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Abstract: The induction of lineage-specific gene programs are strongly influenced by alterations in 

local chromatin architecture. However, key players that impact this genome reorganization remain 

largely unknown. Here, we report that the removal of the special AT-rich binding protein 2 (SATB2), 

a nuclear protein known to bind matrix attachment regions, is a key event in initiating myogenic 

differentiation. The deletion of myoblast SATB2 in vitro initiates chromatin remodeling and accel-

erates differentiation, which is dependent on the caspase 7-mediated cleavage of SATB2. A genome-

wide analysis indicates that SATB2 binding within chromatin loops and near anchor points influ-

ences both loop and sub-TAD domain formation. Consequently, the chromatin changes that occur 

with the removal of SATB2 lead to the derepression of differentiation-inducing factors while also 

limiting the expression of genes that inhibit this cell fate change. Taken together, this study demon-

strates that the temporal control of the SATB2 protein is critical in shaping the chromatin environ-

ment and coordinating the myogenic differentiation program. 
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1. Introduction 

One of the key alterations that characterize a cell’s progression through differentia-

tion is the restructuring of the nuclear landscape to allow for the expression of lineage-

specific genes. Indeed, chromatin conformation undergoes significant restructuring when 

cells progress from replicating to differentiating phenotypes, with changes occurring to 

repress or open access at specific gene loci [1,2]. These genome alterations are facilitated 

by two general mechanisms—loci-specific modifications of DNA and histones and the 

targeting of structural proteins that control the higher-order structure of chromatin [3,4]. 

Progress through the myogenic differentiation program is no exception to this paradigm, 

with extensive changes to genome structure during myogenesis that allow for muscle-

specific genes to be expressed [5]. A number of proteins that govern DNA and histone 

methylation changes have been implicated in the control of myogenesis [6], yet limited 

information exists on the role of proteins that manage higher-order reorganization such 

as the formation of chromatin loops and the delineation of topologically associating do-

mains (TADs). 

Matrix attachment region (MAR) binding proteins represent a group of factors pro-

posed to act as modifiers of the chromatin loop structure to influence gene expression 
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during cell differentiation. MAR binding proteins are unique in that they integrate both 

repressive and inductive signals for gene expression, a feature that would be valuable for 

the management of cell fate transitions. This duality of MAR protein function depends on 

the proximity of gene promoters and insulator regions relative to the position where the 

MAR protein anchors the DNA to the chromatin scaffold [7,8]. Scaffold attachment factor 

b1 (Safb1) has been shown to activate pro-differentiation gene expression in skeletal mus-

cle cells, yet it does not appear to directly repress the expression of genes in muscles [9]. 

The special AT-rich binding proteins (SATB1 and SATB2) are a family of MAR bind-

ing proteins that may play an active role in global chromatin organization during cell dif-

ferentiation. Although SATB proteins were originally defined as classic chromatin struc-

ture factors, a number of studies have suggested their direct influence on gene expression, 

akin to the biology of a transcription factor. For example, SATB2 has been found to control 

the expression of several genes involved in stem cell fate determination and cancer cell 

proliferation, acting in concert through physical association with other transcription fac-

tors [10–16]. However, one recent observation has shown that SATB2 can modify gene 

expression in cortical neurons through its association with the inner nuclear membrane 

protein, LEMD2 [17]. This latter study is more consistent with the structural role of SATB2, 

and the plethora of developmental abnormalities that accompany SATB2 mutation in hu-

mans suggest a genome-spanning function for this MAR protein [18]. Given these obser-

vations, the regulation of the SATB2 protein content may be a critical step in managing 

the duality of gene expression during cell maturation, i.e., the simultaneous repression 

and activation of targeted gene loci. 

The mechanism by which SATB2 manages such a diverse biologic response is un-

known. Likewise, there are no studies that have characterized the SATB2-dependent ge-

nome-wide architecture or the mode by which the SATB2 protein is targeted or displaced 

from its associated genomic targets. However, the caspase-mediated cleavage of SATB1 

has been shown to be an important step in the control of gene expression that precedes T-

cell apoptosis, where the cleavage of SATB1 results in its release from MARs [19]. Inter-

estingly, caspase proteases have prominent roles in non-death processes such as differen-

tiation, inflammation, remodeling, and cell survival [20]. The role of caspases in differen-

tiation is particularly well-established, with both initiator and executioner caspases being 

involved in the development of a variety of tissues [21]. With respect to skeletal muscle 

differentiation, catalytically active caspase 3 and 9 appear to be required for progenitor 

progression through the myogenic program [22–24]. As such, the integral nature of 

caspase activity during myoblast differentiation and the possibility that caspases could 

act on chromatin organizing proteins have led us to investigate the behavior of SATB2 

within muscle progenitor cells and the potential of caspase enzymes to mediate its func-

tion. 

2. Materials and Methods 

2.1. Mice and In Vivo Procedures 

All mice were housed and treated at the University of Ottawa Animal Care and Vet-

erinary Services. Mice used in our studies were housed and cared for according to Cana-

dian Council on Animal Care (CCAC) guidelines and University of Ottawa Animal Care 

Committee protocols. 

In order to determine the effects of SATB2 removal from muscle satellite cells, 

Pax7/CreER Satb2fl/fl and Satb2fl/fl (control) mice were fed a diet supplemented with tamox-

ifen (40 mg/kg body weight; Envigo) at 3 weeks old. These mice were monitored weekly 

for evidence of the potential effects of SATB2 ablation from muscle stem cells. After 8–10 

months, three Pax7/CreER Satb2fl/fl and Satb2fl/fl mice (female) were euthanized by CO2 as-

phyxiation and cervical dislocation. These mice were then assessed for any structural ab-

normalities, and their tibialis anterior (TA) muscle was excised and fixed in 10% neutral 
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buffered formalin. After 24 h, the samples were then placed in 70% ethanol and then par-

affin embedded and cut into 4 μm sections. 

2.2. Cell Culture 

Cells of the immortalized mouse cell line, C2C12, were grown on non-collagen coated 

cell culture plates in Dulbecco’s Modified Eagle’s medium (DMEM) with 10% fetal bovine 

serum (FBS) and 1% penicillin/streptomycin (growth medium). Once confluent, the cells 

were differentiated in DMEM supplemented with 2% horse serum and 1% penicil-

lin/streptomycin (differentiation medium). 

Primary myoblasts were isolated, as described by Fernando et al. [22]. Following iso-

lation, myoblasts were cultured in 1:1 (v/v) of Ham’s F10:DMEM, supplemented with 20% 

FBS, 1% penicillin/streptomycin, and 10 ng/mL basic fibroblast growth factor. Myoblasts 

were differentiated in DMEM supplemented with 5% horse serum and 1% penicil-

lin/streptomycin. 

2.3. Protein Extraction and Western Blotting 

C2C12 cells were lysed using a modified RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 

mM NaCl, 1 mM ethylenediaminetetraacetic acid (EDTA), 1% NP-40, 1% glycerol, and a 

cocktail of protease inhibitors) for whole-cell extracts, or with a modified NE-PER Nuclear 

and Cytoplasmic Extraction Kit, as per the manufacturer’s instructions (Thermo Scientific, 

Waltham, MA, USA). Extracted proteins were then separated via SDS-PAGE and then 

transferred to a 0.45 μM polyvinylidene fluoride (PVDF) membrane (Millipore, Burling-

ton, MA, USA) on a TRANS-BLOT SD apparatus (Bio-Rad, Hercules, CA, USA). Mem-

branes were blocked with Tris-buffered saline plus 0.1% Tween-20 (TBST) containing 5% 

skim milk for 1 h at room temperature. Membranes were then incubated overnight at 4 °C 

in primary antibody made with the blocking solution. The primary antibodies used in this 

study included mouse SATB2 (ab51502; Abcam, Cambridge, UK; 1:1000), rabbit cleaved 

caspase 7 (9491S; Cell Signaling, Danvers, MA, USA; 1:1000), mouse myosin heavy chain 

(Development Studies Hybridoma Bank, DSHB Iowa City, IA, USA; MHC; 1:250), rabbit 

lamin A/C (2032; Cell Signaling; 1:1000), mouse tubulin (DSHB; 1:200), and mouse glycer-

aldehyde 3-phosphate dehydrogenase (#2118; GAPDH; 1:4000). Western blots were per-

formed on three independent cell preparations in all cases (n = 3).  

