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Abstract: The epicardial adipose tissue (EAT) is the visceral fat depot of the heart which is highly
plastic and in direct contact with myocardium and coronary arteries. Because of its singular proximity
with the myocardium, the adipokines and pro-inflammatory molecules secreted by this tissue may
directly affect the metabolism of the heart and coronary arteries. Its accumulation, measured by
recent new non-invasive imaging modalities, has been prospectively associated with the onset and
progression of coronary artery disease (CAD) and atrial fibrillation in humans. Recent studies have
shown that EAT exhibits beige fat-like features, and express uncoupling protein 1 (UCP-1) at both
mRNA and protein levels. However, this thermogenic potential could be lost with age, obesity and
CAD. Here we provide an overview of the physiological and pathophysiological relevance of EAT
and further discuss whether its thermogenic properties may serve as a target for obesity therapeutic
management with a specific focus on the role of immune cells in this beiging phenomenon.

Keywords: epicardial adipose tissue; ectopic fat; immune cells; beiging; browning; adipose tissue;
heart; coronary artery disease; innate lymphoid cells

1. Introduction

Epicardial adipose tissue (EAT) is a visceral adipose tissue located between the my-
ocardium and the inner layer of the pericardium. EAT is characterized by its cardiopro-
tective functions in physiological conditions and its increased expression of thermogenic
genes giving its adipocytes a beige/brite phenotype. This metabolically active tissue has
endocrine properties, and a special location that makes it able to modulate the structure
and function of the myocardium. In many clinical studies, EAT has been associated with
the appearance of cardiovascular diseases such as atrial fibrillation (AF) and coronary
artery disease (CAD), but also with their severity [1]. In recent years, non-invasive imaging
studies revealed that addition of artificial intelligence (AI) deep learning approaches EAT
quantification to current risk assessment tools resulted in a significant net reclassification
improvement for major adverse cardiovascular events (MACE). Transcriptional studies
revealed that EAT exhibits high expression of the beige adipocyte-specific marker CD137,
and also thermogenic genes such as UCP-1, PRDM16, PGC-1α, PPARγ and BAT-specific
genes such as actin alpha 1 (ACTA1), PPARγ co-activator 1 alpha (PPARGC1A), troponin
C type 1, and troponin I type 1 compared to the subcutaneous adipose tissue (SAT) [2,3].
On the other hand, EAT beiging or browning phenomenon could have a benefit effect
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on cardiovascular diseases. Beiging process is the appearance of beige cells with thermo-
genic function in the white adipose tissue (WAT), that contributes to energy expenditure
through nonshivering thermogenesis [4–6]. Many cellular and molecular actors have been
shown to participate in the browning of WAT such as mastocytes, eosinophils, alternatively
activated macrophages, innate lymphoid cells; IL-13, IL-5, IL-4, amphiregulins, methion-
ine/enkephalin, atrial natriuretic peptides (ANP), and could represent future anti-obese
therapeutic targets. However, far less is known about the loss of EAT browning with age,
obesity, or CAD.

In this review, we will focus on the beiging or browning of EAT in cardiovascular and
metabolic diseases and its link with immune cells.

2. The Epicardial Adipose Tissue
2.1. Physiological Features

The EAT is an ectopic fat depot located between the myocardium and the visceral
pericardium. The close proximity between the adipose and the cardiac tissue allows
functional and anatomical relationships. Both share the same microcirculation, with no
fascia separating the two layers, allowing cellular exchanges [7]. Moreover, the EAT
represents 20% of the heart weight under physiological conditions [8,9]. On the other
hand, in terms of total fat mass it represents only 1%, which is far from the mass of the
abdominal visceral adipose tissue (VAT) [9]. Among the several functions of this tissue,
there is a mechanical function. Indeed, it can protect coronary arteries against torsion
induced by the arterial pulse wave and cardiac contraction [9]. Another putative function
related to the EAT is its local energy storage for the heart, but also its protective role against
elevated levels of free fatty acids (FFAs) in the microcirculation [10]. This function is very
important since the myocardium metabolizes FFAs from the coronary arterial blood, and
their oxidation is responsible for about 50–70% of the energy production of the heart, so
EAT can be seen as a buffer to protect the heart against lipotoxicity or lack of energetic
substrate [7]. Besides, the rate of fatty acids (FA) release by EAT is approximately twice that
of other fat depots [11]. It is also possible to distinguish EAT from other visceral fat depots
by its higher capacity to uptake FFAs and its lower rate of glucose utilization, suggesting a
high plasticity in lipid metabolism activity for this ectopic fat depot [12].

Epicardial adipocytes are smaller than subcutaneous and visceral adipocytes [13]
and one of the particularities of these adipocytes is their beige phenotype [3]. It has been
hypothesized to function like brown adipose tissue and generate heat in response to cold
temperatures and activate the autonomic nervous system [14,15]. This leads to another
putative function of the EAT which is the protection of the heart against hypothermia. We
will discover next in this review that the beige character of EAT provides many opportuni-
ties to better understand its physiological role and to discover new molecular targets to
prevent CVD.

2.2. EAT as an Endocrine Organ

More than a fat depot, EAT is increasingly recognized as an endocrine organ being
a source of many bioactive molecules that can modulate the myocardium’s and coronary
arteries’ homeostasis [16–19]. Two main hypotheses exist to explain how EAT-derived
secreted molecules can interact with coronary arteries [20,21]. First, the paracrine signaling
which assumes that EAT-derived adipokines diffuse directly through the layers (adventitia,
media and intima) of the vascular wall via the interstitial fluid to interact with smooth
muscle [17,22,23]. Then, the vasocrine signaling hypothesis, which implies that adipokines
and FFAs directly enter into the vasa vasorum and are transported downstream into the
arterial wall [20,24]. But more recently, a new communication mode has been evidenced
implicating extracellular vesicles (EVs) containing various cytokines and microRNAs [25].
In this article, Shaihov-Teper et al. demonstrated that EAT is able to address EVs carrying
proinflammatory, profibrotic and proarrhythmic molecules to the atria.
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Among these bioactive molecules interleukins (IL) (IL-1β, IL-6, IL-8, IL10), adiponectin,
plasminogen activator inhibitor 1 (PAI-1), adrenomedullin, phospholipase A2, tumor
necrosis factor α (TNF-α), monocyte chemoattractive protein 1 (MCP-1), omentin, leptin,
visfatin, resistin have been identified (Figure 1) [26–29]. Although some of these molecules
have physiologically positive effects, such as adiponectin, or omentin, the imbalance
between protective and deleterious adipokines secreted by EAT may participate in the
proinflammatory phenotype associated with endothelial dysfunction and atherogenesis [30].
Indeed, under physiological conditions some adipokines secreted by the epicardial fat such
as adiponectin, adrenomedullin and omentin are supposed to protect the vasculature from
oxidative stress or regulate the arterial vascular tone and improve endothelial function [9].
Adrenomedullin and its receptors expressed in EAT are regulated by coronary status
and this hormone can play a cardioprotective role by inhibiting oxidative stress [27]. By
contrast, harmful effects of pro-inflammatory cytokines expressed by EAT such as IL-1β,
IL-6, TNFα, PAI-1, MCP-1 have also been reported [30]. In 2008, Cheng et al. showed that
tissue levels of leptin, visfatin, IL-6 and TNFα were higher in EAT from CAD patients
compared to non-CAD patients [31]. Increased levels of TNF or its soluble receptors have
been implicated in ischemia-reperfusion injury, myocarditis, cardiac allograft and also in
the progression of congestive heart failure [22,32,33]. Adipo-fibrokines such as activin-A or
matrix metalloproteinases (MMPs) also participate in extracellular matrix remodeling and
could be involved in fibrogenesis [24]. On the other hand, not only can the EAT influence
the heart and coronary arteries, EAT is also able to receive biological signals from the heart
and thus in return will be able to modify its secretome, indicating a crosstalk between
EAT and the cardiovascular system [34]. In particular, researchers noticed in EAT that the
expression of the gene encoding for adiponectin ADIPOQ was positively associated with
myocardial oxidative stress [34,35] probably through an adaptive mechanism. Usually,
an increased expression of ADIPOQ is correlated to a reduced myocardial nicotinamide
adenine dinucleotide phosphate oxidase-derived O2 (−) production. But in the study
of Antonopoulos and colleagues, the crosstalk between myocardium and EAT translates
into the induction of O2 (−) in H9C2 cardiomyocytes. This results in the production
of transferable factors that up-regulate adiponectin expression in EAT via peroxisome
proliferator-activated receptor γ (PPAR-γ) [35]. This work showed that not only can EAT
communicate with the myocardium, but the opposite also exists.

