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Abstract: Primary cilia are non-motile plasma membrane extrusions that display a variety of receptors
and mechanosensors. Loss of function results in ciliopathies, which have been strongly linked with
congenital heart disease, as well as abnormal development and function of most organ systems.
Adults with congenital heart disease have high rates of acquired heart failure, and usually die from a
cardiac cause. Here we explore primary cilia’s role in acquired heart disease. Intraflagellar Transport
88 knockout results in reduced primary cilia, and knockout from cardiac endothelium produces
myxomatous degeneration similar to mitral valve prolapse seen in adult humans. Induced primary
cilia inactivation by other mechanisms also produces excess myocardial hypertrophy and altered
scar architecture after ischemic injury, as well as hypertension due to a lack of vascular endothelial
nitric oxide synthase activation and the resultant left ventricular dysfunction. Finally, primary cilia
have cell-to-cell transmission capacity which, when blocked, leads to progressive left ventricular
hypertrophy and heart failure, though this mechanism has not been fully established. Further research
is still needed to understand primary cilia’s role in adult cardiac pathology, especially heart failure.
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1. Introduction

The incidence of adults with congenital heart disease (CHD) has been progressively
increasing for some time, in part driven by significant improvements in the management of
these patients as children [1]. A child born with CHD today has a 97% chance of survival to
adulthood [2], and, at least since 2010, the number of adults living with CHD has exceeded
the number of children [3]. Further improvement will need to come from the ongoing
management of these patients as adolescents and adults [2]. Adults with CHD show
an increased risk of developing ventricular hypertrophy, heart failure, arrhythmias, and
sudden cardiac death later in life than patients born with grossly normal hearts [4–7]. In
fact, a majority of these patients die from cardiac causes [1].

Current strategies for the management of these patients, as well as for risk stratification,
are insufficient [8,9]. In order to improve outcomes in these patients, providers and
translational scientists need to understand the mechanisms of acquired heart disease
in this population. With their strong links to both congenital and acquired heart disease,
primary cilia represent an important target for further research and therapeutics.

Primary cilia have been the focus of research since the 1960s, when they were first
recognized as distinct from motile cilia and present in most mammalian tissues [10,11].
Diseases related to cilia gene mutations, coined ciliopathies, have since been identified
in many organ systems [12,13]. Cilia’s role in the cardiovascular system has been more
recently defined, with large studies and reviews describing the occurrence of most, if not
all, congenital heart diseases in response to mutations in cilia-related genes [14,15]. Primary
cilia have now been recognized to play an important role in acquired heart disease as well,
and the etiology of this association remains an active area of research. Here we review the
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available literature on primary cilia and their role in acquired heart disease, and outline
areas where more research is needed.

2. Primary Cilia
2.1. Cilia Structure and Components

Primary cilia are extrusions of the plasma membrane that display a variety of receptors
and mechanosensors. The core structure is an axoneme of nine doublet microtubules that
extend from a basal body, and they are therefore referred to as “9 + 0” cilia. This distin-
guishes them from motile “9 + 2” cilia, which have an additional two dynein-associated
central microtubules, permitting motion [11].

As primary cilia do not intrinsically have associated ribosomes, they instead rely on
the intraflagellar transport (IFT) system to ferry receptors and other proteins into and out
of the cilium [12]. This system is capable of bidirectional movement along the length of the
flagella, between the outer doublet of microtubules and the flagellar membrane [16,17]. IFT
proteins, especially Ift88, are often knockout targets in cilia research, as their inactivation
results in the absence of primary cilia in the affected cell [18,19].

At the base of the cilium, near the basal body, an interactome of proteins, coined
CPLANE, is responsible for ciliogenesis and intraflagellar transport. (Figure 1) These
proteins act at the basal body to recruit IFT-A proteins to the base of the cilium and stabilize
and insert complete IFT-A particles into the axoneme. Mutations in these proteins have
been associated with a variety of ciliopathies [17]. Numerous other membrane-bound
proteins located along the cilia have been associated with ciliopathies as well, including
polycystins, known for causing autosomal dominant polycystic kidney disease, and septins,
which have been linked with a variety of cancers and neurodegenerative conditions [20–25].
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2.2. Ciliopathies

For classification purposes, first-order ciliopathies are those diseases which occur due
to a mutation in genes required for the proper assembly, maintenance, or function of the
cilia or the related centriole; second-order ciliopathies occur due to dysregulation of further
upstream factors, such as the nuclear transcription factors Atf3, Tsc22d4, and Cbx5 [26,27].
There are at least 300–1000 first-order, and many more second-order, genes [26,28,29].