2.4. Immunofluorescence 

C2C12 cells or primary myoblasts were cultured and fixed in paraformaldehyde on 

25 mm coverslips at the desired time points. The cells were then incubated for 10 min at 

room temperature with a permeabilization solution containing 0.5% Triton-X 100 in PBS. 

Subsequently, after washing in PBS, cells were incubated for 1 h in a blocking solution 

consisting of 5% horse serum in PBS. After blocking, the cells were incubated for 2 h at 

room temperature or overnight at 4 °C in primary antibody that was diluted in blocking 

solution. The primary antibodies used were mouse SATB2 (1:50; ab51502, Abcam), rabbit 

heterochromatin protein 1 alpha (HP1α; 1:200; #2616, Cell Signaling), rabbit GAPDH 

(1:400; #2118, Cell Signaling), rabbit desmin (1:400; ab15200, Abcam), and mouse MHC 

(1:50; DSHB). After primary antibody incubation, the cells were washed three times in PBS 

and incubated in secondary antibody (2 mg/mL Alexa Fluor 488, Invitrogen, Waltham, 

MA, USA; 1:1500, 2 mg/mL Alexa Fluor 594, Invitrogen, 1:1500; 2 mg/mL Alexa Fluor 568, 

Invitrogen, 1:1000) diluted in PBS for 1.5 h at room temperature. After incubation, the cells 

were washed 2× in PBS and then counterstained with 4′,6-diamidino-2-phenylindole di-

hydrochloride (DAPI; 1:10,000; Sigma) for 10 min at room temperature. After incubation, 

the cells were washed 2× in PBS, and the coverslips were mounted on microscope slides 

using Dako Fluorescent Mounting Medium. The cells were then visualized using a Zeiss 

Observer Z1 inverted fluorescence microscope, Zeiss Canada, Toronto, ON, Canada. All 

images were captured using the AxioVision 4.8 software. Quantification of 
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immunofluorescence was performed by densitometry analysis using the ImageJ/Pho-

toshop C3 software (Public Domain). Immunofluorescence experiments were performed 

on n = 3–5 independent cell preparations depending on the experiment (detailed in the 

figure captions). 

2.5. Immunohistochemistry 

Mouse TA muscle was fixed in 10% formalin for 24–48 h before being embedded in 

paraffin and sectioned into 4 μm thick sections. The sections were then stained for Pax7 

(DSHB hybridoma antibody; 1:3.5), SATB2 (Abcam; 1:300), or with hematoxylin and eosin 

(H&E). The control for IHC staining was staining that used just secondary antibody that 

originated from the same species as the primary antibody used. The sectioning and stain-

ing were conducted by the Pathology and Laboratory Medicine (PALM) Histology Core 

Facility at the University of Ottawa, Canada. To determine muscle fiber areas, H&E 

stained sections were assessed under an Observer A1 microscope (Zeiss), and areas were 

calculated using the ImageJ software. 

2.6. Chromatin Immunoprecipitation (ChIP) Assay 

C2C12 cells were grown on 15 cm plates and allowed to reach 100% confluence before 

three aliquots of twenty million proliferating cells were collected (technical replicate n = 

3; biological replicate n = 1). Cells were fixed for 10 min using 1% formaldehyde in DMEM. 

Cell fixation was quenched by removing the fixation solution, rinsing the plates with PBS, 

and then pouring a solution of 0.125 M glycine in PBS onto the cells and incubating them 

for 5 min. Subsequently, the plates were washed 2× with PBS, and then cells were scraped 

from the plates, pelleted, and stored at −80 °C until used. 

Given that SATB2 is a nuclear matrix attachment protein, it required an alternative 

protocol for chromatin shearing as compared to standard preparations. First, a commer-

cial hypotonic solution (Active Motif, Carlsbad, CA, USA) was used to lyse cellular mem-

branes but retain intact the nuclear membranes. We subsequently performed additional 

lysis using a handheld glass Dounce homogenizer. After centrifugation, the supernatant 

was discarded, and the pelleted nuclei were treated with Active Motif’s Pro-enzymatic 

Digestion Nuclear Extraction Solution. After incubation at 37 °C for 5 min, we supple-

mented the reaction with 1 U micrococcal nuclease (New England Biolabs Canada, To-

ronto, ON, Canada) and allowed it to incubate for 10 min. We then supplemented the 

reaction with SDS to a final volume of 2% SDS-chromatin solution. We proceeded to the 

second stage of shearing using sonication via a Covaris M220 Focused-Ultrasonicator in-

strument, setting the parameters to produce sheared DNA of 200 bp. After sonication, we 

performed a final centrifugation at 16,000× g at 4 °C for 20 min and collected the superna-

tant containing the sheared chromatin.  

We performed immunoprecipitations with 5 μg 1°Ab (Target: SATB2, Abcam; posi-

tive control: RNA pol II, Active Motif; negative control: mouse IgG, Santa Cruz, Dallas, 

TX, USA) using magnetic beads (Active Motif) diluted in a commercial ChIP-buffer (Ac-

tive Motif) overnight at 4 °C. Captured chromatin was isolated using magnetic stands to 

pull down the beads. Bound DNA was subsequently eluted via commercial elution, re-

verse cross-linking, protein digestion, and RNA digestion solutions (Active Motif). The 

resulting samples of DNA were further purified using phenol:chloroform extraction pro-

cedures. Final DNA was quantified using a NanoDrop spectrophotometer, with a 25 μL 

final volume at concentrations of 75–100 ng/μL. 

2.7. ChIP-Sequencing and Bioinformatics 

For the genome-wide analysis, immunoprecipitated DNA was amplified and a 75 bp 

single-read sequencing was performed on an Illumina HiSeq 2500 at the Next-Generation 

Sequencing Facility at The Centre for Applied Genomics in The Hospital for Sick Children 

(Toronto, ON, Canada). The data were summarized, and basic comparisons were 
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performed using the Excel spreadsheet program (Microsoft, Redmond, WASH, USA). 

Reads were aligned to the GRCm38 (UCSC mm10, Dec/2011) mouse genome from the 

UCSC genome browser with bowtie2 (v2.2.6) using the default parameters, and peaks 

were called using MACS version 2.1.0, again with default parameters and using the IgG 

ChIP-seq data as a control (Supplementary Table S4).  

The peaks identified by MACS were analyzed in R using the ChIPseeker package [25] 

to identify sites of SATB2 enrichment relative to genes (promoter, exon, intron, UTR, etc.). 

Genes with one or more SATB2 binding sites in a region from −5 kb to + 1 kb around the 

transcription start site (TSS) were identified as being associated with Satb2 binding. This 

gene list was analyzed with ClusterProfiler [26] to identify Gene Ontology (GO) terms for 

which genes bound by SATB2 are statistically enriched above the expected level using the 

hypergeometric test. HOMER v4.11.1 [27] was used to search for enriched DNA sequence 

motifs within the full set of Satb2 peaks, using the default parameters for the findMo-

tifsGenome.pl tool. 