2.3. Immune Cellular Composition of EAT

Because of the singular proximity between the myocardium and the EAT, the adipokines
and pro-inflammatory molecules secreted by the EAT may directly affect the metabolism of
the heart and coronary arteries. Its particular secretome (epicardial adipokines) switches
to a proinflammatory profile in obesity and CAD and can induce atherogenic changes
in monocytes and endothelial cells [36–40]. Thus, inflammation could be linked to an
unbalance in immune cells. In this part we will develop what is known about immune cells
in EAT and how immune cells may also induce EAT extracellular matrix remodeling and
could also have a role in EAT browning.

The epicardial stroma vascular fraction includes numerous nervous, nodal, and in-
flammatory or non-inflammatory immune cells in addition to stromal cells [7,41]. Among
cells of the immune system present in the EAT, adaptive cells can be found, notably T
and B lymphocytes, as well as innate cells such as macrophages, mast cells, and dendritic
cells. Table 1 provides a unique comparison of the presence or absence of immune cell
subtypes infiltration in the EAT and VAT compared to SAT in mice and humans in the
context of obesity.
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Figure 1. The crosstalk between epicardial adipose tissue and the cardiovascular system. A local
crosstalk takes place between EAT (epicardial adipocytes and other EAT composing cells) and the
cardiovascular system (e.g., myocardium and coronary arteries). Physiological and pathophysiologi-
cal signals such as cytokines, adipokines or fibrokines can be released from EAT to cardiomyocytes
(and from myocardium to EAT) or coronary artery endothelial cells (grey arrows). Theses cytokines
can have protective and/or beneficial effects (green) or harmful effects (red). Other molecules’ effects
are still not well established or are controversial (black).

First, among phagocytic cells, macrophages are the most abundant immune cells
found in the adipose tissue of mice and humans [42]. It is reported that macrophage can be
present in adipose tissue in two different states i.e., pro-inflammatory classically activated
known as M1; or anti-inflammatory alternatively known as M2 [43]. Aron-Wisnewsky et al.
showed increased CD40 (M1) and reduced CD206 (M2) macrophages in VAT compared to
SAT [44]. In EAT, studies have shown the existence of macrophage infiltration in the tissue,
linking their polarization with the coronary status of patients [45–47]. Remarkably, Hirata
et al. characterized the phenotype of macrophages and demonstrated that M1 macrophages
are increased and M2 macrophages are decreased in EAT of CAD compared to non-CAD
patients [45]. Recently, a study has also suggested that an elevated number of macrophages
appeared to be associated with severe deterioration of heart function in CAD patients [23].

Other innate cells are present in EAT, among them, dendritic cells, (DCs) which
can be subdivided into two categories: conventional DCs (cDCs) and plasmacytoid DCs
(pDCs). cDCs initiate primary T-cell responses, thereby orchestrating adaptive immunity.
In contrast, pDCs do not stimulate naive T cells, but can be converted into cDC-like cells
upon activation and function as antigen presenting cells (APCs) [48]. DCs are significantly
increased in obesity, and promote macrophage infiltration in adipose tissue and liver [49].
In EAT, Mráz et al., reported for the first time in 2019 the presence of both types of DCs in
human EAT [50]. They also demonstrated that pDCs were significantly increased in EAT of
type 2 diabetic (T2D) compared to non-T2D patients.

Mast cells are commonly known for their role in several inflammatory and fibrotic
diseases. Upon staining mast cells with tryptase and chymase, high levels of these cells were
detected in obese omental adipose tissue [51]. Mazurek et al. by immunohistochemistry
demonstrated the presence of mast cells in EAT [41].
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Table 1. Summary of the presence or absence of immune cell subtypes infiltration within adipose
tissues in the context of obesity and related complications. Arrows represent an increase (up arrows)
or decrease (down arrows) of cells in EAT or VAT compared to SAT referenced in mice (red) and
human (blue). N/A: not applicable; ND: not detectable.

Immune Cells
EAT VAT

EAT References VAT References

In
na

te
im

m
un

e
ce

lls

Macrophages M1 ↑
Hirata et al., 2011;

Vianello et al., 2016;
Gurses et al., 2017

↑
Wisnewsky et al., 2009;

Aron-Wisnewsky et al., 2009;
Morris et al., 2011

M2 ↓
Hirata et al., 2011;

Vianello et al., 2016;
Gurses et al., 2017

↓
Wisnewsky et al., 2009;

Aron-Wisnewsky et al., 2009;
Morris et al., 2011

Eosinophils N/A - ↑ Wu D et al., 2011;
Molofsky et al., 2013

Mast cells Presence Laine et al. 1999;
Mazurek et al., 2003 ↑ Divoux et al., 2012;

Shi and Shi 2012

Neutrophils N/A - ↑ Carmon et al., 2008;
Talukdar et al., 2012

Natural killers ↓ Mráz et al., 2019 ↑↑

O’Rourke et al., 2013;
Trim et al., 2018;
Lee et al., 2016;

Wensveen et al., 2015

Dendritic cells ↑ Mráz et al., 2019;
Horcksman et al., 2017 ↑↑ Berthola et al., 2012;

Bapat et al., 2015

Innate lymphoid
Cells (ILCs)

ILC1 N/A - ↑ Everaere et al., 2017
ILC2 N/A - ↓ Everaere et al., 2017
ILC3 N/A - N/A -

A
da

pt
at

iv
e

im
m

un
e

ce
lls

T Lymphocytes
LTreg N/A - ↑ Feuerer et al., 2009;

Bapat et al., 2015

CD4+ ND Hirata et al., 2011 ↑/↓ Nishimura et al., 2009;
Lee et al., 2016

CD8+ ↑ Hirata et al., 2011 ↑↑ Duffaut et al., 2009;
Bapat et al., 2015

B Lymphocytes ↑ Mráz et al., 2019 ↑ Bapat et al., 2015

Natural killer cells (NK) are well-known for killing virus-infected cells and controlling
cancers [52]. In adipose tissue, it is suggested that NK cells recruitment, proliferation,
and activation is stimulated by adipose tissue-resident macrophage derived secretory
products [53]. These recruited NK cells within the adipose tissue might stimulate MCP-1
expression, which in turn causes macrophage infiltration [54]. In their 2009 study, Mráz et al.
also reported a reduced number of NK cells in EAT of both CAD and non-CAD patients. In
contrast, natural killer T cells (NKT cells) represent a subset of T lymphocytes along with
NK cell surface markers [55]. A subset of NKT cells termed invariant NKT cells (iNKT)
in adipose tissue maintains inflammation in quiescent state and regulates homeostasis
of other anti-inflammatory immune cells, including M2 macrophages and Treg cells [56].
Their possible presence in EAT remains to be determined.

