregulated urea cycle in tumor than the surrounding
liver. Consistent with our prior study [27], a striking elevation in arginine and a significant
decline in ornithine were found in HCT rather than ANT, while no significant change was
found in the level of citrulline. These recurrent metabolite alterations were observed in
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cohorts from different medical centers, showing the significant dysregulation of the urea
cycle in HCC.

The acylcarnitine system, as a pivotal mediator in cancer metabolic plasticity, is
involved in the bi-directional transport of acyl moieties between cytosol and mitochon-
dria, thus acting a critical part in the tuning switch between the glucose and fatty acid
metabolism [28]. In this study, the changes of acylcarnitines detected in our previous
report [7] were further validated. The levels of virtually all detected acylcarnitines with
medium and long chains (except C8:1, C10:2, C18:2, C18:2-OH) were significantly accumu-
lated in tumor tissue compared with the adjacent noncancerous tissue, while the levels of
most acylcarnitines with short chain reversely decreased, including C0, C3, C4-OH, C5,
C5:1, and C6 (Figure S3). Consistent changes were also observed for the ratios of C2/C0
and C3/C0. The elevation of C2/C0 and the reduction of C3/C0 in HCT suggested the
reverse alteration of β-oxidation for even- and odd- numbered fatty acids. Moreover, an
increase in the ratio of (C16 + C18)/C0 indicated higher carnitine palmitoyltransferase
1 (CPT-1) activity in HCT than ANT, implying an improving entry of fatty acid into mi-
tochondria for oxidation. Besides, the elevated ratio of (C16 + C18:1)/C2 reflecting the
activity of carnitine palmitoyl transferase 2 (CPT-2) was also observed, but was not of
statistical significance. Taken together, the acylcarnitine changes driven by HCC reflected
an imbalance between the production and consumption of energy, although the effects of
related genes and enzymes still require further confirmation.

3.2.2. Lipids

The liver has a central role in the acquisition, storage and consumption of lipids.
Growing evidence demonstrated the importance of lipid metabolic reprogramming in
hepatocarcinogenesis and tumor adaptation to unfavorable conditions [29,30]. To have an
overview of aberrant lipid metabolism in HCC, we firstly investigated the difference of the
total amount of each lipid class between HCT and ANT (Figure 3A). The result showed that
ether-linked phosphatidylcholine (PC-O), free fatty acid (FFA), cholesteryl ester (ChE) and
triacylglycerol (TG) had no significant changes, while ether-linked lysophosphatidylcholine
(LPC-O), ether-linked lysophosphatidylethanolamine (LPE-O) and dihexosylceramide
(Hex2Cer) were significantly upregulated. In addition, all other differential lipid subclasses
with statistical significance were found downregulated, suggesting a depletion of lipid
constituents for the rapid growth of tumor cells. To gain insight into the associations of the
lipid biochemical structure with the malignant transformation, the differences based on the
lipid acyl chain and unsaturation degree were further compared for various lipid classes, as
illustrated in Figure 3B. Overall, the most lipid individuals with longer acyl carbon chains
and lower unsaturation degree showed increased content in HCT than in ANT except
phosphatidylglycerol (PG). As the precursor of cardiolipin (CL, the signature phospho-lipid
of mitochondria), almost all of PG were found with a lower level in malignant tissue.
Considering that the significant reduction of tetralinoleoylcardiolipin (TLCL, the major
CL in mitochondria) and total CL were also observed in tumor tissues, it is reasonable to
deduce that CL remodeling is responsible for the progression of HCC.

Fatty acids (FA) are the major building blocks of complex lipid species, and therefore
aberrant FA metabolism is a vital component of lipid reprograming in HCC. Strikingly,
relative to saturated fatty acids (SFA), all detected monounsaturated fatty acids (MUFA)
and the polyunsaturated fatty acids (PUFA) with long acyl chains had a higher level in
HCT, implying a shift toward unsaturation in HCC, which has been associated with poor
prognosis [31]. The specific alteration of FA individuals together with phosphatidylcholine
(PC) and TG are shown in Figure S4. Interestingly, the lipogenic index (16:0/18:2), de-
saturation index (18:1/18:0, 16:1/16:0) and elongation index (18:0/16:0) were all found
elevated in cancer tissue in this study, suggesting enhanced de novo lipogenesis (DNL), the
higher activity of stearoyl-CoA desaturase 1 (SCD1), and the elongation of very long chain
fatty acids protein 6 (ELOVL6). Other than the alteration of lipid contents and correlative
indices, we also explore the gene expression difference associated with lipid metabolic
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pathways in HCC. Consistently, the higher expression level of indispensable genes for DNL,
including ATP citrate lyase (ACLY), acetyl-CoA carboxylase alpha (ACACA), and fatty acid
synthase (FASN) were observed in tumor tissue, further corroborating the pronounced DNL
during hepatocarcinogenesis (Figure 2). Nevertheless, the insignificantly changed gene
SCD and downregulated gene ELOVL6 were also found in tumor tissue from the TCGA
database, indicating that further investigations based on large representative cohorts and
cell experiments are required to clear the underlying complex mechanism in the process of
FA desaturation and elongation. Furthermore, SFA- and MUFA-containing phosphatidyl-
choline (PC) were elevated in tumor tissue, while most PUFA-containing PC decreased.
The similar significant change trend was found for phosphatidylethanolamines (PE). Of
note, the increase in MUFA-containing PC has been uncovered as a crucial event related to
the proliferative switch of hepatocytes and hepatocellular carcinogenesis in murine and
human models [32]. Additionally, compared with paired nonmalignant hepatic tissue, we
also found significantly increased TG with the number of double bonds equal to or less
than two in tumor tissue, but not for those with more than two double bonds. The same
disturbed pattern was displayed by diacylglycerol (DG) except DG 34:2.
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investigations based on large representative cohorts and cell experiments are required to 
clear the underlying complex mechanism in the process of FA desaturation and elongation. 