2.8. RNA-Sequencing and Bioinformatics 

Total RNA was isolated with an RNeasy Kit (QIAGEN, Hilden, Germany) using an 

on-column DNase digestion (RNase-Free DNase Set, QIAGEN) to avoid genomic DNA 

contamination. Library preparation and 126-bp paired-end RNA-seq was performed by 

the Next-Generation Sequencing Facility at The Centre for Applied Genomics in The Hos-

pital for Sick Children. RNA integrity was assessed using the Bioanalyzer platform (Ag-

ilent Technologies, Inc. Santa Clara, CA, USA). Sequencing was performed using standard 

procedures for the Illumina HiSeq 2500 platform.  

RNA-seq reads were mapped to the GRCm38 (mm10) mouse genome assembly using 

tophat2 v2.1.1 [28], and the mapped reads were assigned to transcripts from the GEN-

CODE vM23 annotation using FeatureCounts v1.5.2 [29]. Read count data for 24 h differ-

entiated siControl and siSATB2 C2C12 cells, with three replicates each, were loaded into 

R (v4.0.2), and the differential expression was assessed using DESeq2 v1.30.1 [30]; expres-

sion differences between the siSatb2 and siControl replicates were calculated using the 

DESeq2 lfcShrink function and applying the apeglm method (v 1.12.0. [31]). Multiple test-

ing correction was performed using the Benjamini Hochberg method, and lists of signifi-

cantly differentially expressed (DE) genes were identified using a q-value (i.e., a corrected 

p value) cut-off of 0.05. 

The matrix of gene expression values was transformed with the DESeq2 rlog func-

tion, and the DESeq2 plotPCA function was used to run a principal component analysis 

of the 500 most variable genes and to plot the results of the first two principal components. 

Sets of genes that were significantly higher or lower in abundance in siSatb2 cells (2013 

and 1914 genes, respectively) were analyzed using the clusterProfiler package to identify 

the GO terms for which genes in either list were significantly over-represented using a 

hypergeometric test. Gene lists were also uploaded to the gProfiler tool [32] to identify 

enriched pathways in GO datasets. 

GSEA was performed using the R package fgsea v1.14.0. In brief, a ranking statistic 

was first derived for all differentially expressed genes identified by DESeq2. This was per-

formed by multiplying the sign of the Log2FoldChange with the respective log10 trans-

formed p value for each gene. After arranging the genes using the signed p value statistic, 

GSEA was performed with the ranked gene list and the REACTOME Canonical Pathway 

v7.5 from the Molecular Signature Database (MSigDb). Parameters of note that were used 

with the fgsea function include eps = 0.0, minSize = 15, and maxSize = 500 [33]. 

2.9. Chromosome Conformation Capture, Hi-C 

siControl and siSatb2-treated C2C12 cells were prepared for Hi-C experiments, as 

described below in the section illustrating the siRNA-mediated knockdown of SATB2. 

Only proliferating C2C12 cells were assessed via Hi-C. Once the cell treatments were com-

plete, C2C12s were counted using trypan blue and a hemocytometer so that each sample 
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would have 1 × 107 cells/sample. Two independent samples were collected for each treat-

ment. Each aliquot of cells was pelleted at 500× g for 5 min and then resuspended in 10 

mL PBS. Cells were then fixed in 8% formaldehyde for 10 min, after which the cross-link-

ing reaction was quenched in 0.65 M glycine for 5 min. This mixture was allowed to sit in 

wet ice for 15 min before the cells were pelleted at 500× g for 5 min. C2C12s were subse-

quently resuspended in 5 mL PBS and then pelleted once again at 500× g for 5 min. The 

supernatant was then aspirated, and the pellet was frozen on dry ice for 10 min before 

being stored at –80 °C. The samples were then shipped on dry ice to Arima Genomics 

(http://arimagenomics.com (30 April 2021) San Diego, CA, USA), which performed the 

Hi-C analysis according to the Arima-HiC + protocols described in the Arima-HiC kit 

(P/N: A510008). After the Arima-HiC protocol, Illumina-compatible sequencing libraries 

were prepared by first shearing the purified Arima-HiC proximally ligated DNA and then 

size-selecting the DNA fragments of ~200–600 bp using SPRI beads. The size-selected frag-

ments were then enriched for biotin and converted into Illumina-compatible sequencing 

libraries using the KAPA Hyper Prep kit (P/N: KK8504). After adapter ligation, the DNA 

was PCR amplified and purified using SPRI beads. The purified DNA underwent stand-

ard quality control (qPCR and Bioanalyzer) and was sequenced on the HiSeq X, following 

the manufacturer’s protocols. 

2.10. Hi-C Data Processing 

Hi-C data were analyzed with Juicer v1.6 [34] using a custom restriction site file for 

the GRCm38 mouse genome assembly provided by Arima Genomics (GATC and GANTC 

sites). Data from the replicates (n = 2) were combined for the siControl and siSatb2-treated 

samples and subsequently used for any downstream analysis. Chromatin loops were 

identified using HiCCUPS from Juicer v1.6 with the default settings. Loops were deline-

ated at resolutions of 25,000, 10,000, and 5000 bp and thereafter merged to generate a final 

loop set. HiCexplorer v3.6 was used to identify topologically associated domains (TADs; 

100 kb, 500 kb, and 1 Mb resolution) and sub-TAD contact domains (10 kb resolution). 

With respect to TADs, only data from the 100 kb resolution was depicted. The function 

hicFindTADs was used with the Knight–Ruiz (KR) normalized Hi-C matrices with a p 

value cut-off of 0.05 and FDR 0.01. ChIPseeker v1.24.0 was used for the functional anno-

tation of the domains.  

SATB2 binding sites and chromatin loops/TADs were compared to repressive 

(H3K27me3) and permissive (H3K4me3 and H3K36me3) histone marks that had been 

generated by Asp et al. [35] from proliferating C2C12 myoblasts. The accession numbers 

for the associated ChIP-seq data are: H3K4me3 (GEO accession: GSM721292), H3K27me3 

(GEO accession: GSM721294), and H3K36me3 (GEO accession: GSM721296). Single-end 

reads were downloaded from the GEO database and mapped to mm10 using Bowtie2 

v2.4.2. After removing duplicates with Picard Tools (openjdk v1.8.0_292) and MAPQ-

based filtering (-q 10) with Samtools v1.12, broadPeaks were called using Macs3 v3.0.0a6 

(–broad-cutoff 0.05 -p 0.05 –keep-dup 1). 

Similarly, SATB2 ChIP-seq peaks and chromatin structural features determined here 

by Hi-C were compared to known CTCF binding sites. Processed data for CTCF ChIP-seq 

data in mouse C2C12 cells were obtained directly from ENCODE (ENCSR000AIJ). The 

processed data included: (1) reads aligned to mm10 in BAM format (ENCSR000AIJ), and 

(2) IDR thresholded peaks in bed narrowPeak format (ENCFF784ASD). 

2.11. Caspase Cleavage Assays 

Recombinant SATB2 protein (250–500 ng; Abnova) and recombinant active caspase 3 

(0.5 μg; Chemicon, Thermo Fisher Scientific, Waltham, MA, USA) or recombinant active 

caspase 7 (0.5 μg; BioVision, Milpitas, CA, USA) were incubated for 3 h in a cleavage assay 

buffer (50 mM Hepes, pH 7.5, 0.1 M NaCl, 10% (v/v) glycerol, 0.1% Chaps, 10 mM dithio-

threitol) containing either dimethyl sulphoxide (DMSO) or z.DEVD.fmk (20 μM; Bio-

Vision; [36,37]), as indicated. Reactions were stopped by the addition of the Laemmli 
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sample buffer and subjected to SDS-PAGE. Mass spectrometry was performed at the Ot-

tawa Hospital Research Institute Proteomics Core Facility (Ottawa, Canada). MASCOT 

2.3.01 software (Matrix Science, Boston, MA, USA) was used to infer peptide and protein 

identities from the mass spectra. 