Other unconventional cells are interesting and should be given attention in the EAT:
the first ones are type 2 innate lymphoid cells (ILC2s). ILC2s can be identified in adipose
tissue [57], where they secrete IL-5 and IL-13 known to maintain insulin sensitivity in lean
mice through the recruitment of eosinophils by IL5, and maintenance of M2 macrophages
by IL-13 [58,59]. ILC2s may also control certain features of energy balance in mice, as
IL-33-deficient mice (which have reduced functional ILC2s) develop spontaneous weight
gain and fat mass on a low fat diet [57].

The other unconventional T cells that should be studied in EAT, but which have
not been studied yet are gamma delta T cells (γδ T cells). In adipose tissue, they form
between 5–15% of the total T cell compartment [60]. Kohlgruber et al. found that IL-
17A-producing γδ T cells were the driving factor in promoting stromal-cell production
of IL-33, which in turn promotes the maintenance of the adipose T-reg population. The
authors further showed that mice lacking γδ T cells lacked the ability to regulate core body
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temperature after a cold challenge. Indeed, their data would suggest that γδ T cells/IL17A
axis promotes thermogenesis.

Cells from the adaptive immune system are also present in adipose tissue; Nishimura
et al. demonstrated an infiltration of CD8+ T Lymphocytes (LT) early in the development
of obesity [61]. They also showed that transfer of CD8+ T cells into CD8-deficient obese
mice induces M1 macrophage infiltration leading to adipose tissue inflammation. With
regard to B lymphocytes (LB), they promote adipose tissue macrophage recruitment and
TNF-α production in mice fed a high-fat diet (HFD). LB have also been linked with the
accumulation and differentiation of IFN-γ-producing CD4+ and CD8+ T-cells in murine
adipose tissue [62]. In EAT, Mráz et al. analyzed lymphocyte subtypes using cytometry
and immunohistochemistry in SAT and EAT of patients with and without CAD [63].
They showed higher T cell content in EAT of subjects with CAD compared to non-CAD
patients. Notably, they also demonstrated that LB even represent a higher percentage of
total lymphocytes in EAT compared to SAT. However, a more comprehensive assessment
of different T lymphocyte subpopulations in EAT, as well as their relation with CAD, is
still lacking.

2.4. EAT in Heart Diseases

The special location of this adipose tissue allows it to communicate directly with
the cardiomyocytes but also with the vascular wall of the coronary arteries. Recent evi-
dence suggests2 that EAT plays an important part in the development of an unfavorable
metabolic and cardiovascular risk profile [26,37,64,65]. Indeed, accumulation of fat around
the heart is a well-established factor associated with the development of CVD, CAD, AF
and heart failure.

2.4.1. Coronary Artery Disease

Many studies have shown that EAT is significantly correlated with the extent and
severity of CAD. In a large case-control study, the MESA (Multi-Ethnic Study of Atheroscle-
rosis), increased EAT was associated with a higher risk of developing incident CAD in
adult subjects with no history of CVD, which suggests a role of increased EAT volume to
predict major coronary clinical events [66]. Some other case-control studies identified EAT
volume as a strong predictor of myocardial ischemia [67] or flow-limit ischemia detected
by fractional flow reserve [68]. In a recent prospective trial, Mahabadi et al. showed that
EAT volume significantly predicted fatal and nonfatal coronary events independently of
cardiovascular risk factors and CAC score (Coronary Artery Calcification score) [69]. EAT
seems to be involved in early stages of atherogenesis. In a study using cold-pressor test, we
previously showed, in healthy lean volunteers, a negative correlation between EAT amount
and microvascular coronary vasodilation, an abnormality that can be detectable before the
apparition of CAD, suggesting that EAT could be involved in endothelial dysfunction [70].
In asymptomatic subjects, EAT was associated with the presence and progression of coro-
nary artery atherosclerosis especially in young subjects with low CAC score, suggesting
that EAT may promote early atherosclerosis development [71,72].

All these findings support the hypothesis of the role of EAT in promoting the early
stages of atherosclerotic plaque formation. The mechanisms by which EAT can cause
atherosclerosis are complex and not completely understood.

Epicardial fat might alter the coronary arteries through multiple pathways. Due to its
secretion of bioactive inflammatory molecules, EAT is now recognized as involved in the
formation of atherosclerotic plaques, and the onset of CAD [41,73]. Moreover, EAT in CAD
patients showed increased expression of genes implicated in oxidative stress [74], and it is
well established that the production of reactive oxygen species (ROS) impairs myocardial
function and reduces the number of vital cardiomyocytes [75]. Numerous research teams
have been working on EAT candidate molecules that could be involved in CAD. We
previously demonstrated that the secretory type II phospholipase A2 (sPLA2-IIA), which
has been shown to be an independent risk factor for CAD, showed an increased expression
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in EAT of CAD patients [26]. Other candidates such as catalase, carbonic anhydrase 1
(CAH1), phosphoglycerate mutase 1 (PGAM1), glutathione S-transferase P (GSTP1), and
protein disulfide isomerase (PDIA1), that are related to oxidative stress pathways, were
found to have proteomic differences in EAT compared to SAT from CAD patients [76]. All
these proteins, except catalase and CAH1, were increased in EAT compared to SAT and
ROS production was higher in EAT than SAT. But these findings are associative studies and
the causality of EAT-derived ROS in CAD remains to be demonstrated.

Furthermore, EAT could lead to endothelial dysfunction and vascular remodeling by
secreting fatty acids and pro-inflammatory mediators and via inducing the adhesion of
monocytes to endothelial cells and macrophage activation [38,45]. In vitro studies showed
an increase of mast cells in the adventitia of coronary lesions [45]. Also, it should be noted
that the presence of macrophages and mast cells in EAT could contribute to underlying
vessel instability, which can lead to plaque rupture [77]. Very recent studies using machine
learning approaches, artificial intelligence (AI), imaging and radiomic methods, have
improved EAT functional characterization with the detection of perivascular adipose tissue
inflammation and structural remodeling, that led to a striking improvement of cardiac risk
prediction in high-risk individuals [78,79].

By all these mechanisms and as shown in clinical studies EAT volume is a strong
independent predictor of CAD. However, a beneficial impact of the reduction of EAT
quantity or immune cells infiltration in CAD remains to be proven.

2.4.2. Atrial Fibrillation

A growing body of evidence suggests that EAT can have a biological impact on
cardiovascular tissues and could be implicated in the pathogenesis of AF [80–83]. Many
studies have shown an association between EAT amount and the AF risk, severity and post
ablation or electrical cardioversion recurrence.

The increase of total EAT volume was found to be associated with the prevalence of
AF. In a large study Thanassoulis et al. reported a significant correlation between EAT
volume and AF risk, independently of other measures of adiposity, and this association
was maintained after adjusting on other AF risk factors [84]. In the same way, Nakanishi
et al. demonstrated that peri-atrial EAT volume predicted the development of new-onset
AF in patients with CAD, independently of the presence of hypertension, diabetes or left
atrial enlargement [82]. Moreover, numerous studies have shown that EAT, surrounding
the atria in particular, was linked to AF recurrence after ablation therapy [82,85]. These
studies suggest that EAT is an important determinant of the AF substrate and the presence
of other cardiovascular risk factors does not weaken this link.

