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Abstract: The microvascular endothelial network plays an important role in osteogenesis, bone regen-
eration and bone tissue engineering. Endothelial progenitor cells (EPCs) display a high angiogenic
and vasculogenic potential. The endothelialization of scaffolds with endothelial progenitor cells
supports vascularization and tissue formation. In addition, EPCs enhance the osteogenic differenti-
ation and bone formation of mesenchymal stem cells (MSCs). This study aimed to investigate the
impact of EPCs on vascularization and bone formation of a hydroxyapatite (HA) and beta-tricalcium
phosphate (ß-TCP)–fibrin scaffold. Three groups were designed: a scaffold-only group (A), a scaffold
and EPC group (B), and a scaffold and EPC/MSC group (C). The HA/ß–TCP–fibrin scaffolds were
placed in a porous titanium chamber permitting extrinsic vascularization from the surrounding tissue.
Additionally, intrinsic vascularization was achieved by means of an arteriovenous loop (AV loop).
After 12 weeks, the specimens were explanted and investigated by histology and CT. We were able to
prove a strong scaffold vascularization in all groups. No differences regarding the vessel number and
density were detected between the groups. Moreover, we were able to prove bone formation in the
coimplantation group. Taken together, the AV loop is a powerful tool for vascularization which is
independent from scaffold cellularization with endothelial progenitor cells’ prior implantation.

Keywords: bone tissue engineering; endothelial progenitor cell; mesenchymal stem cell; vascularization;
AV loop

1. Introduction

Large-volume bone defects due to trauma or infection require reconstruction with
autologous tissue. The transplantation of vascularized bone grafts such as the fibula or iliac
crest is the current gold standard for the treatment of large bone defects [1,2]. However,
the usage of such bone grafts can be associated with a considerable donor-side morbidity.
Donor-side morbidity and/or comorbidities can limit the autologous tissue transfer [3].
The generation of tissue-engineered bone substitutes is a promising strategy to reduce the
donor-side morbidity and to improve patient outcome. The engineering of bioartificial
bone grafts requires (I) bone-forming cells, (II) osteogenic scaffolds and (III) sufficient vas-
cularization. Mesenchymal stem cells (MSCs) represent an attractive cell source for tissue
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engineering applications. First described by Friedenstein et al. five decades ago, MSCs are
multipotent progenitor cells with the ability to differentiate into mesenchymal tissues such
as cartilage, fat, bone, muscle or tendon [4,5]. For bone tissue engineering applications,
MSCs are widely used due to their easy isolation, high capacity for self-replication and
osteogenic differentiation [6,7]. In the past, several biomaterials have been used as scaffold
for bone tissue engineering applications. Hydrogels such as fibrin, alginate dialdehyde
and gelatin (ADA-GEL) or recombinant spider silks display a good biocompatibility and
biodegradation. Moreover, cells can be encapsulated into hydrogels and the high porosity
supports nutrition and oxygen supply. In addition, the high water content and the ultra-
structure enable an extracellular matrix-like milieu enabling structural support for cell
transplantation [8–14]. Although different hard matrices for bone tissue engineering exist,
we identified porous hydroxyapatite and beta-tricalcium phosphate granula (HA/ß–TCP)
as a suitable osteogenic scaffold [15–17]. Sufficient vascularization is the fundamental limi-
tation of tissue engineering applications. The integration of the tissue-engineered construct
to the host vessel network ensures adequate oxygen and nutrition supply and thereby
the survival of the transplanted cells. In the early postimplantation period, oxygen and
nutrition supply is dependent on diffusion. Because diffusion is limited to 100–200 µm, dif-
ferent approaches have been performed to enhance scaffold vascularization. The so-called
prefabrication is an encouraging methodology in order to vascularize tissue engineering
constructs. Prefabrication can be achieved by two different microsurgical approaches: the
arteriovenous bundle or the arteriovenous fistula (AV loop) [18,19]. The arteriovenous
bundle is generated by the distal ligation of an artery with its venae comitantes. The
arteriovenous fistula (AV loop) is formed by the anastomosis of a vein graft between an
artery and vein. Tanaka et al. demonstrated that the AV loops display a higher potential
for tissue generation and angiogenesis [20]. Another approach is the cellularization of the
scaffold with endothelial progenitor cells prior to implantation. Endothelial progenitor cells
display a high angiogenic and vasculogenic potential. In addition to that, EPCs can stim-
ulate the osteogenic differentiation of MSCs in vitro and bone formation in vivo [21–23].
In our study we used the murine endothelial progenitor cell line T17b as described by
Hatzopoulos et al. [24]. T17b EPCs are an exciting cell source for xenotransplantation
studies since they do not express MHC I [25]. In several ischemia models T17b EPCs
induced neovascularization and functional recovery of the ischemic tissues [26–28].