2.12. Caspase Inhibition Assays 

For caspase 3/7 inhibition, cultured C2C12s were pre-treated with either 15 μM z-

DEVD-fmk (DEVD) from BioVision or 15 μM DMSO from Sigma for 2 h at 37 °C. After 

pre-treatment, the cells were induced to differentiate using low serum media or continued 

in growth media both containing 15 μM DEVD or DMSO as a vehicle-only control. The 

inhibition or control media were changed every 48 h until the end of the time course. Cells 

were collected at the predetermined time points and analyzed as described. Caspase inhi-

bition assays were performed on n = 3 independent cell preparations. 

2.13. siRNA-Mediated Depletion of SATB2 and Caspase 7 Gene Expression 

siRNA duplexes were used to suppress Satb2 and caspase 7 gene expression in C2C12 

cells. C2C12 cells were transfected at 25% confluence with 10 nM siRNA (siSatb2, siCasp7, 

or siControl) and the Lipofectamine RNAiMAX reagent, as directed by the manufacturer’s 

protocol (Invitrogen). After an overnight incubation, fresh media were added onto the 

cells, and the cells were re-transfected. This continued until the cells reached 100% con-

fluence, after which differentiation media were added to the cells. Media change and re-

transfection occurred every 24 h throughout the indicated time course. 

2.14. Statistical Analysis 

Statistical analysis of three or more data sets was performed using one-way analysis 

of variance (ANOVA), with the post hoc test being indicated in the figure caption. For 

comparison between two sample sets, an unpaired, two-tailed Student’s t-test was per-

formed, unless otherwise stated, and a p < 0.05 was considered statistically significant. 

Data represented by bar graphs are all mean ± standard error of the mean (SEM). 

3. Results 

3.1. SATB2 Restrains the Induction of Muscle Cell Differentiation  

Western blot and immunofluorescent analyses identified SATB2 as a nuclear protein 

within proliferating C2C12 muscle cells, which was markedly reduced in expression dur-

ing the early stages of differentiation (Figures 1A,B and S1A). This signal was not con-

founded by potential cross reactivity with the closely related protein, SATB1, as this pro-

tein was not detected in proliferating or differentiated myoblasts (Supplementary Figure 

S1F). When expressed, SATB2 was mainly relegated to the euchromatic nuclear space; 

however, there was a significant subfraction of SATB2 co-staining with HP1α occurring 

in the more condensed regions of the nucleus, which declined as the differentiation pro-

gram proceeded (Figure 1C). Having established that the SATB2 protein is reduced during 

myogenesis, we next sought to determine the role of SATB2 in muscle cell proliferation 

and differentiation. To this end, we initially designed CRISPR-Cas9 guide RNAs to inhibit 

SATB2 gene expression in replicating myoblasts. However, infection of C2C12 muscle 

cells with an adenovirus expressing enhanced Cas9 [38] led to a notable increase in SATB2 

protein content in post-differentiated myoblasts, at a time when SATB2 would otherwise 

be in significant decline (see Supplementary Figure S1D). Given this unexpected impact 

of Cas9 on our protein of interest, we chose to pursue the siRNA-mediated targeting of 

SATB2 as a means of addressing its biologic role in cell culture models. The siRNA target-

ing of SATB2 (siSATB2) did not produce any noticeable alteration in cell viability or 

growth (Supplementary Figure S1B,C), although it provided an effective decrease in 

SATB2 expression (Figure 1D). However, compared to wildtype cells, siSATB2-treated 

cells displayed altered differentiation kinetics, with the accelerated formation of 
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multinucleated myotubes (Figure 1E) and the increased expression of the contractile pro-

tein, myosin heavy chain (MHC) (Supplementary Figure S1E).  

 

Figure 1. Loss of SATB2 expression accelerates myoblast differentiation. (A) Representative western 

blot showing the decreased expression of full-length SATB2 (FL-SATB2) during a differentiation 

time course for C2C12 cells (n = 3). This was accompanied by a concomitant increase in a C-terminal 

fragment of SATB2 (C-Term SATB2; identified in Supplementary Table S1). (B) Representative im-

munofluorescent staining of SATB2 showing a decrease in SATB2 expression during early C2C12 

cell differentiation. Images are representative of n = 5 independent samples at each time point. DAPI 

(blue), SATB2 (red); scale = 10 μm. (C) Representative immunofluorescent images depicting SATB2 

localization in relation to heterochromatin protein 1α (HP1α). Images are representative of n = 3 

independent determinations for each time point. Scale bar = 10 μm. DAPI (blue), SATB2 (red), HP1α 

(teal). Bar graph depicts colocalization of SATB2 and HP1 within the nucleus of proliferating and 

differentiating myoblasts. Data are the quantification of immunofluorescent images to the left of the 

graph. * indicates a significant change in colocalization, determined using a one-way ANOVA with 

a post hoc Tukey test (p < 0.01). Data are means ± SEM for n = 3 independent determinations. (D) 

Immunofluorescent images depicting the efficacy of SATB2 depletion using siRNA in proliferating 

C2C12 cells. Muscle cell cytoplasm was counterstained with an anti-GAPDH antibody. Images are 

representative of n = 3 independent determinations. DAPI (blue), GAPDH (green), and SATB2 (red). 

Scale bar for the low magnification column = 10 μm. Scale bar for the higher magnification column 

= 5 μm. Bar graph depicts the quantification of SATB2 expression from the immunofluorescent im-

ages. * indicates a significant difference in SATB2 expression between siControl and siSATB2 con-

ditions using the Student’s t-test (p < 0.05). Data are means ± SEM for n = 3 independent determina-

tions. (E) Immunofluorescent images indicating that the depletion of SATB2 led to early myotube 

formation after C2C12 cells were induced to differentiate. Images are representative of n = 3 inde-

pendent determinations. DAPI (blue), SATB2 (red), and desmin (green). Scale bar = 50 μm. Bar 
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graph depicts the fusion index for proliferating (Growth) and 48 h differentiated myoblasts. Data 

were a consequence of assessing immunofluorescent images depicted in Figure 1E. * indicates a 

significant change in the fusion index following siSATB2 treatment as compared to siControl-treated 

cells, determined by the Student’s t-test (p < 0.05). Data are means ± SEM for n = 3 independent 

determinations. 

3.2. Caspase 7 Cleaves SATB2 during Early Myogenesis 

Evidence from apoptotic nuclei suggests that nuclear structural proteins are targeted 

by caspase proteases [19,39,40]. Moreover, our identification of a major C-terminal frag-

ment of SATB2 that becomes more prominent during muscle cell differentiation suggests 

that a proteolytic event may target the SATB2 protein (Figures 1A and S2D). Prior studies 

from our laboratory have shown that caspase 3 plays a prominent role in myogenesis, 

targeting and cleaving a number of substrate proteins to engage the differentiation pro-

gram [22,24,36]. To examine whether SATB2 proteolysis occurred, we suppressed endog-

enous effector caspase activity (caspase 3 and 7) with the peptide inhibitor z.DEVD.fmk 

and reassessed SATB2 protein expression during muscle cell differentiation. Caspase in-

hibition during differentiation led to the sustained expression of the SATB2 protein in the 

nucleus compared to control cells (Figure 2A,B). In an attempt to attribute SATB2 cleavage 

to either caspase 3 or 7 (or both), an in vitro cleavage assay was performed. This assay 

demonstrated that caspase 7 activity was very robust at targeting SATB2 protein, whereas 

caspase 3 did not induce measurable cleavage (Figure 2C). A mass spectrometry analysis 

of the caspase 7-mediated SATB2 fragments mapped a putative caspase cleavage site at 

D477 (Supplementary Figure S2C and Table S1).  