The lack of fascia separating EAT from myocardium favors inflammatory infiltrates
in the atrial wall, which could trigger arrhythmias [86,87]. EAT-secreted adipokines could
contribute to structural remodeling of the atrial myocardium that promotes fibrosis. This
remodeling could enhance the loss of cells connection, altering the propagation of the
depolarizing wave and leading to conduction defects: formation of microcircuits and
breakthrough of electrical impulses [88,89]. The amount of EAT could also exercise a
mechanical effect on left ventricle (LV) and right ventricle (RV) filling and lead to an atria
enlargement, which is one of the risk factors for AF [90].

Thus, EAT is an important determinant of AF which might predict the outcomes of
rhythm control strategies and peri-atrial EAT volume assessment could contribute to the
prevention and the management of AF, and especially in patients with CAD.

2.4.3. Cardiac Morphology and Function

EAT is anatomically and clinically related to cardiac morphology and function. An
increased amount of EAT has been associated with increased LV mass and abnormal right
ventricle geometry or subclinical dysfunction [24]. In patients without CVD, LV mass is
correlated with the EAT thickness measured by echocardiography [91]. This is in accor-
dance with autopsy findings which suggests that an increase in myocardial mass during
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both LV and RV hypertrophy is associated with a proportional increase in EAT mass [8].
Increased LV mass and LV hypertrophy are independent risk factors for cardiovascular and
all-cause mortality, so it can be supposed that the increment of EAT causes additional mass
on both ventricles, which can enhance the cardiac work demands and lead to LV hyper-
trophy. Recently, innovative methods such as speckle tracking echocardiography (STE) or
cardiovascular magnetic resonance (CMR) have allowed to study cardiac mechanics like
strain, torsion, and synchrony of contraction, and thus highlight association of EAT volume
and subtle abnormalities in cardiac structure and contractile function. In a study using
STE, EAT was associated with longitudinal STE LV-dys-synchrony, longitudinal strain,
circumferential LV-dys-synchrony, and LV twist [92] and in another study using CMR,
in obese children, LV mass index, thickness, ejection fraction and peak longitudinal and
circumferential strains were all correlated with EAT [93].

2.4.4. EAT and COVID-19

Given that obesity has been identified as an independent risk factor for complications
and mortality in coronavirus disease 2019 (COVID-19), great interest has been shown in the
involvement of EAT in this disease. EAT would appear to express higher levels of ACE2
than subcutaneous adipose tissue, which could make it a preferred viral reservoir [94].
Several studies have shown that EAT is a major driver of COVID-19 severity [94]. Using
computed tomography (CT) scans and semi-automatic software, Cosson et al. demon-
strated that volume was associated with the severity of COVID-19 and with transfer to
intensive care unit (ICU) or death [95]. Iacobellis et al. showed that the density of EAT,
reflecting inflammatory status, increased with rising COVID-19 severity [96]. Further-
more, the authors observed that EAT density was significantly reduced after treatment
by dexamethasone, suggesting that EAT could be targeted by anti-inflammatory treat-
ment [97]. Moreover, numerous studies have highlighted the possible implication of EAT
in myocardial inflammation through its anatomical and functional relationship with the
myocardium [94,98,99]. The EAT inflammatory secretome, such as interleukin-6 (IL-6),
cytokine found in excess in severe COVID-19 patients, may be a key element in cardiac
complications [98].

2.5. Effect of Exercise, Weight Loss, Pharmacological Intervention on EAT

Multiple studies have revealed that exercise, bariatric surgery and pharmacological
intervention can reduce EAT volume [100–103]. Our team demonstrated a significant
reduction of EAT amount after bariatric surgery [100]. We should underline that the
EAT decrease was less important than the decrease in VAT. We also evaluated the EAT
volume by MRI after pharmacological intervention. In a randomized type 2 diabetes (T2D)
patient study, comparing exenatide (a glucagon-like peptide-1 agonist) versus reference
treatment of T2D, according to French guidelines, we found a significant reduction of EAT
volume after 26 weeks of treatment in the exenatide group in comparison to reference
treatment [101]. Other treatments like statins [104] or SGLT-2 inhibitors [105–107] showed
also a significant depletion of EAT. Some studies have found a benefit of physical exercise
on EAT reduction in overweight subjects [102,103]. In a meta-analysis, it was demonstrated
that supervised endurance training in particular decrease EAT amount with no involvement
of total duration of the training [102]. However, Jonker et al. [108], found no difference
after 6 months of preparation for a 12-day trekking expedition, which raises questions
about the exercise effect. In total, all of these interventional studies focus on the changes
of EAT volume without assessing changes in EAT characteristics such as its inflammation
profile and its browning. What is still unknown is whether this reduction of EAT is
associated with a modification in its composition or not. The diminution of EAT thickness
might be related to the reduction of its inflammatory status, which has been suggested
by a recent study performing a secretome analysis on EAT biopsies of patients under
statins, but the results are too scarce and more investigations are needed [109]. Recently,
using perivascular Fat Attenuation Index (FAI), an AI intelligence tool in CT scan that
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captures attenuation gradients of EAT surrounding coronary arteries (perivascular adipose
tissue PVAT), Antoniades et al. analyzed the impact of pharmacological interventions on
PVAT inflammation [110]. The treatment of psoriasis with anti-inflammatory antibodies
(anti-TNFa, anti-IL17, anti-IL12/23) showed a reduction in FAIpvat values, which means
a reduction in EAT inflammation [111]. Hence, this tool could be used to assess the
inflammatory status of the diminished EAT. However, if this index reflects also the change
in browning is not known and needs complementary studies.

3. The Browning of Adipose Tissue

Until a few years ago, white and brown adipocyte tissues were the main adipose
tissues found and studied in mammals. One of the principal functions of the WAT is to
store a large number of nutrients, particularly lipids in the form of triglycerides that can
be released as fatty acids when food becomes scarce [112]. This is probably why these
cells contain a large vacuole capable of storing lipids. The BAT which is a natural defense
system against hypothermia in mammals [113–117], is composed of smaller multilocular
lipid droplets and numerous mitochondria. Indeed, WAT and BAT are dynamic tissues
capable of a form of adaptation. In fact, they can respond to different forms of stress such
as cold exposure for the BAT, or even starvation or overfeeding for the WAT [118–120]. The
BAT is mainly defined as a heat producer [120]. The particularity of the BAT is that it can
dissipate the energy in the form of heat, this process is called non-shivering thermogenesis
and is the mean difference between WAT and BAT [120]. This thermogenic function comes
from UCP-1 [121]. This protein inserted in the inner membrane of the mitochondria can
be activated by cold exposure or food intake and acts as a proton channel that dissipates
the electrochemical gradient produced by the oxidative phosphorylation without allowing
the synthesis of ATP, the energy is then released as heat [122,123]. Recent studies using
positron emission tomography (PET) reported the presence of metabolically active BAT
within the neck and upper chest regions of human adults [124,125]. Thus, BAT has been
shown to be an important regulator of energy expenditure, and a potential therapeutic
target in obesity. But there are other adaptive changes that can be found in WAT and which
are related to the thermogenic function of BAT. It is indeed possible in certain conditions to
observe the appearance of ‘brown-like’ adipocytes in WAT [4–6].