Figure 3. Association between HCC and lipid structure. (A) Heatmap of the lipid abundance changes
by class between ANT and HCT samples. (B) Alteration of lipids with significant difference by carbon
number and double bond number.
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3.3. Multiscale Embedded Correlation Networks to Reveal Dysregulated Modules Associated
with Prognosis

In addition to the above, we also performed a Spearman correlation matrix to as-
sess the association of metabolic alteration with pathologically relevant clinical factors
(Figure S5). We observed that metabolites and lipids are closely related to AFP, maximum
tumor diameter, tumor-node-metastasis (TNM) stage and the Barcelona Clinic Liver Cancer
(BCLC) stage, which are known as the prognostic indicators in HCC [33–35]. This result in-
dicated that metabolic and lipidomics profiling have the potential to stratify the prognostic
risk of HCC patients.

Distinct from the differential expression analysis, differential correlation analysis fo-
cuses on the changes of correlation between molecule pairs under different states rather than
on individual molecules, thereby facilitating the identification of disrupted co-regulated net-
works in biological systems. Herein, in order to provide an additional insight on metabolic
pathway dysregulation during hepatocarcinogenesis, we identified the differentially cor-
related molecule pairs via the package DGCA and then constructed networks to look for
the pathologically relevant metabolic modules in HCT relative to ANT using MEGENA.
Four notable modules (Figure 4) were identified from the global network based on all
detected molecule pairs, with a significant change between neoplastic and non-neoplastic
conditions. Module I comprises TG (18:1_17:1_18:2), TG (16:0_17:1_18:1) and TG 53:3 as
hub nodes predominantly connected to other TG by red lines (+/+−), indicating that the
correlation between the connected TG became weaker positive in HCT relative to ANT.
Module II, with the FFA 18:1 as the central hub, mainly consists of FFA, DG, LPE and
LPC connected with red lines, which are clustered by classes, implying their proximity in
the metabolic pathway and that they may be coregulated. Although several overlapping
segments exist between modules III and IV, they were revealed with different hub nodes
(PC 40:2 and PC O-32:1 for module III, ornithine, PC 40:2 and PC (18:0_20:2) for module
IV), possibly suggesting a subtle and stable link between the PC and ornithine metabolism.
Of note, a reduced positive correlation in HCT was observed between ornithine and other
amino acids in model IV, e.g., proline, tryptophan and methionine, illustrating the complex
regulation of amino acid metabolism during HCC transition.

Subsequently, eight hub nodes identified from the four modules were further screened
according to the maximum biochemical diversity and the least intraclass correlation [36]
(Figure 5A). Finally, a panel consisting of ornithine, FFA 18:1, PC O-32:1 and TG (18:1_17:1_18:2)
was generated and used to derive a risk index by the linear combination of the HCT/ANT
concentration ratios weighted by their corresponding coefficients in Cox regression. A
total of 136 patients with follow-up information were divided into low-risk, medium-risk
and high-risk stages by trisection cut-off points. Then, the Kaplan-Meier curve (Figure 5B)
showed clear separation among the three different risk groups and the patients with
higher risk had significantly lower overall survival rate (p < 0.001 by log-rank test). This
result indicated that the panel could serve as a beneficial tool for risk assessment and
prognostic stratification of HCC patients and the dysregulation of their relevant pathways
may represent potentially targetable metabolic vulnerabilities of HCC.
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Figure 4. Differential correlation analyses of tissue metabolites and lipids in HCT relative to ANT.
Only molecule pairs with significant differential correlations (p < 0.05) are included. Sign/sign
indicates the direction and strength of the correlation in HCT/ANT, and the number that follows
indicates the number of molecule pairs in the global networks exhibiting this pattern of change. For
instance, the red line +/+− 584 indicates that correlation between two connected molecule pairs was
positive (+) in ANT, and the correlation became weaker positive (+−) in HCT. A total of 584 molecule
pairs connected by red lines in the global network displayed this pattern of change (+/+−). The hub
nodes are labeled with black font.
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Figure 5. Identification of prognostic panel and the overall survival analysis. (A) The correlation
matrix of hub nodes. Values and colors represent Pearson correlation coefficients of log-transformed
metabolites with significance. The unsignificant correlations (p > 0.05) are filled with white. The
molecules with red font were identified to generate a prognostic panel. (B) Kaplan-Meier curve of
overall survival according to the panel of hub nodes identified by MEGENA.
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4. Discussion