To corroborate caspase 7 as a targeting protease of SATB2 and by inference as a reg-

ulatory enzyme that may promote muscle cell differentiation, we utilized siRNA to sup-

press caspase 7 expression. siRNA repression of caspase 7 (siCasp7) led to a concomitant 

accumulation of the SATB2 protein during C2C12 muscle cell differentiation when com-

pared to siControl-treated cells (Figures 2D,E and S2A). Investigating caspase 7 more 

closely, we determined that the expression of nuclear, active caspase 7 was inversely cor-

related with SATB2 expression, with nuclear caspase 7 levels increasing during early my-

oblast differentiation (Figures 2F and S2E). To assess the broad effect of this protease on 

muscle differentiation, we compared siCasp7 cells (where siRNA treatment reduced 

caspase 7 expression by ~60%; Figure 2D) vs. siControl-treated cells and noted that 

siCasp7 cultures displayed a significant impairment in the low serum induction of differ-

entiation, with a dramatic reduction in the expression of MHC and a near complete inhi-

bition of multi-nucleate myotube formation (Figure 2G). Interestingly, the simultaneous 

suppression of caspase 7 and SATB2 via RNA interference caused a modest increase in 

MHC expression from levels observed when only caspase 7 was repressed (Supplemen-

tary Figure S2B). 
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Figure 2. Caspase 7 cleaves SATB2 during early skeletal muscle differentiation and is necessary for 

myogenesis. (A) Immunofluorescent staining showing the maintenance of SATB2 expression fol-

lowing caspase inhibition by z-DEVD.fmk (DEVD) in differentiating C2C12 cells. Images are repre-

sentative of n = 3 determinations on independent samples. DAPI (blue); SATB2 (red); scale: 10 μm. 

(B) Quantification of SATB2 nuclear expression following DEVD-mediated suppression of caspase 

activity. Data are the means ± SEM from n = 3 independent samples; 75–100 cells per condition/time 

point were analyzed. ** indicates p < 0.01 and *** indicates p < 0.001, as determined by the Student’s 

t-test. (C) Silver stained gel of an in vitro caspase cleavage assay showing SATB2 cleavage by caspase 

7. Reactions include combinations of recombinant SATB2 protein, active caspase 3/7 recombinant 

proteins, caspase chemical inhibitor (DEVD), or the control chemical DMSO (n = 3). (D) Caspase 7 

and SATB2 expression following siCasp7 and siControl treatments of C2C12 cells. Both the histo-

gram and the representative western blots (n = 3) were the expression levels of those two proteins 

48 h post-induction of differentiation. * indicates a significant difference in caspase 7 or SATB2 ex-

pression, as determined by the Student’s t-test (p < 0.05). (E) Immunofluorescent images showing 

the sustained expression of SATB2 after the depletion of caspase 7 in C2C12 cells differentiated for 

48 h. Images are representative of n = 3 independent determinations. Scale bars = 10 μm (F) Repre-

sentative western blot depicting the cleaved active fragment of caspase 7 found in the nuclear frac-

tion of C2C12 cells during their proliferative phase (Gr) and at various stages of differentiation (6–

72 h post-induction; n = 3). Staurosporine (STS) was administered to proliferating C2C12 cells to 

induce apoptosis as a positive control. (G) Immunofluorescent images showing the reduction in 

myosin heavy chain (MHC) expression in differentiating C2C12 myoblasts. Panel is representative 

of n = 3 determinations on independent samples. DAPI (blue), MHC (green). Scale bars = 50 μm. 
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3.3. ChIP- and RNA-seq Data Support the Role of SATB2 in Regulating Muscle Satellite Cell 

Differentiation and Chromatin Reorganization 

To clarify the role of SATB2 in the regulation of genes important to myogenesis and 

the associated chromatin remodeling, we performed both ChIP- and RNA-seq analyses. 

Analysis of the ChIP-seq data indicated that SATB2 was bound throughout the prolifer-

ating muscle stem cell genome (Figure 3A) and was mainly positioned in the intergenic 

spaces (Figure 3C). That said, a significant number of SATB2 peaks were found within or 

adjacent to genes, including binding sites within promoters, introns, exons, and 3’ un-

translated regions (Figure 3B for the binding site distance to the transcription start site 

(TSS) of the nearest gene, and Figure 3C for the binding site genomic context). An inves-

tigation into SATB2 binding motifs within these satellite cells revealed no conserved mo-

tifs on a genome-wide scale (Supplementary Table S2). 

Given the canonical role of SATB proteins in regulating the chromatin structure and 

the proximity of SATB2 to the coding regions of many genes, a more thorough investiga-

tion into its impact on chromatin remodeling-associated gene expression changes was 

warranted. To this end, RNA-seq was performed on 24 h differentiated C2C12 cells that 

had been treated with either scrambled or SATB2 siRNA. Prior to our in-depth analyses 

of gene expression changes following SATB2 loss, we confirmed via RNA-seq that our 

siSatb2 treatment successfully downregulated Satb2 mRNA (Supplementary Figure S3A). 

Using DESeq2 with an adjusted p value of 0.05 as a cut-off, our RNA-seq analyses revealed 

that the siRNA-mediated knockdown of SATB2 led to the reduced expression of 1510 

genes and the increased expression of 1595 genes in 24 h differentiated myoblasts. Among 

the genes that were differentially expressed when SATB2 expression was altered were 

several prominent chromatin remodeling factors. These genes included Setbp1, 

Hdac4/5/9/11, and Gata3 (Figure 3D).  

GO categorization of the genes that increased in expression following Satb2 knock-

down included various signaling genes and those involved in cell differentiation (Figure 

3E); this included several chromatin modifying genes known to accelerate differentiation 

such as Smarca4 [41–43], Med21 [44], Kat2b [45], and Bdnf [46]. Alternatively, the GO cate-

gorization of those genes significantly downregulated upon SATB2 removal included 

genes involved in muscle development (Figure 3F). Several of these genes are known re-

pressors of differentiation, such as Hdac4 [47], Hdac5 [47], Ncoa1 [48], and Mylk [49], and 

may act to limit satellite cell activation and muscle growth. However, several of the sup-

pressed genes are known mediators of differentiation, such as Nfatc4. Given that the re-

moval of SATB2 accelerates myoblast differentiation, these changes may be a compensa-

tory response to a myogenic program that is well underway. 

To obtain a more granular view of SATB2′s role in regulating myogenic progression, 

we assessed the expression changes of genes that possessed a SATB2 binding site located 

−5 kb to + 1 kb from the gene TSS. GO categorization revealed that SATB2 was bound near 

the TSS of many genes involved in chromatin organization and modification (Supplemen-

tary Figure S3E). However, several genes associated with cell differentiation or prolifera-

tion were found to have SATB2 near its TSS (Supplementary Figure S3D), suggesting a 

limited role for SATB2 in managing gene expression within promoter boundaries. Finally, 

we undertook a complimentary unbiased bioinformatic assessment of gene expression in 

wildtype versus siSATB2 cells using GSEA (gene set enrichment analysis) coupled to the 

Reactome cluster profiling program. Similar to the GO categorization, GSEA identified an 

up regulation in a number of gene groups/pathways associated with chromatin/chromo-

some modification, including cell cycle checkpoint and chromatid cohesion categories, 

along with the down regulation of a subcluster of skeletal muscle contractile gene sets. 