A common definition of browning is the induction of a thermogenic function by WAT.
These cells are then named beige or brite (brown-in-white) adipocytes and were first found
in cold-acclimated mice [126], suggesting that WAT can acquire thermogenic properties.
Beige adipocytes are characterized by multiple lipid droplets containing triglycerides
and numerous mitochondria. These changes can occur when the cells are activated by
thermogenic stimuli such as cold exposure [127,128] or stimulated by browning factors such
as β3-adrenergic agonists [129–134], or glucagon like peptide 1 (GLP-1) agonists [135–138].

Beige adipocytes are mostly characterized by their expression of UCP-1 just like brown
adipocytes but display distinct molecular signature from brown adipocytes in mouse and
humans [127]. It has been evidenced that BAT comes from Myf5+ lineage precursors while
beige adipocytes precursors are Myf5− and PDGFRα+ [127,139]. Moreover, to prove that
beige and brown adipocytes are quite distinct, Wu et al. have studied beige cells from
murine white fat depots [127]. They observed a gene expression profile distinct from white
or brown fat in these beige adipocytes. But although a beige cell lineage exists, evidence of
trans-differentiation from white to beige adipocytes in vivo has also been evidenced [140].

3.1. White, Brown, and Beige Adipocytes Markers

In order to better understand the mechanisms of browning, it is essential to be able to
distinguish the different subtypes of adipocytes. For this purpose, there are many markers
for white, brown and beige adipocytes in mice and humans. In this review, we tried to sum
up the majority of these markers in Figure 2.
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Figure 2. White, Beige and Brown adipocyte markers in Human and Mouse. We summed up here
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3.1.1. White Adipocyte Markers

To begin, a common marker used in human and mice for white adipose tissue
analyses is Leptin [141,142]. In mice subcutaneous WAT, it has been shown that white
adipocytes expressed Asc-1 (also called solute carrier family 7 member 10 (SLC7a10))
specifically [143,144], but also the serine protease inhibitor A3K (Serpina3K), Wndnm1-
like [144,145] and Tcf21 [146]. In humans, others specific WAT genetic markers are known,
among them are Ebf3, Fbox31 and Mpzl2 [147], and FASN [148]. Although WAT and BAT
do not currently share markers, white and beige adipocytes from mice and humans have
in common Pdfrα [149,150] and the homeobox (Hox)C8 and Hoxc9 genes normally used to
identify white adipocytes [144,146,150].

3.1.2. Brown Adipocyte Markers

Since it was known that both beige and brown adipocytes have common characteristics,
it was necessary to distinguish them and discover which markers they had in common
and which were really specific to brown adipocytes. For this purpose, De Jong et al.
evaluated the expression of several markers in interscapular (BAT), inguinal (beige), and
epididymal (WAT) mice adipose tissues and found that only Zic-1 mRNA was detectable
in BAT [151]. Others studies have also come to this conclusion with BAT gene expression
profile studies in mice but also in humans [146,147,152,153]. In human BAT and mice
interscapular region, studies identified Eva1 (also known as Mpzl2) as another specific
BAT marker, with significantly higher expression in this tissue compared to beige and
white adipose tissues [127,154]. Ussar et al. demonstrated that the expression of P2RX5
is up-regulated in brown preadipocytes and adipocytes and that its expression is further
increased during cell differentiation [143]. Ancient markers that were commonly used to
identify BAT, have been shown to be expressed by beige cells as well. It is now well-known
that UCP-1 can also be expressed by beige adipocytes, but other markers shared by both
cell types such as CIDEA [144,145], Lhx8 [144], PGC1α [155,156], PRDM16 [150,154,157]
have been evidenced and many others as listed in Figure 2.

3.1.3. Beige Adipocyte Markers

In order to evaluate markers of mice beige adipocytes, Garcia et al. studied transcript
expression of several thermoregulatory genes and proposed specific beige markers such
as Cox8b [145] or the fibroblast growth factor 21 (FGF21) [145,158]. In their transcriptomic
study, De Jond et al. also analyzed potential beige markers and identified CD137, Epsti1,
Tbx1 and Tmem26 as being quite specific of beige adipose tissue [151]. Although reservations
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have been made on Tbx1 and Tmem26 because a comparison of their expression in brown
and white adipocyte cell cultures revealed no qualitative difference [144]. In addition,
CD137 and Tmem26 are known to be cell surface markers, notably for beige precursors [159],
which constitute a major advantage in the isolation of these cells from WAT. Recently, Comas
et al. discovered a novel marker of beige adipocytes called neuregulin 4 (NRG4) in human
adipose tissue [148]. This study also showed a significant relationship between NRG4 and
TMEM26 gene expression in both VAT and SAT. Other markers reported to be specific to
beige adipose tissues have been reported, in both humans and mice, such as CITED1, Ear2,
Elov3, Sca1, Dio2 (Figure 2).

3.2. Browning Factors
3.2.1. Thermogenic Stimuli

Many stimuli contribute to the apparition of beige adipocytes in WAT. Using positron
emission tomography (PET) scan studies showed that cold exposure is one of the main
sources of BAT activation and browning induction [124,160–163]. In response to a cold
stress, sympathetic nerve terminals will release catecholamines, such as norepinephrine
(NE), that will be addressed to their β-adrenergic receptors (β-AR). The involvement of
the β3-AR in the browning has been demonstrated many times, and it has been found that
chronic treatment with β3-adrenergic agonists induces the browning of WAT [130,164–167].
More recently, a study investigated the physiological signals involved in cold-induced
browning in mice showed that white adipocytes can receive adrenergic signals via β3-AR
and produce FGF21 which stimulates eosinophils and M2 macrophages. The stimulation
of these type 2 immune cells leads to the browning of SAT but not BAT or epidydimal
adipose tissue [158]. Moreover, beige adipocytes seem to be able to remember if they have
already been exposed to cold, a thermogenic capacity that they can thus re-employ more
quickly [168].

3.2.2. Proteins Stimuli

Another stimulus inducing the presence of beige adipocytes is the inactivation of the
AMP-activated protein kinase (AMPK) in the ventromedial hypothalamus. This protein
activated when cellular energy is depleted, can promote ATP-producing processes [169,170].
Its inactivation results in an increase sympathetic output to WAT thus inducing BAT
activation and WAT browning [171]. The AMPK inactivation that leads to browning can
be induced by thyroid hormones [172,173] or glucagon like peptide 1 receptor (GLP-1R)
agonists [137].

3.2.3. Lipids Stimuli

Recently, lipids have also been identified as regulators of thermogenic fat activation
notably via a specific crosstalk with sympathetic neurons [174]. Indeed, growing evidence
suggests that de novo lipid synthesis through the fatty acid synthase (FASN) mediates the
expansion of beige adipocytes within inguinal white adipose tissue [175]. Another lipogenic
pathway related to lipids was found to modulate PPARγ activation of brown-like adipocytes
in mice SAT, the peroxisomal reductase activating PPARγ (PexRAP) [176]. Other evidences
of lipid involvement exist, for example the polyunsaturated fatty acid, eicosapentaenoic
acid (EPA), has been shown to promote BAT thermogenic capacity by increasing the UCP1
content amplifying catecholamines such as NE-stimulated oxygen consumption [177,178].
In mice, EPA has also been shown to increase UCP-1 gene expression, enhancing the
thermogenic response of BAT and inguinal WAT to β3-adrenergic stimulation [178,179].
Park et al. further demonstrated that peroxisome-derived lipids, including plasmalogens,
are able to regulate adipose thermogenesis by mediating cold-induced mitochondrial fission
in brown and beige adipocytes [180].
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3.2.4. Natriuretic Peptides

Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are endocrine
hormones released from the heart in response to cardiac wall stress and other local fac-
tors [181–184]. Several studies have showed that cardiac natriuretic peptides are browning
inducers. In both humans and mice adipocytes, it has been demonstrated that natriuretic
peptides activate the mammalian target of rapamycin complex 1 (mTORC1) signaling [185].
This last complex has been shown to be necessary for cold-induced browning [186,187].
In addition, ANP treatments significantly increased UCP-1 expression, ameliorated high
fat diet-induced insulin resistance in mice by inducing adipose tissue browning [188].
Bordicchia et al. also demonstrated that in human adipocytes, ANP and BNP activated
PPARγ coactivator-1α (PGC-1α) and UCP-1 expression, induced mitochondriogenesis, and
increased uncoupled and total respiration in a p38 MAPK-dependent manner. Further
infusion of BNP into mice robustly increased Ucp1 and Pgc-1α expression in WAT and
BAT, with corresponding elevation of respiration and energy expenditure confirming that
natriuretic peptides can promote browning of WAT to increase energy expenditure, defining
the heart as a central regulator of adipose tissue biology [189].