This study’s target was to investigate the influence of T17b EPCs on vascularization
and bone formation of HA/ß–TCP–fibrin scaffolds. Moreover, this study analyzes the
interplay between intrinsic vascularization originating from the AV loop and scaffold
cellularization with T17b EPCs.

2. Materials and Methods
2.1. MSC Isolation and Cultivation

The isolation and cultivation of mesenchymal stem cells (MSCs) from the bone mar-
row was performed according to an established protocol [10,29]. The Government of
Mittelfranken and the Animal Care Committee of the University of Erlangen approved
the procedure (55.2-2532.1-53/14). In brief, male Lewis rats were euthanized, the femur
bones isolated and the bone marrow flushed with phosphate-buffered saline (PBS) and
fetal calf serum (Biochrom, Berlin, Germany). After a centrifugation step, the cell pellet was
reconstituted with DMEM (Gibco/Life Technologies, Carlsbad, CA, USA) containing 20%
fetal bovine serum (Biochrom), 1% penicillin/streptomycin (Gibco Invitrogen) and 1%
L-glutamine (Sigma-Aldrich, Schnelldorf, Germany). Then, the cells were filtered through
100 µm cell strainers (BD™, Becton Dickinson, Heidelberg, Germany) and density gradient
centrifugation with Histopaque® was performed (Sigma-Aldrich). Afterwards, the cells
were cultured in cell culture flasks with a density of 2.0 × 106/cm2 in a humidified atmo-
sphere (37 ◦C; 5% CO2). The nonadherent cells were washed out after 48 h and the cell
culture medium changed. MSCs were used until passage 5.



Cells 2022, 11, 926 3 of 13

2.2. T17b EPC Cultivation and Differentiation

The murine mesodermal endothelial progenitor cell line T17b was cultured and dif-
ferentiated according to established protocols [24,30]. Briefly, T17b EPCs were seeded
onto cell culture flasks coated with bovine skin gelatin type B (Sigma-Aldrich, Schnelldorf,
Germany). For cell cultivation, high glucose DMEM GlutaMAX® (Gibco/Life Technologies,
Carlsbad, CA, USA) was used containing 20% fetal calf serum (Biochrom), 100 U/mL peni-
cillin (Biochrom), 100 µg/mL streptomycin (Biochrom), 1 mM nonessential amino acids
(Gibco), 2 mM HEPES buffer pH 7.5 (Gibco) and 0.1 mM 2-mercaptoethanol (Gibco). By sup-
plementing 0.5 mM dibutyryl cyclic AMP and 1 µM all-trans retinoic acid (Sigma-Aldrich),
endothelial differentiation was induced.