Interestingly, unlike the GO categorization, GSEA revealed an upregulation in three gene 

categories known to separately enhance myoblast cell fusion/differentiation, including 

IL4 signaling, hyaluronan metabolism, and Rho GTPases/formin activation [50–52]. 
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Figure 3. SATB2 regulates the expression of genes associated with chromatin remodeling and cell 

differentiation. (A) Chromosome distribution of SATB2 binding sites as determined from our ChIP-

seq analyses (using ChIPseeker) on proliferating C2C12 cells. (B) Distribution of SATB2 binding 

sites within the muscle satellite cell genome with respect to the closest associated gene transcription 

start site (TSS). (C) Genomic context of SATB2 binding sites as determined by ChIPseeker. (D) Dif-

ferentially expressed chromatin remodeling genes after inhibition of Satb2 expression in 24 h differ-

entiated myoblasts, as determined using DESeq2 following our RNA-seq experiments. (E) Top GO 

biological process (BP) categorization of the genes upregulated following Satb2 repression in 24 h 

differentiated myoblasts. (F) Top GO-BP categorization of the downregulated genes following Satb2 

siRNA-mediated repression in 24 h differentiated myoblasts. Analyses in (E,F) were provided by 

ClusterProfiler. (G) Gene Set Enrichment Analysis (GSEA) for differentially expressed genes iden-

tified by RNA-seq. The Reactome bioinformatic tool was used for pathway analysis and identified 

a number of gene clusters known to promote myoblast fusion/differentiation. 

3.4. SATB2 Regulates Chromatin Organization around Genes Related to Myogenesis 

SATB2 was initially characterized as a MAR protein; however, there are no genome-

wide data examining the role of SATB2 as a chromatin organizing factor and how this 

protein may control genome structure. To address this issue directly, we performed a 

chromatin conformation capture using the Hi-C method and examined this genome struc-

ture data in relation to our SATB2 ChIP-seq data. This combined genome-wide analysis 

indicated that SATB2 binding sites were enriched near the ends of genetic loops and 

slightly enriched near the ends of topologically associated domains (TADs) (Figure 4A,B 

show the results for siControl samples). Interestingly, SATB2 binding sites are near loop 

ends but are not coincident with loop anchor points, as evidenced by the lack of direct 

overlap with CTCF binding motifs (data taken from ENCODE (ENCSR000AIJ) and the 

representative images shown in Figure 4C,D; Supplementary Figure S4B shows an 
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absence of overlap for the SATB2 and CTCF binding sites), which are known markers of 

chromatin loop boundaries [53]. Given SATB2′s localization at the base of these three-di-

mensional genetic structures, one might predict that the loss of SATB2 in muscle cells 

would cause chromatin remodeling at various loci. Indeed, the loss of SATB2 in prolifer-

ating myoblasts caused a ~12% reduction in the number of loop structures and only a ~1% 

reduction in TADs (Figure 4A,B).  

The observation that SATB2 removal from muscle myoblasts affects chromatin loops 

and TADs suggests that SATB2 may manage gene expression through the direct modifi-

cation of large-scale chromatin structures. In turn, the changes in chromatin organization 

may prepare muscle stem cells for differentiation by establishing the architecture needed 

for the efficient expression or repression of genes that manage the myogenic program. 

Indeed, the genetic locus surrounding the pro-differentiation factor, Smarca4, undergoes 

a transformation when SATB2 is lost, whereby a chromatin loop forms at the Smarca4 site 

where one did not previously exist (Figure 4C). This loop structure is likely to facilitate 

Smarca4 expression when cells are induced to differentiate. Conversely, for Hdac5, a chro-

matin loop containing the gene disappears following SATB2 ablation, which is concurrent 

with the repression of Hdac5 expression during accelerated myogenesis (Figure 4D). This, 

however, may not be the only mechanism by which SATB2 contributes to gene expression 

changes, as several gene loci undergo subtle or limited local loop remodeling (Supple-

mentary Figure S4). In these cases, SATB2 removal at more distal sites may have a broader 

effect on chromatin conformation that affects gene expression. An analysis of sub-TAD 

sized contact domains revealed alterations near several of the genes that lacked SATB2-

derived chromatin loop remodeling. For instance, we observed changes in the number or 

width of contact domains present near Ncoa1, Mylk, and Hdac4 (Supplementary Table S3). 

Interestingly, these types of changes were not observed in the genes that possessed local 

chromatin loop remodeling (i.e., Smarca4, Hdac5, and Med21). 

The myogenic gene expression program has also been shown to be heavily influenced 

by epigenetic modifications, the most prominent of which is histone methylation, which 

acts to induce or repress expression within specific genes [54,55]. However, an investiga-

tion into the relationship between SATB2 binding sites and known muscle regulatory 

methylation sites such as the H3K27me3, H3K36me3, and H3K4me3 marks in proliferat-

ing myoblasts (taken from [35]) indicates that there is no significant correlation between 

histone methylation and SATB2 binding.  
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Figure 4. SATB2 is associated with chromatin loops and regulates loop dynamics in a subset of my-

ogenesis-related genes. (A) Distribution of SATB2 binding sites with respect to TAD ends (50 kb 

resolution), as determined by Juicer v.1.6. The bar graph depicts the number of TADs detected at 

100 kb resolution between siControl- and siSATB2-treated proliferating C2C12 samples. (B) Distri-

bution of SATB2 binding sites with respect to loop ends (10 kb resolution), as determined by Juicer 

v.1.6. The bar graph depicts the number of loops detected at this resolution between siControl- and 

siSATB2-treated samples. (C) Chromatin structural landscape around the Smarca4 locus. TADs and 

loops were assessed at 100 and 10 kb resolutions, respectively, using the tools described in (A) and 

(B). CTCF binding motifs were obtained from CTCF ChIP-seq data in mouse C2C12 cells from EN-

CODE (ENCSR000AIJ). The location of repressive (H3K27me3) and permissive (H3K4me3 and 

H3K36me3) histone marks were obtained by Asp et al. [35] from proliferating C2C12 myoblasts. The 

accession numbers for the associated ChIP-seq data are: H3K4me3 (GEO accession: GSM721292), 

H3K27me3 (GEO accession: GSM721294), and H3K36me3 (GEO accession: GSM721296). (D) Chro-

matin structural landscape around the Hdac5 locus. The structural aspects depicted in the panel 

were obtained as described above. 

3.5. In Vivo Depletion of SATB2 in Muscle Satellite Cells Decreases Muscle Fiber Area and the 

Number of Pax7-Expressing Satellite Cells  

To examine whether the loss of SATB2 would alter the muscle cell differentiation 

program in vivo, we conducted a preliminary analysis using a muscle progenitor cell-

specific gene-targeted deletion of SATB2. Here, we generated the satellite cell-specific de-

letion of SATB2, under the control of tamoxifen induction, by crossing the Satb2fl/fl mouse 

strain [56] with the Pax7CreER mouse strain [53] to generate Pax7CreER/Satb2fl/fl mice. 

Pax7CreER/Satb2fl/fl mice (and requisite controls, Satb2fl/fl strain) were given tamoxifen at 

three weeks of age and monitored continuously (as per University of Ottawa Animal Care 

and Veterinary Service (ACVS) guidelines). The gross assessment of motor function and 

the physical state indicated that there were no substantial motor effects stemming from 

the depletion of SATB2. The disruption of SATB2 expression was confirmed via immuno-

histochemistry as well as western blots probing for SATB2 in myoblasts isolated from ta-

moxifen-treated mice (Supplementary Figure S5A,B). A quantitative assessment of muscle 

(extensor digitorum longus and TA) weights showed no significant differences between 

control and Pax7CreER/Satb2fl/fl mice (Supplementary Figure S5C). However, a 
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histologic/morphologic analysis revealed notable alterations in skeletal muscle structure 

between control and Pax7CreER/Satb2fl/fl mice. For example, measurement of the fiber area 

within the TA from control and Pax7CreER/Satb2fl/fl mice indicated that the removal of 

SATB2 from muscle satellite cells led to a significant decrease in fiber area concurrent with 

an increase in fiber number per μm2 as compared to the control strains (Figure 5A–C). 