3.2.5. Extracellular Vesicles (EVs) and miRNA

Several adipose tissue cell subtypes including adipocytes, adipose tissue-derived
stem cells (ADSCs), endothelial cells and macrophages have been reported to secrete
extracellular vesicles (EVs) [190]. Adipose-derived EVs include exosomes, microvesicles
and apoptotic bodies [191]. As mentioned earlier, EVs have emerged as a new way of
inter-organ and intercellular communication in the EAT/cardiovascular system crosstalk.
They are now also known to be involved in WAT browning. In 2018, a unidirectional
transfer of exosomes from adipose tissue-derived stem cells (ADSCs) to macrophages
has been observed [192]. Moreover, these exosomes have been shown to induce the
polarization of macrophages into the anti-inflammatory M2 subtype. The authors also
demonstrated that these ADSCs-derived exosomes promote inguinal and epididymal
WAT-browning in mice. In 2020, these findings have been transposed to human ADSCs-
derived exosomes [193]. Secretion of exosomes during stem cell differentiation into white or
beige adipocytes can promote cell reprogramming implying that beige adipocytes-derived
exosomes can stimulate the development of other beige cells in WAT. Although these
findings remain interesting, it is now necessary to discover which component(s) of ADSCs-
derived exosomes is/are responsible for browning. Indeed, in addition to containing
nanovesicles, proteins, bioactive lipids or non-coding RNAs, they also enclose microRNAs
(miRs) [190,194]. Some of them have been shown to have a role in WAT browning. miR-
196a has been shown to induce WAT-browning during cold exposure and β-adrenergic
stimulation [195]. miR-155 increased brown adipose tissue function and leaded to a brown
adipocyte-like phenotype in white adipocytes [196]. Therefore, further studies are required
to identify the precise involvement of EVs and their still poorly understood content in the
biogenesis of beige adipocytes and in the white-to-beige differentiation.

3.2.6. Muscle

We have to highlight the crosstalk between adipose tissue and muscle in promoting the
browning of adipose tissue. Indeed, skeletal muscle and adipose tissue secrete METRNL
(Meteorin-like), a PGC-1α-dependent myokine, in response to physical exercise and cold
exposure [197]. Rao et al. showed that METRNL can enhance browning without acting
directly on adipocytes [198]. In fact, METRNL was found to induce the recruitment of
eosinophils in WAT leading to an increased expression of IL4 and IL13, which results in
stimulation of M2 macrophages and activation of thermogenic genes. Irisin, a cleavage
product of Fndc5 gene (fibronectin type III domain containing 5), is another exercise-
stimulated PGC-1α-dependent myokine implicated in the browning of WAT [199] but its
secretion by the skeletal muscle, its regulation and function are a source of discrepancy in
the literature [200].
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3.2.7. Immune Cells

In addition to the previous browning factors, many immune actors have been found
to be involved in the appearance of beige adipocytes in WAT. Among these actors, type 2
immune cells and their related type 2 cytokines could play a major role in the biogenesis of
beige adipocytes. Lee et al. reported in their work on thermoneutral mice, that activation
of type 2 innate lymphoid cells (ILC2s) by interleukin (IL)-33 is sufficient to promote the
growth of adipocyte precursors committed to the beige fat lineage [201]. In fact, they
reported that a thermogenic circuit exists activating ILC2s which in response secrete IL-
13. The authors then showed that this ILC2-derived cytokine in cooperation with the
eosinophil-derived IL-4 will directly promote the expansion and commitment of beige
adipocyte progenitors in the SAT through the IL-4 receptor α (IL-4Rα) signaling. In 2014,
ILC2 were also identified in human WAT by Brestoff et al. [57] and shown to be decreased
in obesity. Moreover, IL-33 was found to be critical for the maintenance of ILC2s in
WAT and for the induction of browning. To go further into the contribution of ILC2 in
browning, they focused on obesity-associated genes they expressed. They particularly
observed that ILC2 could product methionine-enkephalin peptide (MetEnk), the latter
having the ability to increase beige adipocytes in WAT. Moreover, one of the receptors for
MetEnk, δ1 opioid receptor (Oprd1), was highly expressed in inguinal WAT suggesting
that there may be tissue-specific effects of MetEnk in WAT. A recent study combining
neural and immune systems also established that the sympathetic nervous system can
activate PDGFRα positive mesenchymal cells, present in the stromal vascular fraction,
through the β2-adrenergic receptor. In response to sympathetic signals, these cells secreted
the glial-derived neurotrophic factor (GNDF) that was able to modulate the activity of
ILC2s via the tyrosine kinase receptor RET. In this study, Cardoso and colleagues further
demonstrated that RET was essential in ILC2s activities especially in the secretion of IL-5, IL-
13 and MetEnk that will participate to the shaping of energy expenditure, host metabolism
and obesity.

Recent literature also suggest that other innate lymphoid cells could be implicated in
the browning. Among them are eosinophils. First, a study demonstrated the implication of
eosinophils in the activation of alternative activated macrophages (AMMs) by expressing IL-
4 in perigonadal WAT [202]. Moreover, they showed that these eosinophils were the major
IL-4-expressing cells in mice perigonadal WAT. They further demonstrated that eosinophils
migrate from blood into WAT by an integrin-dependent process and reconstitute AAMs
through an IL-4/IL-13-dependent process. Then, another study showed that eosinophils
is a part of the efferent branch from the thermogenic circuit that regulates cold-induced
browning of SAT [203]. In 2011, it has been shown that after their activation by IL-4,
AMMs are able to modulate adaptive thermogenesis [204]. The Huang et al. study cited
above showed that cold exposure can induce an autocrine signaling of FGF21 in mature
white adipocytes [158]. This leads to the expression of the chemokine CCL11 activating
eosinophils which in turn secrete IL-4 that can either activate M2 macrophages or induce
the browning of PDGFRα positive adipocyte precursors. Moreover, the formation of beige
adipocytes can also result from the existence of a genetic or environmental background or
from fat depot specific differences [205].