2.3. AV Loop Operation

The Animal Care Committee of the University of Erlangen and the Government of
Mittelfranken approved the animal experiments (55.2-2532.1-53/14). Thirty male syngeneic
Lewis rats (Charles River Laboratories, Sulzfeld, Germany) with a body weight between
240–440 g were used. Three experimental groups each with 10 animals were performed:
matrix-only [group A], matrix and T17b EPCs [group B] or matrix and T17b EPCs as
well as MSCs [group C]. As previously described, the arteriovenous loop operation was
performed using an operating microscope (Carl Zeiss, Oberkochen, Germany) [8]. In
brief, the saphenous vessels were dissected and a vein graft from the contralateral leg
was anastomosed between the saphenous artery and vein, forming an arteriovenous loop
(AV loop). Then, a porous titanium chamber was placed in the left groin and fixed onto the
thigh musculature. Half of the matrix was filled into the chamber and the AV loop placed
onto the matrix. The matrix consisted of porous hydroxyapatite (HA), beta-tricalcium
phosphate (ß-TCP) granula (TricOs®, Baxter Healthcare, Vienna, Austria) and fibrin gel
(TISSEEL Kit, Baxter Healthcare, Vienna, Austria). Prior to fibrin application, the thrombin
and fibrinogen solutions were diluted with PBS in a 1:10 and 1:4 ratio. The diluted solutions
were applied in a thrombin—fibrinogen ratio of 1:1 using the TISSEEL applicator. For cell
implantation, T17b EPCs and MSCs were detached from cell culture dishes, centrifuged
and the cell pellet reconstituted in fibrinogen. Group B contained 2 × 106 T17b EPCs per
construct. Group C contained 1 × 106 MSCs and 1 x 106 T17b EPCs per construct. After
the AV loop was placed appropriately, the second half of the matrix was added and the
titanium chamber closed with a lid (Figure 1A–D). Finally, the skin was closed.

2.4. Explantation Procedure

After 12 weeks, two rats per group were perfused with Microfil® MV-122 solution
(Flow Tech Inc., Carver, MA, USA) to perform CTs and the remaining animals received
India ink solution. India ink solution consisted of 50% v/v India ink and 50% v/v Ringer
solution containing 5% gelatine and 4% mannitol (Carl Roth, Karlruhe, Germany). As
previously described, a median laparotomy was performed and the aorta was cannulated
with a G21 cannula (Braun, Melsungen, Germany) [15,31]. After the caval vein was cut,
the vascular system was flushed with 100 mL Ringer-Heparin solution (100 IU/mL) until
clear fluid appeared. Then, 20 mL Microfil® with 1 mL curing agent or India ink solution
was applied, the caudal caval vein and aorta ligated and the specimen stored at 4 ◦C
overnight. Thereafter, the constructs were explanted and fixed in Roti®-Histofix 4% (Carl
Roth, Karlsruhe, Germany) for 24 h. For decalcification, the constructs were incubated in
an ultrasonic bath (Bandelin sonocool Typ sc 255, Bandelin electronic GmbH und Co.KG,
Berlin, Germany) with 20% EDTA solution (Sigma Aldrich, Steinheim, Germany) for
3 weeks.

2.5. Computer Tomography

The microstructure of the newly formed vessel system was analyzed using computer
tomography (CT) scans with an Inveon CT Scanner (Siemens Healthineers, Erlangen,
Germany). The following scan parameters were applied: voltage of 80 kV, current of
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500 µA, resolution of 24.49 µm per voxel and exposure time of 400 ms. Osirix Dicom
Viewer (Aycan Osirix, New York, NY, USA) was used as imaging software.
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Figure 1. AV loop operation. First, the vein graft was microsurgically anastomosed between the
saphenous vessels (A). Thereafter, the half-filled titanium porous chamber was sutured on the thigh
musculature and the AV loop placed on top of the matrix (B). Finally, the second half of the matrix
was added, the chamber closed with a lid and the skin closed (C,D).

2.6. Histological Staining

After decalcification, the constructs were embedded in paraffin and cut into 3 µm
cross-sections, perpendicular to the longitudinal axis of the AV loop. Haematoxylin and
eosin (H&E) as well as smooth muscle actin (α-SMA) staining were carried out accord-
ing to standard protocols [32]. In order to prove potential immunogenic side effects of
the osteogenic matrix, macrophages were visualized using CD68 staining. Briefly, the
deparaffinized and rehydrated histological cross-sections were treated with a blocking
solution (Zytomed Systems GmbH, Berlin, Germany). Thereafter, the anti-CD68 primary
antibody (1:300 dilution, BIO-RAD, Hercules, CA, USA) was added and incubation oc-
curred overnight. Finally, a second alkaline phosphatase-labeled anti-mouse antibody
(AP-Polymer) and Fast Red TR/Naphthol AS (Sigma) substrate were added to induce the
color reaction. Haemalaun was added for counterstaining.