Moreover, following tamoxifen treatment, the number of Pax7-expressing satellite cells 

within Pax7CreER/Satb2fl/fl TA muscle decreased substantially when compared to the 

Satb2fl/fl control muscle (Figure 5D). We also showed that primary myoblasts isolated from 

Satb2fl/fl mice and treated with Cre adenovirus displayed enhanced differentiation kinetics 

(Figure 5E) that were similar to that observed in siSatb2-targeted C2C12 cells (Figure 1E). 

Indeed, these observations are consistent with the muscle hypotonia that often accompa-

nies human SATB2 mutations [57]. 

 

Figure 5. The in vivo reduction of SATB2 in muscle satellite cells decreases muscle fiber area and 

the number of Pax7-expressing satellite cells. (A) Tibialis anterior fiber areas decreased in 

Pax7CreER/Satb2fl/fl mice as compared to control (Satb2fl/fl) mice. ImageJ was used to measure the fiber 

areas of hematoxylin and eosin (H&E) stained tissue sections. Data are the means ± SEM, n = 3 in-

dependent determinations on separate tissue samples. H&E stained sections are representative of n 

= 3 independent determinations. Scale bar: 100 μm. (B) The distribution of muscle fiber sizes across 

15 bins. Over 200 muscle fibers were measured for both control and Pax7CreER/Satb2fl/fl mice. (C) 

Bar graph indicating the significant increase in the relative number of muscle fibers per μm2. * indi-

cates a significant difference between Pax7CreER/Satb2fl/fl and Satb2fl/fl mice, as determined by the 

Student’s t-test (p < 0.05). Data are the means ± SEM, n = 3 independent determinations on separate 

tissue samples. (D) The percentage of nuclei that were Pax7-positive in control (Satb2 fl) and Satb2-

ablated (Pax7CreER Satb2 fl) mouse muscle. The panels below the bar graph are representative tis-

sue sections stained with a Pax7 antibody (Pax7) or no antibody (Control); scale: 50 μm. Arrows 

indicate positively stained nuclei. Data are representative of n = 3 independent determinations on 

separate tissue samples. * indicates a significant difference between Pax7CreER/Satb2fl/fl and Satb2fl/fl 
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mice, as determined by the Student’s t-test (p < 0.05). Data are means ± SEM for n = 3 independent 

determinations. (E) Immunofluorescent images (with accompanying bar graph) depicting an in-

crease in myosin heavy chain (MHC) expression in Cre recombinase adenovirus (AdCre)-treated 

SATB2fl myoblasts as compared AdGFP-treated controls. Data are representative of three independ-

ent determinations on separate myoblast isolations. MHC (red); DAPI (blue). The histogram below 

the images represents the quantification of the number of cells that expressed MHC relative to the 

total number of cells counted. * indicates a statistically significant difference between AdGFP- and 

AdCre-treated samples using the Student’s t-test (p < 0.05). Data are means ± SEM for n = 3 inde-

pendent determinations. Scale bars = 100 μm. (F) Graphical representation of the observed biology 

following in vivo SATB2 ablation (see Supplementary Figure S5A,B for confirmation of SATB2 

knockdown) from muscle satellite cells in vivo. More specifically, with no change in muscle size (see 

Supplementary Figure S5C), SATB2 loss caused a significant reduction in muscle fiber size as well 

as the number of Pax7-expressing satellite cells. 

4. Discussion 

Chromatin remodeling plays a central role in stem cell differentiation as it facilitates 

the dramatic shift in gene expression profiles that accompanies the exit from the cell cycle 

and the commitment to a particular lineage [1,4,58–62]. These changes are dependent 

upon both transcription mediated change concurrent with a shift in the epigenetic land-

scape, which may allow or limit gene expression in the relevant regions of the genome. 

One mechanism that will influence lineage-dependent transcription and epigenetic 

change is the presence (or absence) of higher-order MAR proteins that mediate chromatin 

structure and thereby physical access to key genetic loci [10,63,64]. While changes to the 

chromatin architecture within skeletal muscle progenitor cells have been observed [5], the 

proteins that govern these changes are not well-known. Here, we identified SATB2 as a 

chromatin organizer that plays a key role in mediating the progression of myoblasts to-

ward the myogenic differentiation program. 

Interestingly, the reduction of SATB2 expression did not affect myoblast proliferation 

(Supplementary Figure S1B,C), indicating that SATB2 acts to block cells from prematurely 

entering into a terminally differentiated state rather than maintain a proliferation compe-

tent milieu. The reduced expression of SATB2 during early myogenesis appears to accel-

erate the differentiated phenotype, as evidenced by the siRNA-mediated knockdown of 

SATB2, which in turn hastens the expression of MHC (Supplementary Figure S1E), accel-

erates the formation of myotubes during early differentiation (Figure 1E), which is con-

current with the upregulation of factors that promote myoblast fusion (Figure 3G) [50–

52]. This coincides with our supposition that SATB2 may sequester differentiation induc-

tive genes and, once removed, primes myoblasts for to engage the myogenic program. 

While our observations indicate the clear anti-myogenic effect of SATB2 expression, oth-

ers have shown that SATB2 may enhance muscle differentiation in transformed cell lines 

such as Sol8 cells [65]. However, this same study also reported a strong synergy between 

SATB2 and BMP-induced transcription activity, which is known to be robustly anti-myo-

genic, suggesting in fact that SATB2 does antagonize differentiation akin to our observa-

tions reported here. 

Collectively, our observations suggest that the loss of SATB2 is coincident to the pro-

gress of the differentiation program. Therefore, the mechanism by which the cell manages 

the repression of SATB2, and whether this occurs through transcriptional or post-transla-

tional mechanisms, is of paramount interest. Our identification of a major C-terminal frag-

ment of SATB2, which becomes more prominent during muscle cell differentiation, sug-

gests that regulated proteolysis may target the SATB2 protein and that this may be a crit-

ical step in managing cell differentiation (Figures 1A and S2D). Indeed, prior studies from 

our laboratory have shown that caspase 3 plays a prominent role in myogenesis, targeting 

and cleaving a number of proteins to engage the differentiation program [22,24,36,37]. In 

addition, evidence from apoptotic nuclei suggests that nuclear structural proteins are tar-

geted by caspase proteases as part of a chromatin dissolution mechanism [19,39,40].  
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Despite the prominent role of caspase 3 in the differentiation process, we have noted 

that SATB2 is cleaved exclusively by the effector caspase, caspase 7 (Figure 2C). Suppres-

sion of this protease in vitro led to the sustained expression of SATB2 (Figure 2D,E), with 

a concomitant reduction in myogenesis (Figure 2G). Cytosolic caspase 7 activity has been 

suggested to promote odontogenesis [66,67], yet nuclear caspase 7 disposition is consid-

ered to be an exclusive hallmark of apoptosis [67,68]. For example, remodeling the chro-

matin micro-environment through targeted protein cleavage events is considered to be a 

conserved feature of apoptosis, as exemplified by the effector caspase cleavage of scaffold 

attachment factor b1 [69], lamina-associated polypeptide 2α [70], and SMARCA2 and 

SMARCA4 [40]. Nevertheless, our observations support a novel model whereby an effec-

tor caspase, caspase 7, targets a protein substrate (SATB2) in order to prime the nuclear 

matrix to engage differentiation, independent of cell death. Presumably, during muscle 

cell differentiation, the activation of caspase 7 is mediated by the same pathway that leads 

to the induction of caspase 3 via the engagement of the mitochondrial intrinsic cell death 

pathway [23]. The pattern of caspase 7 activation is remarkably similar to caspase 3 in 

differentiating myoblasts (Figures 2F and S2E), which does support a common signaling 

origin. What is more speculative is whether a level of integration may exist between 

caspase 3 and caspase 7 activity, where the targeting of their respective substrates is coor-

dinated to drive the same biologic alteration.  