Finally, in 2018 a study highlighted the role of γδ T cells in adipose tissue thermoge-
nesis. The authors demonstrated that IL-17A-producing γδ T cells interact with adipose
stromal cells and consequently regulate IL-33 abundance, which affects Treg cell accumula-
tion and thermoregulation [60]. They also showed that γδ T cells and IL-17A deficiencies
significantly affect the ability of mice to survive after a cold challenge and strongly induce
UCP-1-dependent thermogenic responses. This advance in the dynamic crosstalk between
innate lymphoid cells and adipose tissue dictates the local immune composition responsible
for adipose tissue wiggling and thermogenesis.
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4. Browning EAT: Friend or Foe?
4.1. Evidences of EAT Beige Phenotype

Before the appearance of the term of beige adipocytes in the EAT, researchers had
described EAT as functioning like a brown adipose tissue [7,14]. Sacks et al., in a transcrip-
tional analysis of BAT markers in human EAT, concluded that, since UCP-1, PRDM16, and
PGC-1α were expressed more strongly in this tissue than in other fat depots, EAT could
function as brown fat. This could serve to defend the myocardium and coronary vessels
against hypothermia and protect the heart from ischemia or hypoxia [14]. In 2013, another
study of the EAT gene expression profile revealed the presence of the beige adipocyte-
specific marker CD137, and histological analysis showed small unilocular adipocytes in
the tissue [3]. This same study showed significantly increased levels of UCP-1 in mito-
chondria from EAT compared to paracardial, abdominal, and sternal SAT. Moreover, the
authors found that those EAT UCP-1 concentrations were comparable to those found in
pericardial BAT sampled from newborn sheep in which the protein is maximally expressed
and activated. The same year, in a cohort of CAD patients, elevated mRNA expression of
UCP-1 in EAT was shown and a correlation with circulating lipid levels was made [206].
Since growing evidence suggests that lipids play a role in the browning phenomenon [207],
we performed an untargeted lipidomic study on EAT and SAT from CAD and non-CAD
patients and compared them with paired plasma lipidomic analysis of isolated VLDL
(very low-density lipoprotein). This work showed for the first time that EAT and SAT
had independent lipidomic profile. Secondly, we found that six plasmalogen species were
significantly enriched in EAT compared with SAT. These specific plasmalogens increase
could reflect a thermogenic activity of the EAT compared to SAT [207]. Indeed, Park et al.
suggested that manipulation of plasmalogen production by dietary or pharmacological ap-
proaches could enhance the thermogenic status of beige adipocytes [180]. Adipose-specific
KO of the peroxisomal biogenesis factor Pex16 (Pex16-AKO) in mice impaired cold toler-
ance, decreased energy expenditure, and increased diet-induced obesity. Pex16 deficiency
blocked cold-induced mitochondrial fission, decreased mitochondrial copy number, and
caused mitochondrial dysfunction. This highlighted that peroxisome-derived lipids regu-
late adipose thermogenesis by mediating cold-induced mitochondrial fission. Therefore,
function of plasmalogens in EAT deserves more research and the possible plasmalogens-
induced browning of the EAT further investigations. Other dietary treatments have been
suggested to be implicated in EAT browning such as aged garlic extract. Ahmadi et al.
showed that aged garlic extract was associated with increased brown EAT, and prevented
the progression of CAC score [208].

Using a pangenomic approach, our research group has added further evidence of
the human EAT beige profile [2]. Indeed, an EPICAR study aimed at determining the
specific transcriptomic profile of EAT. We showed that the peri-ventricular EAT could
be very sensitive to browning. In particular, we showed that EAT expressed some BAT
specific genes such as UCP-1 actin alpha 1 (ACTC1) or PPAR gamma co-activator 1 alpha
(PPARGC1A). Moreover, WAT specific gene HOXC9 was significantly downregulated in
EAT compared with SAT. All this suggests that EAT exhibits a beige phenotype. More
recently, another study using next-generation deep sequencing compared gene signatures
from EAT, SAT and mediastinal adipose tissue (mAT) [15]. In this work, the authors identi-
fied lipid metabolism-related pathways associated with thermogenesis in EAT but not in
mAT or SAT. These include fatty acid activation, mitochondrial L-carnitine shuttle path-
way, fatty acid β-oxidation I and γ-linolenate biosynthesis. Association of genes involved
in fatty acid oxidation and in white-to-brown fat differentiation with EAT glucagon like
peptide 1 receptor (GLP-1R), has been depicted [209]. EAT expresses GLP-1R at both gene
and protein levels and it has been shown that GLP-1 analogs (GLP-1A) has important
cardiovascular beneficial effects that go beyond their antidiabetic actions, with a substantial
reduction of EAT in diabetic and obese patients in patients treated with GLP-1A [101,210].
Dozio et al. who demonstrated the association between fatty acid oxidation genes and EAT
GLP-1R showed that GLP-1A, by targeting EAT GLP-1R, may reduce local adipogenesis,
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improve fat utilization and induce brown fat differentiation [209]. Therefore, it is tempting
to speculate on an intriguing strategy targeting GLP1-R to reverse metabolic derangement
of EAT and future studies are warranted in this direction.

4.2. Proposed Browning Factors within the EAT

Interestingly, Chechi et al. also reported that EAT displays an overrepresentation of
immune-related pathways that brings it closer to mAT than to SAT [15]. Moreover, they
found that EAT was enriched in T-cell related pathways such as ICOS-ICOSL signaling, T
helper cell differentiation, or Th2 pathway. This last signaling pathway has been since few
years widely studied in the implication of browning. Therefore, it is possible to imagine
that these immune related pathways can contribute to the epicardial fat browning (Figure 3).
Unfortunately, not many studies have yet demonstrated the involvement of these cells
in the EAT beige status. Recently, researchers have established that a TNF superfamily
member, the death receptor 3 (DR3), was expressed in murine VAT and human peripheral
blood-ILC2s and inducible by IL-33 [211]. They also revealed that mice treated with DR3
agonist exhibited significantly enhanced expression of Ucp1, Cidea, Prdm16, Pgc1a and
Dio2 at the transcriptomic level. Whether these factors could have a direct paracrine effect
on EAT remains to be determined.

One evidence of the direct type 2 immunity involvement in the EAT is the Sacks et al.
study from 2011 [28], complemented by the study of Distel et al. from 2012 [212]. The first
study showed increased expression of anti-inflammatory interleukin-1 receptor antago-
nist (IL-1Ra) and IL-10, in EAT from metabolic or T2D subjects suggesting a potentially
beneficial role for these adipokines in a proinflammatory milieu contiguous with CAD.
Treatment with pioglitazone in T2D patients with CAD was associated with a reduction of
proinflammatory and anti-inflammatory genes in EAT and a selective increase in PPARγ in
SAT. The second study investigated the short-term effect of rosiglitazone on the expression
of the genes and proteins (by RT-PCR and Western blot) involved in fatty acid metabolism
in EAT of the obese fatty Zucker rat and compared the levels of expression with those in
retroperitoneal adipose tissue. Interestingly, the expression of the genes encoding proteins
involved in mitochondrial processing and density PPARγ coactivator 1 alpha (PGC-1α),
NADH dehydrogenase 1 and cytochrome oxidase (COX4) were increased by rosiglitazone
only in EAT, with a resulting significant up-regulation of PGC1-α and COX4 protein. This
was accompanied by a rise in the expression of PRDM-16 and UCP-1, revealing that this
PPAR-γ agonist could induce a rapid browning of the EAT that probably contributes to
high lipid turnover in this tissue.

Finally, it has recently been demonstrated that EAT adipocytes can release EVs that
can penetrate cardiac cells by endocytosis [25] (Figure 3). Very recent data have evidenced
functional mitochondrial transfer from energetically stressed adipocytes to the heart that
could limit cardiac ischemia/reperfusion injury in mice and prevent lipotoxicity [213,214].
Potential factors implicated in the EAT browning are summarized in Figure 3.