Primary cilia play an important role in most mammalian organ systems, so ciliopathies
tend to display a variety of multiorgan dysfunction phenotypes. (Table 1) Bardet—Biedl
syndrome, for example, is characterized by retinitis pigmentosa, obesity, polydactyly,
cognitive impairment, and renal failure [30]. Most ciliopathies show some amount of brain,
craniofacial, or endocrine dysfunction, though kidney, reproductive, and heart tissues are
also often involved [26].

One of primary cilia’s most important roles, and part of the reason mutations cause
such varied phenotypes, is the display of receptors important for cell signaling pathways
and the machinery for signal transduction [31]. One of the best studied is Hedgehog (Hh),
which is highly dependent on functional primary cilia [19,32–34]. The transmembrane
protein Smoothened (Smo), which is responsible for Gli protein activation in the Hh
pathway, is found at the tip of the cilium [35]. Other pathways, such as Wnt, Notch, and
PCP, similarly depend on primary cilia, and ciliopathies can impair their function [36,37].

Autophagy and programmed cell death pathways, which are important for tissue
homeostasis and are perturbed in neurodegenerative diseases and cancer, depend on proper
ciliary function due to machinery localization to the cilia and interdependent feedback
mechanisms [36]. Loss of primary cilia function results in excess cell death from autophagy
in mitochondrial stress responses and from mitochondria-dependent apoptosis [38,39].
Finally, extracellular matrix makeup is sensed and regulated through primary cilia [40,41].

Table 1. Known human ciliopathies. A list of known human ciliopathies, though many more are
thought to be related to cilia function. Ciliopathies present with significant variation in phenotype
depending on the underlying gene mutation and other factors. Due to historical clinical defini-
tions, some syndromes are phenotypes possible from a variety of gene mutations, while others are
phenotypic variations of the same genetic defect [42,43].

Ciliopathy Syndrome Associated Genes

Alström syndrome [44] ALMS1
Bardet—Biedl syndrome [30] BBS1-16

Ellis-van Creveld syndrome [45] EVC/EVC1, EVC2
Jeune syndrome (Asphyxiating thoracic dystrophy) [46] IFT80

Joubert syndrome [47] CEP290, others
Leber Congenital Amaurosis [48] GUCY2D, RPE65, others

McKusick—Kaufman syndrome [49] MKKS/BBS6
Meckel—Gruber syndrome [50] MKS1-13, others

Nephronophthisis [51] NPHP1-NPHP11, others
Orofaciodigital syndrome 1 [42] OFD1
Polycystic Kidney Disease [21] PKD1, PKD2
Senior—Løken syndromes [52] NPHP1, NPHP3, others

Sensenbrenner syndrome (Cranioectodermal dysplasia) [53] IFT122, WDR35
Short-rib polydactyly syndrome [54] DYNC2H1

2.3. Primary Cilia Locations

Despite their importance for many cellular pathways, primary cilia have not been
identified on all cardiac cell types. Primary cilia are displayed on fibroblasts in the heart,
Ref. [55] as well as on vascular endothelial cells, though expression on valvular endothelium
decreases over time, from abundance in embryologic samples to near absence in adult
samples [13,56,57]. Most cardiac interstitial (mesenchymal) cells also display primary
cilia [57]. Cardiomyocytes contain primary cilia in embryonic tissue samples and lack them
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in adult samples, but there is disagreement regarding their presence on neonatal samples,
Refs. [55,58] suggesting a possible loss of primary cilia over time.

3. Primary Cilia in Acquired Heart Disease
3.1. Acquired Valvular Heart Disease

The importance of proper cilia function in the embryonic heart has been well estab-
lished [14,19,59,60]. In a comprehensive analysis of over 87,000 mutagenized mouse fetuses,
Li et al. identified 61 genes in which mutations were capable of producing echocardio-
graphically identifiable congenital heart defects, and 35 of these genes encoded either
motile or primary cilia proteins. An additional 16 genes were involved in cilia-transduced
cell signaling, and 10 regulated vesicular trafficking, which is necessary for proper cilia
function [14].