To visualize matrix mineralization, alkaline phosphatase (ALP) staining was carried
out. Briefly, the deparaffinized and rehydrated histological slices underwent a cooking step
for antigen retrieval and a blocking solution (Zytomed Systems GmbH, Berlin, Germany)
was added. Thereafter, the diluted (1:100) primary ALP antibody (GeneTex, Inc, Irvine,
CA, USA) was added. After incubation at room temperature for 60 min, color reaction was
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induced with a second alkaline phosphatase-labeled anti-mouse antibody (AP-Polymer)
and Fast Red TR/Naphthol AS (Sigma) substrate. Haemalaun was used for counterstaining.

Osteoclasts were detected using tartrate-resistant acid phosphatase staining (TRAP)
according to an established protocol [33].

An Olympus IX81 microscope (Olympus, Hamburg, Germany), the Panoramic Flash
scanner 250 and the software CaseViewer 2.4 (3DHISTECH, Budapest, Hungary) were used
to take photographs of the histological cross-sections. Semiautomatic histological analysis
was carried out according to established protocols [8,12].

2.7. Statistical Analysis

Statistical analysis was performed with GraphPad Prism 8.00 (GraphPad Software,
San Diego, CA, USA). First, Shapiro–Wilk test was used for normal distribution. Then,
statistically significant differences were calculated using an ordinary one-way ANOVA or
Kruskal–Wallis test. p-values ≤ 0.05 were considered statistically significant. Results are
shown as mean arbitrary units ± SD.

3. Results
3.1. Surgical Outcome and Macroscopic Appearance

In group A, all animals survived the procedure. In group B and C, one animal died.
Two animals (group A) displayed wound healing disorders and two constructs (group B
and C) displayed signs of infection. The abovementioned four constructs have been
excluded from further analysis. Additionally, one construct had to be excluded due to the
extreme fragility of the construct. Six out of eight (75%; group A), four out of nine (44%,
group B) and five out of nine (55%, group C) specimens displayed patent AV loops. After
explantation, the constructs appeared dark-colored in the case of India ink perfusion or
yellow-colored if Microfil® was used for perfusion (Figure 2A,B).
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was used. In the case of India ink perfusion, the constructs appeared black (B).

3.2. Biocompatibility and Degradation of the HA/ß–TCP–Fibrin Matrix

CD68 staining was carried out to detect macrophages and multinuclear giant cells.
In all three experimental groups, we were able to prove CD68-positive macrophages
without multinuclear giant cells (Figure 3A,B). A quantitative analysis of CD68-positive
cells revealed no statistically significant differences between the three experimental groups
(Figure 3C).
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Figure 3. Macrophage staining. Using an anti-CD68 antibody, macrophages were visualized in the
constructs. Macrophages are red-stained (A,B). Equal numbers of CD68-positive cells were found in
all three groups (C). The cell-free group is indicated as “control”. Because no differences between the
groups exist, exemplary histological slices from group B are demonstrated. Bold bars indicate the AV
loop and the black star indicates the HA/ß–TCP granula. Scale bar = 1 mm (A) and 100 µm (B).