Central to SATB2′s role in controlling gene accessibility and expression is its impact 

on the chromatin structure during myoblast differentiation. Our ChIP-seq analyses indi-

cate that SATB2 is bound throughout the mouse myoblast genome (Figure 3A), mainly in 

the intergenic spaces, but also near or within the coding regions of many genes (Figure 3C 

and integrated genomics viewer/IGV display for SATB2 targets, Supplementary Figure 

S5). The widespread distribution of SATB2 is consistent with the localization generally 

observed for matrix attachment region proteins [71]. However, the binding sites of SATB2 

are positioned near but independent from chromatin loop anchor points (Figures 4B and 

S4B), indicating a hitherto unappreciated role in maintaining the three-dimensional chro-

matin architecture. This observation is somewhat in contrast to recent work, where neu-

ronal SATB2 was found to be associated with the nuclear lamina via LEMD2, and the 

ablation of either protein resulted in substantial changes to nuclear organization and gene 

regulation [17]. Accordingly, our study adds critical insight into the entities that govern 

chromatin organization and cell function, suggesting that in a myogenic cell, SATB2 ac-

tively modifies chromatin architecture by establishing gene expression boundaries 

through the formation of loops and TAD-like domains. Whether SATB2-dependent loops 

and TADs follow a specific subnuclear distribution, i.e., preferential location at the nuclear 

edge, and whether this occurs in other cell lineages will require further investigation. 

The loss of myoblast SATB2 affects the genetic landscape in several ways. Most di-

rectly, SATB2 ablation led to changes in three-dimensional chromatin folding, as evi-

denced by the reduction in chromatin loops following its suppression (Figure 4B). 

SATB2′s primary association with loop ends, as opposed to TAD ends, adheres to the 

original structural role described for the SATB family of proteins [72–75]. For example, 

SATB1 has been shown to mediate the formation of chromatin in helper T cells and is 

necessary for the expression of key cytokines following T cell activation [74]. In addition 

to affecting gene accessibility through chromatin loop remodeling, SATB2 loss appears to 

affect the expression of several important chromatin modifiers such as Hdac4/5/7/9 (Figure 

3D), which themselves can further alter the genetic architecture during myogenesis and 

modify the activity of key transcription factors such as the Mef2 family. These effects likely 

form the foundation for many of the gene expression changes observed in this study and 

may serve to open/close genetic locales that would support the progression of the myo-

genic program. A prime example of this would be for Smarca4, which typically supports 

cell differentiation [41–43]. When SATB2 is suppressed, Smarca4 becomes part of a new 

loop structure, which may facilitate its expression during myogenesis (Figure 4C). Con-

versely, Hdac5 exits a SATB2-mediated loop structure when the latter is ablated, which 
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may serve to help repress its expression and aid in the progression of the myogenic pro-

gram (Figure 4D).  

While changes in local chromatin folding may be the primary driver of SATB2-asso-

ciated gene expression changes, our data suggest that some changes may occur by means 

of an independent mechanism, potentially through changes in sub-TAD contact domains 

or changes in the DNA looping that influences distal target genes [76]. For instance, the 

local chromatin loops around Ncoa1 and Hdac4 appear virtually unaltered between siCon-

trol and siSATB2 treatments (Supplementary Figure S4C). However, the sub-TAD do-

mains at these loci changed following SATB2 suppression, with either domains being lost 

or altered in size (Supplementary Table S3). These sub-TAD domains can be critical regu-

lators of gene expression and may lie within a larger TAD superstructure that remains 

unaltered [77,78]. Moreover, evidence exists that changes in sub-megabase contact do-

mains may be critical for the fidelity of gene expression during embryonic stem cell and 

neural progenitor cell fate determination [79]. Interestingly, those genes (Smarca4, Hdac5, 

and Med21) that possessed changes in local loop structures did not possess contact do-

mains at the resolutions tested, suggesting that these modes of regulation may be mutu-

ally exclusive. Taken together, SATB2′s impact on genome loop structures and sub-TAD 

level contact domains appear to hamper myoblast differentiation, necessitating SATB2 re-

moval for the induction of chromatin reorganization that facilitates the myogenic differ-

entiation program.  

In addition to alterations in local chromatin environments, others have noted that 

skeletal muscle differentiation coincides with macro nuclear alterations, where transcrip-

tions factors and chromatin remodeling proteins, working in concert, reduce inter-chro-

mosomal contacts at critical differentiation-specific loci [33]. We have noted that the loss 

of SATB2 expression is concurrent with a global reduction in the number of inter-chromo-

somal links (5.25 ± 0.22 vs. 5.90 ± 0.01%, p = 0.04, see Supplementary Table S5), suggesting 

that SATB2 may similarly modify this macro nuclear structure, perhaps reducing inter-

chromosomal links that repress the differentiation program. However, an accurate iden-

tification of such SATB2 sensitive loci will require alternative 3C experiments that provide 

greater sequence depth compared to our current Hi-C approach [80,81]. 

In closing, our data do not favor a model whereby SATB2 binds to any traditional 

chromatin anchor. Rather, our data suggest that SATB2 binds within the looped chroma-

tin, proximal to CTCF and its cohesin-linked protein complexes, which together anchor 

the loop structure (as defined in [82]). Furthermore, the very modest association of SATB2 

at anchor points implies a loop-oriented binding event rather than a direct physical asso-

ciation with CTCF per se (we also see SATB2 bind within a cohort of subTAD domains, 

which again reinforces the loop-binding propensity of this protein). Intra-chromatin loop 

protein binding (and the regulation of gene expression) has not been reported in the liter-

ature previously; however, our data are consistent with this novel and exciting hypothe-

sis. Indeed, a very recent publication has shown that the Jpx RNA can bind directly within 

a chromatin loop, modify its structure, separately impair CTCF binding kinetics, which 

all together leads to altered gene expression [83]. This aforementioned study together with 

our observations suggest a new and unappreciated mechanism for controlling the local 

chromatin structure, affecting gene expression, and influencing cell fate decisions. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/cells11060966/s1, Figure S1: SATB2 expression represses myoblast differentiation, Figure 

S2: Caspase 7 cleaves SATB2 during early skeletal muscle differentiation and is necessary for myo-

genesis, Figure S3: Quality control and validation data related to ChIP- and RNA-seq experiments, 

Figure S4: Validation data for SATB2 genomic analysis, Figure S5: Integrative Genomics Viewer 

(IGV) tracks depicting select genes (blue) related to proliferation/differentiation and the SATB2 

binding sites within that area of the myoblast genome (grey), Figure S6: Validation of SATB2 loss 

following tamoxifen treatment of Satb2fl/fl and Pax7CreER/Satb2fl/fl mice, Table S1: Mass spectrometry 

analysis of the major cleavage fragment of SATB2, Table S2: Top 10 enriched DNA sequence motifs 

within the full set of SATB2 ChIP peaks, Table S3: Sub-TAD contact domains identified near Ncoa1, 
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Hdac4, and Mylk genes for siControl- and siSATB2-treated proliferating C2C12 cells, Table S4: ChIP-

seq statistics for proliferating C2C12 cells, Table S5: HiC replicate statistics for siControl- and si-

SATB2-treated proliferating C2C12 cells  
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