Unlike the congenital defects analyzed by Li et al., mitral valve prolapse (MVP) is not
evident on echocardiogram at birth. Instead, it is unusual in infants and children and it is
more frequently identified in patients aged 30–80 years of age [61]. This valve pathology is
a result of myxomatous degeneration over the lifetime of the patient.

In a genome-wide association study, enrichment for cilia genes was found in patients
with MVP, and murine homozygous mutants of the two known familial MVP genes, Dchs1
and Flna, showed decreased primary cilia length on the neonatal mitral valve leaflets [57,62].
Exploring cilia’s mechanistic role in MVP, Toomer et al. showed that the presence of primary
cilia on endocardial cells correlated with increased proteoglycan and decreased collagen
in the extracellular matrix of valve endocardium. Conditional knockout of intraflagellar
transport protein 88 (Ift88) in cardiac endothelial cells in mice resulted in decreased primary
cilia counts, increased proteoglycans, and fragmented collagen, i.e., the initiation of myx-
omatous degeneration [57,63]. While primary cilia abundance on valvular endothelium
decreases with age, their effect on the extracellular matrix persists. As adults, these mice
show myxomatous mitral valve disease [57].

3.2. Fibrosis

In addition to myxomatous degeneration of the valve, patients with MVP also show
progressive left ventricular fibrosis. Cardiac fibrosis is an excessive production and deposi-
tion of scar tissue, often a result of conditions such as hypertension or diabetes mellitus,
and can lead to increased tissue stiffness, cardiomyocyte atrophy, and arrhythmias [64,65].
The fibrosis observed with MVP is more significant than that seen in patients with primary
mitral valve regurgitation from a non-MVP etiology, which may suggest a common cause
for both excessive fibrosis and MVP [66].

In cardiac fibroblasts, activation of the transforming growth factor β-1 (TGF-β1)
receptor results in production of fibronectin, collagen type I, and collagen type III, which
are necessary components of the extracellular matrix in fibrotic tissue [67]. Fibroblasts also
undergo transformation to myofibroblasts, which express α-smooth muscle actin (α-SMA)
and display contractile ability.

Inactivation of primary cilia by small interference RNA (siRNA) silencing of Polycystin-
1 (PC1) in fibroblasts results in a lack of upregulated collagen production in response to
TGF-β1. Similarly, siRNA silencing of either PC1 or Ift88 in cardiac fibroblasts results in
failure of the fibroblasts to differentiate into myofibroblasts capable of contractile function,
which is necessary for standard cardiac remodeling. These mice instead show excess
myocardial hypertrophy and altered scar architecture [55].

In addition to native cardiac fibroblast proliferation, endothelial-mesenchymal tran-
sition (EndMT) is now recognized as an important source of fibroblasts for perivascular
and subendocardial fibrosis [68]. Knockdown of Ift88 in endothelial cells, which results
in the absence of primary cilia on these cells, appears to be insufficient to directly induce
EndMT in vivo but may prime these cells for EndMT in response to lower stress than would
otherwise be required [69,70].



Cells 2022, 11, 960 5 of 9

3.3. Vascular Pathology and Cilia

In addition to their role in fibrosis after an ischemic injury, primary cilia also reg-
ulate atherosclerosis and, therefore, the risk of ischemic events. Primary cilia serve as
mechanosensors in a variety of cell types [71]. In endothelial cells with functional primary
cilia, excess shear stress stimulates PC1 interaction with Polycystin-2 (PC2), permitting cal-
cium influx and activating calcium-dependent signaling molecules, including calmodulin
and calcium-dependent protein kinase (PKC), that lead to activation of endothelial nitric
oxide synthetase (eNOS) and subsequent vasodilation [72–74].

Branch points and the lesser curvature of the aorta are at particular risk of atherosclero-
sis due to relatively low and oscillatory shear stress [75]. These areas also display increased
density and stability of primary cilia [76,77]. Initial research suggested that primary cilia
may play a role in producing atherosclerosis, as apolipoprotein-E-deficient (Apoe−/−) mice
display increased primary cilia as well as increased atherosclerosis at these risk points [63].
However, removing these cilia via knockout of Ift88 results in increased atherosclerosis in
Apoe−/− mice in response to a high fat, high cholesterol diet, suggesting this is a protective
response mediated by eNOS [78].