We used the construct weight and the histological cross-section area as surrogate
parameters for biodegradation. After 12 weeks, the three experimental groups displayed
no statistically significant differences considering the construct weight (0.52 ± 0.1 vs.
0.61 ± 0.01 vs. 0.62 ± 0.01 g; Figure 4A). In accordance with the construct weight, the
histological cross-section area showed no statistically significant differences between the
experimental groups (45.2 ± 9.9 vs. 38.2 ± 12.6 vs. 46.7 ± 8.4 mm2; Figure 4B).
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After 12 weeks, the fibrin gel was completely replaced by highly vascularized con-
nective or bone tissue. The HA/ß–TCP granula displayed no complete degradation in all
groups (Figure 5).
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Figure 5. H&E staining with overview and detail images. The HA/ß–TCP granula were not com-
pletely degraded. The fibrin gel was replaced by highly vascularized tissue (B,D). No bone formation
was observed in the cell-free (A,B) or T17b EPC group (C,D). Bold bars indicate the AV loop and the
black stars indicate the HA/ß–TCP granula. Scale bar = 1 mm (A,C), 100 µm (B) and 50 µm (D).

3.3. Vascularization and Bone Formation

As mentioned above, we were able to prove newly formed vessels originating from
the AV loop in all constructs with patent AV loops. Interestingly, the transplantation of
T17b EPCs and/or MSCs (group B and C) did not enhance the number of newly formed
vessels compared to the matrix-only group (303 ± 196 vs. 422 ± 90 vs. 335 ± 71; Figure 6A).
In addition to that, the vessel number per mm2 remained unaffected (7.9 ± 7.7 vs. 12 ± 4.3
vs. 7.2 ± 0.9; Figure 6B). Using α-SMA staining, we were able to prove that most of the
newly formed vessels contained a media layer (Figure 6C,D).

Additionally, one specimen per group underwent computer tomography. The CT
reconstructions revealed a dense vascular network originating from the AV loop (intrinsic
vascularization) and from the periphery (extrinsic vascularization) (Figure 7A–C).

We were able to prove incipient bone formation in the group containing T17b EPCs
and MSCs (group C). Small parts of newly formed bone tissue were found close to the
HA/ß–TCP granula and in the proximity of the vascularized construct parts (Figure 8A,B).
Moreover, alkaline phosphatase (ALP) was found in the constructs containing T17b EPCs
and MSCs (group C; Figure 8C). In addition to bone-forming cells, osteoclasts were also
detected in group C using TRAP staining (Figure 8D). No bone formation and ALP activity
as well as only a few osteoclasts were found in the groups without MSCs (groups A and B).
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the HA/ß–TCP granula. Scale bar = 50 µm.
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and underwent CT analysis. The CTs demonstrate the newly formed vascular network originating
from the AV loop and from the periphery. (A) Cell-free group. (B) T17b EPC group. (C) T17b EPC
and MSC coimplantation group.
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4. Discussion

The integration of bioartificial tissues into the microvascular vessel network of the
host organism is one of the major hurdles in the successful translation of tissue engineer-
ing applications into clinical practice. The implantation of endothelial progenitor cells
into the scaffold is a promising strategy to promote vascularization. First described by
Asahara et al. in 1997, endothelial progenitor cells display a high vasculogenic and angio-
genic potential [34]. In previous studies, scaffolds containing EPCs displayed an increased
vascularization compared to EPC-free ones [35–37]. However, when comparing the re-
sults of our study with other groups using cellularized scaffolds containing EPCs, it must
be pointed out that these scaffolds were not additionally vascularized with AV loops to
enhance vascularization and bone tissue formation. In our study, we were able to prove
scaffold vascularization in all three groups after 12 weeks. In addition to intrinsic vascular-
ization originating from the AV loop, we were able to prove extrinsic vascularization of
the peripheral construct parts originating from the surrounding tissue. Although several
studies demonstrated the high angiogenic potential of the T17b EPC cell line, we did not
find a higher scaffold vascularization in the constructs containing T17b EPCs compared to
the cell-free ones [26,38,39]. This result ties well with a previous AV loop study wherein the
implantation of human umbilical vein endothelial cells (HUVECs) did not enhance scaffold
vascularization [31]. Furthermore, the coimplantation of MSCs and T17b EPCs did not
enhance scaffold vascularization, which is in contrast to the fact that MSCs can stimulate
angiogenesis [9,36,40]. In a previous AV loop study, MSCs were encapsulated into alginate
dialdehyde and gelatin (ADA-GEL) microcapsules and a Teflon chamber was used, allow-
ing only intrinsic vascularization over a period of 4 weeks. This apparent contradiction
might be explained by the long implantation period of 12 weeks and the usage of porous
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titanium chambers in the present study. It is alluring to speculate that MSCs and/or T17b
EPCs might have positive effects on scaffold vascularization at an earlier time point, as the
abovementioned previous AV loop study with a 4-week implantation period suggested [9].
Furthermore, it is possible that the combination of the extrinsic vascularization (by the us-
age of porous titanium chambers) and intrinsic vascularization (by means of AV loops) has
a stronger effect on scaffold vascularization compared to the application of MSCs and/or
T17b EPCs [17]. Nevertheless, one has to keep in mind that cell lines do not necessarily
display the identical behavior in comparison to primary cells. Because of this potential
limitation, future AV loop studies using primary EPCs are intended. Another approach to
support vascularization and tissue formation independent from transplanted cells might
be the use of exosomes derived from MSCs [41]. In this context, Hu et al. demonstrated
that intramuscular injected exosomes promoted angiogenesis in a mouse ischemic hind
limb model [42].