Over the past decade, emerging evidence has demonstrated that metabolic repro-
gramming is a hallmark of malignancy [4]. However, the underlying mechanism of how
reprogrammed metabolism sustains tumor growth and which reprogrammed activities are
most related to therapeutic liabilities is still obscure, thereby requiring increased attention.
In this study, we performed a comprehensive metabolite and lipid profiling of 166 paired
liver tissues in combination with the gene expression analysis of the TCGA dataset. This
integrative approach with an appreciable coverage and sample size allowed us to reveal the
stable metabolic dysregulation in HCC and identify the metabolic characteristics associated
with the prognostic risk of patients.

Reprogrammed metabolic activities contribute to the risk of HCC onset. In this study,
we firstly systematically explored the altered metabolic pathways based on the differential
individual molecules in combination with gene expression analysis. The enhanced aerobic
glycolysis and DNL, aberrant acylcarnitine metabolism and repressed urea cycle were
emphasized, which provide potential preventative and therapeutic opportunities to the
patients. A recent study has shown that a glycolysis inhibitor, 2-Deoxy-D-glucose (2-DG),
has the threptic potential to reverse tumorigenicity and sorafenib resistance mediated by
protein arginine methyltransferase (PRMT6) deficiency in HCC [37]. Another agent, PEGy-
lated arginine deiminase (ADI-PEG20) targeting urea cycle, which can convert arginine to
citrulline, has shown its efficacy in vitro and in in vivo studies of HCC. However, the result
of phase III clinical trials did not demonstrate significant improvements in prolonging
overall survival of patients with advanced HCC [38], pointing towards the importance of
further deciphering the underlying mechanism of the complex metabolic processes.

Given that the undetected metabolic changes exist when relying solely on individ-
ual molecule levels, the differential correlation network was used to dig out the un-
derlying pathways and key regulators of important biological processes. Specifically,
DGCA/MEGENA was applied to query individual molecule pairs with differential corre-
lations for network construction and to identify pathologically informative modules and
hubs. Of note, in line with the result of differential expression analysis, ornithine was iden-
tified as a hub node, further emphasizing the essential role of urea cycle disorder in HCC.
Corroborating this, mounting studies have discussed the relevance of urea cycle disorder
for cancer diagnosis and therapy [39,40]. Furthermore, the metabolism of FFA, DG, TG and
PC was emphasized in the co-regulation network. It is tempting to speculate that a subtle
linkage might exist in the urea cycle and lipid metabolism. In fact, a precious observation
has shown that long-chain fatty acids have a suppressive effect on the gene expression
of urea cycle enzymes in primary rat hepatocytes [41]. Another investigation proposed
the urea cycle enzyme arginosuccinate synthase (ASS) as a critical physiological regulator
of hepatic AMP-activated protein kinase (AMPK), effectively coupling lipid oxidation to
urea cycle activity [42]. These findings highlight the exquisite orchestration by an intricate
network of metabolic and cell signaling events in the liver. On the other hand, they may
provide actionable new insights into the exploitation of metabolic vulnerabilities.

In addition, a prognostic panel of ornithine, FFA 18:1, PC O-32:1 and TG (18:1_17:1_18:2),
generated from the hub nodes of the identified modules, was preliminarily proved to
have the capacity to achieve the risk stratification of HCC patients in this study. Among
them, ornithine was known as a constituent of ammonia-lowering agents like L-ornithine
L-aspartate (LOLA) and ornithine phenylacetate (OP) for the treatment of acute-on-chronic
liver failure and hepatic encephalopathy (HE). A recent double-blind randomized con-
trolled trial suggested that the addition of LOLA to the already established armamentarium
of lactulose and rifaximin leads to early recovery from HE and better short-term survival
rates, implying that LOLA might have indirect hepatoprotective effects apart from am-
monia removal [43]. Moreover, unsaturated fatty acids in representation of oleic acid
have been demonstrated to inhibit the expression of tumor suppressor phosphatase and
tensin homolog (PTEN) in hepatocytes through a mammalian target of the rapamycin
(mTOR)/nuclear factor kappa B (NF-κB)-dependent mechanism [44]. Further investigation
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indicated that the unsaturated fatty acids-driven down-regulation of PTEN plays a criti-
cal role in the hepatoma progression [45]. Meanwhile, it is found that TG could act as a
protective role under the tumor-relevant hypoxic conditions by releasing the unsaturated
fatty acids to prevent a toxic buildup of saturated lipids [46]. Additionally, monosaturated
PC has a closely positive correlation with hepatic proliferation and carcinogenesis [32].
Collectively, our prognostic panel could be a promising predictor for the risk assessment of
HCC patients, although a large, multicenter validation cohort is still needed in the future.