PC1 and PC2 gene mutations produce autosomal dominant polycystic kidney disease
(ADPKD), which results in hypertension in two-thirds of cases [79]. In addition to the
eNOS activation mechanism, primary cilia also protect against hypertension via dopamine
receptor 5 (DR5) [74,80]. Stimulation at this receptor results in adenylyl cyclase and PKC
activation, leading to vasodilation [81].

3.4. Ventricular Remodeling and Recovery

Cardiomyocyte hypertrophy is an important cell autonomous and non-cell autonomous
adaptive response to significant stress, especially hypertension, that is necessary for sur-
vival. However prolonged stress and resultant excess hypertrophy and cardiac remodeling
can lead to heart failure and sudden cardiac death [82–84]. Cardiomyocytes have some
ability to sense mechanical forces, including hemodynamic stress, in order to convert
stress into intracellular growth signals and induce hypertrophy. However, the molecular
identity of the mechanosensor remains elusive. Primary cilia are an attractive candidate as
a mechanosensor; however, this has not been demonstrated experimentally.

One possible mechanism appears to be via ciliary extracellular-like vesicles (cELVs) [85].
These vesicles are released from cilia under normal circumstances and at increased rates
under fluid shear stress. Blocking ciliary proteins necessary for cELV production using
short hairpin RNA (shRNA) prevents cELV production and results in left ventricular hy-
pertrophy, decreasing left ventricular ejection fraction, and, eventually, low blood pressure
and cardiovascular collapse [85,86].

3.5. Congenital Heart Disease and Late-Onset Heart Failure

Patients with CHD show a higher risk of heart failure later in life than patients born
with grossly normal hearts [4–6]. One study showed an overall prevalence of heart failure
of 26% in a cohort of patients with surgically corrected CHD [6]. While the highest risk
of heart failure is in patients with morphologically right ventricles exposed to systemic
pressures, even patients with isolated ventricular septal defect are at higher risk of systolic
and diastolic dysfunction 30 or more years after surgical repair [87]. This suggests that
either a factor of the surgery can produce ventricular dysfunction decades later, such as
the residual scar tissue, or else that a common etiology for both the CHD and ventricular
dysfunction exists.

Some familial CHD-producing gene mutations have also been associated with ventric-
ular dysfunction, such as the sarcomeric gene MYH7 [5]. However, we are not aware of
any current published research directly linking primary cilia gene mutations with heart
failure through a mechanism different than those discussed above. While primary cilia
are not displayed on adult cardiomyocytes, many ciliary proteins continue to exist and
function at non-cilia locations, and cilia continue to be present in other cell types. Acquired
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ventricular dysfunction may therefore be mediated by ciliated non-myocytes, or else via
cilia-independent functions of cilia proteins in cardiomyocytes. Alternatively, ciliogenesis
may be reactivated in de-differentiated cardiomyocytes or cardiomyocyte progenitor cells
in response to stress. Another possibility is that primary cilia defects in the developing heart
result in permanent differences in the adult myocytes’ response to the stresses discussed
above. Additional research is needed to identify the role of primary cilia in heart failure.

4. Concluding Remarks

Primary ciliary gene defects have previously been observed in a variety of syndromes,
including ADPKD and Bardet—Biedl, as well as isolated congenital heart diseases. The role
of cilia in these congenital conditions has been well defined. However, the role of primary
cilia in acquired heart disease has not previously been reviewed.

Here we have reviewed literature exploring the effect of cilia gene knockouts on a
variety of acquired cardiac pathologies. Mice with Ift88 knockout in valvular cells show
myxomatous degeneration of the mitral valve similar to that observed in adult humans with
mitral valve prolapse. Similarly, knockout in endothelial cells increased rates of endothelial
to mesenchymal transition and increased fibrotic disease in response to stress. These models
also show increased hypertension and atherosclerotic disease. Finally, primary cilia have
cell-to-cell transmission capacity which, when blocked, leads to progressive left ventricular
hypertrophy and heart failure.

While primary cilia have been linked with conditions that lead to heart failure, such as
hypertension or atherosclerotic disease, a mechanistic causal relationship has not yet been
fully established. Further research is needed to understand primary cilia’s role in adult
cardiac pathology and especially in ventricular dysfunction.

Overall, despite decreased abundance in adult heart tissue, primary cilia continue to
play an important role in cardiac homeostasis throughout adult life.
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