From the pertinent literature, it is well known that EPCs can stimulate the osteogenic
differentiation of MSCs in vitro, as indicated by the increased expression of osteoblastic
markers such as alkaline phosphatase (ALP) and matrix mineralization. Moreover, most
studies recommend a cell ratio of 1:1 between MSCs and EPCs [23,43–47]. In our study,
we also used a 1:1 cell ratio between T17b EPCs and MSC. We were able to show bone
formation and alkaline phosphatase activity in the group containing MSCs and T17b EPCs,
which is in line with previous in vivo studies from other groups [36,44,46]. Interestingly,
no bone formation or alkaline phosphatase was detected in the T17b EPC-only group. In a
previous AV loop study, we were able to prove bone formation in hydroxyapatite–fibrin
scaffolds cellularized with HUVECs [31]. No bone formation or alkaline phosphatase were
detected in the cell-free group, which is consistent with previous AV loop studies [31,48].
Furthermore, bone formation was lower compared to previous AV loop studies using MSCs
or ADSCs [15,31]. In contrast to the abovementioned studies, the MSCs were not osteogeni-
cally differentiated prior to implantation, which might explain the lower bone formation.
To circumvent this potential limitation, osteogenic-differentiated MSCs will be implanted
in future bone tissue engineering studies using the AV loop. In addition to bone formation,
osteoclasts were detected using TRAP staining in the proximity of the HA/ß–TCP granula
as a proof of the remodeling processes of the hard matrix. Considering biodegradation,
the HA/ß–TCP granula were not completely degraded after 12 weeks, in contrast to the
fibrin gel. The latter one was completely replaced by highly vascularized tissue. The slow
degradation of the HA/ß–TCP granula is a positive material characteristic because ideal
scaffolds display an inverse correlation between biodegradation and (bone) tissue forma-
tion. Biocompatibility is an important characteristic of biomaterials. No signs of chronic
inflammation have been verified in our study, demonstrating the good biocompatibility of
fibrin and HA/ß–TCP. Although titanium nanoparticles released from medical implants are
critically discussed as potential contributors to chronic inflammation, the animals tolerated
the porous titanium chambers well [49]. On the other hand, innovative new biomaterials
such as slow-degradable polycaprolactone coated with osteogenic molecules (e.g., ß-TCP)
opens new perspectives for bone tissue engineering [50].

5. Conclusions

This AV loop study demonstrated the successful vascularization of an osteogenic
HA/ß–TCP–fibrin scaffold. Bone formation was detected in the MSC/EPC coimplantation
group, whereas no bone formation occurred in the T17b EPC-only and the matrix-only
groups. In addition, the HA/ß–TCP–fibrin scaffold demonstrated a good biocompatibility
and good structural support for bone formation in the coimplantation group.
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