It may hence be supposed that re-browning of EAT in obese and/or CAD patients,
using a diversity of dietary, environmental and pharmacological approaches, may improve
the hypoxic, inflammatory microenvironment disturbing the vasculature and contributing
to coronary atherosclerosis [215]. However, the factors specifically involved in EAT brown-
ing and regulating this phenomenon remain to be clearly identified, and other experimental
studies are needed to better understand which pathway could be targeted to improve
the phenotype of EAT and hence reduce the cardiovascular outcomes associated with its
imbalanced inflammatory phenotype.
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pharmacological treatments and dietary are implicated in browning of white adipocytes but the
mechanisms underlying are not yet well established (dotted arrows). Inter-cellular communication
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4.3. EAT Whitening as Foe

There is a large body of evidence supporting the effects of browning activation in
improving obesity and its cardiac complications. The opposite phenomenon brown-to-
white trans-differentiation, also referred as ‘whitening’, has been far less explored. Under
physiological (as aging) and pathological circumstances, epicardial adipocytes may lose
those cardioprotective functions and turn into pro-inflammatory cells. As people get
older, the proportion of brown adipocytes decreases in favor of more unilocular white
adipocytes and so EAT brown fat-like activity and function could decrease with first the
loss of its thermogenic properties [216]. This is the brown-to-white trans-differentiation.
Hence, aging can influence the function of EAT partly because of transition from brown to
beige fat of EAT in adult life. But if in one hand, this phenomenon can help thermogenic
homeostasis, in the other hand in some cases it can have less beneficial effects. In patho-
physiological cases where browning can have beneficial consequences, this brown-to-white
trans-differentiation could reverse these positive influences. For instance, in EAT this
brown-to-white trans-differentiation has been associated with an increased reactive oxygen
species (ROS) production in CAD patients [74].

EAT browning characteristics can also be impaired in advanced chronic diseases.
Dozio et al. showed that EAT of patients with CAD was associated with decreased ex-
pression levels of thermogenic genes and upregulation of white adipogenesis [74]. Indeed,
they demonstrated that the BAT-specific genes UCP-1, PGC-1α, PRDM16 and bone mor-
phogenetic protein 7 (BMP7) were statistically significant lower in CAD patients and
WAT-specific gene insulin-like growth factor binding protein 3 (IGFBP3) and HOXC9
were significantly higher compared to non-CAD patients, which suggests a change in the
composition of the EAT in CAD patients.
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Other possible cardioprotective pathway genes, involving PGC-1α, involved in adipocyte
browning and thermogenic activation, have been suggested. Epicardial fat heme oxygenase-1
(HO-1) PGC-1α may modulate inflammation, mitochondrial activity and left ventricle function.
A decrease of HO-1, PGC-1α and PRDM16 in EAT compared to VAT was linked to significant
cardiac remodeling and was observed in cardiomyopathies [217]. It has been suggested a
more WAT-like genotype at EAT level in CAD patients [74]. EAT seems to produce less
ROS than SAT, but when comparing CAD patients with non-CAD patients, only non-CAD
patients have a significantly higher ROS level in SAT than in EAT. In addition, there is a
significant higher ROS level in EAT of CAD patients compared to non-CAD patients. All
these results support the hypothesis that CAD may be associated with brown-to-white
trans-differentiation process.

4.4. Perspectives: Non-Invasive Imaging Techniques

One of the major limitations in studying the EAT is that rodents have no EAT. In
Humans, the EAT study from fresh tissue is also limited due to the difficulty of obtaining
samples because this needs thoracotomy. Thus, imaging techniques have become valuable
tools in the understanding of EAT pathophysiology either in terms of volume quantifi-
cation or functional characterization, two parameters that might improve the individual
cardiovascular risk stratification.

Artificial intelligence (AI) tools using deep learning approach, applied to CT scans,
allow to speed up the first stages of image pre-processing and allow the improvement
of quantification and volume segmentation of EAT [218]. The length of execution does
not exceed 26 seconds and there is a high correlation between automated and manual
measures [219].

Vascular inflammation is a key component of the atherosclerotic process, and has
been shown to induce molecular, transcriptional and structural changes to perivascular fat.
Regarding the functional aspect of EAT, detection of pericoronary EAT inflammation, is now
possible with non-invasive imaging tools, such as CT scan [110,218]. The perivascular Fat
Attenuation Index (FAI), an imaging tool that measures weighted 3D attenuation gradients
of AT in the perivascular space, involves the use of AI-enhanced algorithms that provide
accurate and reproducible weighted measures of attenuation in 1mm 3D layers of EAT
around the human arterial wall. This FAI has the potential to yield informative results on
local coronary inflammation and plaque vulnerability. [110,220]. Detecting these changes
of composition could have great clinical implications. In the CRISP-CT study [221,222],
patients with the highest FAI values of coronary vessels had a significantly higher risk of
all-cause mortality and cardiac mortality [221].

Unfortunately, to date there are still no specific tools to evaluate the browning of
the EAT. In animals, new techniques have emerged to quantify the browning by using,
for instance, Magnetic Resonance Imaging (MRI) [223] or Positron Emission Tomography
(PET) [224], but all these experiments were realized on mice. Regarding humans, the BAT
can be studied by several imaging techniques. The [18F]fluorodeoxyglucose ([18F]FDG)-
PET /CT imaging with a cold exposition during 2 hours is the best established method
for visualizing activated BAT in humans [225]. However, this technique exposes subjects
to ionizing radiation and requires a lot of equipment with a high cost. Furthermore, the
BAT detection cannot be done without stimulations (cold temperature or drug induction)
and FDG uptake by the myocardium prevents from EAT browning detection [226,227].
Moreover, it should be noted that glucose tracer does not provide information on total
BAT oxidative metabolism, but the addition of fatty acid tracers and labeled oxygen tracers
could provide missing information [228]. Compared to PET and SPECT, MR imaging is a
more attractive modality to investigate BAT. It does not expose to ionizing radiation and
both volume and function can be studied. Chemical shift MRI such as fat fraction mapping
and T2*-weighted mapping were able to measure BAT volume while Blood Oxygen Level
Dependent (BOLD) MRI, hyperpolarized Xenon MRI, and contrast-enhanced MRI have
been employed to assess BAT function [226,227]. Moreover, new imaging techniques, such
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as Near-Infrared Spectroscopy (NIRS) techniques and Infrared Thermography (IRT) are
being developed for BAT imaging. These two techniques are relatively inexpensive and
no cold exposure is required with NIRS techniques, though both of them, and especially
IRT, cannot assess total BAT volume [226,227]. One important issue is that complete
determination of the thermogenic potential of human BAT requires not only assessment of
BAT following acute stimulation, but also BAT in its basal state. A single imaging method
could have limitations to accurately report BAT mass and BAT activation at the same time,
and a combination of different methods or modalities could be the trend for monitoring
both the BAT mass and metabolic state change in future research. Despite limitations,
all these techniques are promising ways for a future non-invasive evaluation of human
EAT browning.

5. Conclusions

EAT is a unique depot in direct contact with coronary arteries and myocardium that
can probably drive heart diseases. The beige adipocytes factors and immune systems cross-
talks are fascinating topics to explore in order to better understand the beiging mechanism
in EAT and its impact on cardiac diseases. Furthermore, the anatomic proximity of the
cardiac muscle which can secrete browning cardiokines makes this cross-talk particularly
appealing. New non-invasive techniques are needed to better follow EAT browning in
humans after nutritional, or therapeutical interventions.
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