5. Conclusions

In conclusion, a comprehensive metabolic and lipidomics profiling combined with
gene expression analysis was performed to identify the metabolic reprogramming in HCC.
Our work underscored the dysregulation of the urea cycle and the lipid metabolism in
HCC by the integration of differential expression and correlation analyses. In addition, a
prognostic panel based on the metabolic network alterations was identified to assess the
prognostic risk of HCC patients. Overall, the metabolic dysfunctions of HCC detected via
metabolomics and lipidomics expand the understanding of clinical relevance of hepatic
metabolic rearrangements, thereby offering some exciting opportunities for the intervention
and treatment of HCC.
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ACACA: acetyl-CoA carboxylase alpha; ACLY: ATP citrate lyase; ADI: arginine deiminase;
ADI-PEG20: PEGylated arginine deiminase; AFP, alpha-fetoprotein; AMPK: AMP-activated pro-
tein kinase; ALBI, albumin-bilirubin; ALDOA: aldolase, fructose-bisphosphate A; ANT: adjacent
noncancerous tissue; ARG1: arginase 1; ASL: argininosuccinate lyase; ASS: arginosuccinate syn-
thase; BCLC: Barcelona Clinic Liver Cancer; CA 19-9: carbohydrate antigen 19-9; CDP: cytidine
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nitine palmitoyltransferase 1; CPT-2: carnitine palmitoyltransferase 2; CV: coefficient of variation;
DG: diacylglycerol; DHAP: dihydroxy-acetone phosphate; DNL: de novo lipogenesis; ELOVL6:
elongation of very long chain fatty acids protein 6; ENO1: enolase 1; FASN: fatty acid synthase;
FDR: false discovery rate; FFA: free fatty acid; Fructose-1,6-bisphosphate: Fructose-1,6-P; GAPDH:
glyceraldehyde-3-phosphate dehydrogenase; GlcNAc-6P: N-acetylglucosamine-6-phosphate; glucose-
6-phosphate: glucose-6-P; GLS1: glutaminase 1; GPC: glycerophosphocholine; GPI: glucose phosphate
isomerase; G3P: glyceraldehyde 3-phosphate; G6PD: glucose-6-phosphate dehydrogenase; HBsAg,
hepatitis B surface antigen; HCC: hepatocellular carcinoma; HCT: hepatocellular carcinoma tissue; HE:
hepatic encephalopathy; HexCer: hexosylceramide; Hex2Cer: dihexosylceramide; HK2: hexokinase 2;
LC-MS: liquid chromatography–mass spectrometry; LOLA: L-ornithine L-aspartate; LPC: lysophos-
phatidylcholine, LPC-O: ether-linked lysophosphatidylcholine; LPE: lysophosphatidylethanolamine;
LPE-O: ether-linked lysophosphatidylethanolamine; MTBE: methyl tert-butyl ether; MUFA: monoun-
saturated fatty acids; MVI, microvascular invasion; NF-κB: nuclear factor kappa B; OP: ornithine
phenylacetate; OTC: ornithine transcarbamylase; PC: phosphatidylcholine; PC-O: ether-linked phos-
phatidylcholine; PE: phosphatidyl-ethanolamine; PE-O: ether-linked phosphatidylethanolamine; PEP:
phosphoenolpyruvate; PG: phosphatidylglycerol; PI: phosphatidylinositol; PGK1: phosphoglycerate
kinase 1; PLS-DA: partial least square discriminant analysis; PLT: platelet; PRMT6: protein arginine
methyltransferase; PS: phosphatidylserine; PTEN: phosphatase and tensin homolog; PUFA: polyun-
saturated fatty acids; QC: quality control; SCD1: stearoyl-CoA desaturase 1; SFA: saturated fatty
acids; SM: Sphingomyelin; TBA: total bile acids; TCGA database: The Cancer Genome Atlas database;
TG: triacylglycerol; TLCL: tetralinoleoylcardiolipin; TNM: tumor-node-metastasis; 2-DG: 2-Deoxy-
D-glucose.
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