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Abstract: Kidney fibrosis has been accepted to be a common pathological outcome of chronic kidney
disease (CKD). We aimed to examine serum levels and tissue expression of chemokine (C-C motif)
ligand 8 (CCL8) in patients with CKD and to investigate their association with kidney fibrosis in CKD
model. Serum levels and tissue expression of CCL8 significantly increased with advancing CKD stage,
proteinuria level, and pathologic deterioration. In Western blot analysis of primary cultured human
tubular epithelial cells after induction of fibrosis with rTGF-β, CCL8 was upregulated by rTGF-β
treatment and the simultaneous treatment with anti-CCL8 mAb mitigated the rTGF-β-induced an
increase in fibronectin and a decrease E-cadherin and BCL-2 protein levels. The antiapoptotic effect
of the anti-CCL8 mAb was also demonstrated by Annexin V/propidium iodide staining assay. In
qRT-PCR analysis, mRNA expression levels of the markers for fibrosis and apoptosis showed similar
expression patterns to those observed by western blotting. The immunohistochemical analysis
revealed CCL8 and fibrosis- and apoptosis-related markers significantly increased in the unilateral
ureteral obstruction model, which agrees with our in vitro findings. In conclusion, CCL8 pathway
is associated with increased risk of kidney fibrosis and that CCL8 blockade can ameliorate kidney
fibrosis and apoptosis.

Keywords: CCL8; CCR2; fibrosis; apoptosis; chronic kidney disease

1. Introduction

Chronic kidney disease (CKD) is a major concern associated with high mortality and
morbidity [1]. Once acute or chronic kidney injury exceeds a certain threshold, the pro-
gression of kidney disease is consistent, irreversible, and mostly independent of the initial
insult [2]. The final common pathway in this process has been thoroughly investigated, and
kidney fibrosis, which is characterized by a serial process of tubulointerstitial fibrosis, tubu-
lar atrophy, and glomerulosclerosis, has been accepted as a common pathological outcome
of CKD, regardless of etiology [3–10]. During this process, hypoxia plays a pathogenic role
in the relatively early stages of CKD, before the development of structural tubulointerstitial
injury [2,11]. Subsequently, kidney ischemia is induced by the loss of peritubular capillaries
in the tubulointerstitium during the late stage of kidney disease [11,12].

Transforming growth factor-β (TGF-β) has been reported as a key factor in regulating
kidney fibrosis [9]. TGF-β is broadly expressed in almost every cell type and acts by
regulating an intracellular signaling cascade involving the Smad family of proteins through
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the ligand-induced activation of heteromeric transmembrane TGF-β receptor kinases [7,13].
TGF-β can promote epithelial-to-mesenchymal transition (EMT) to become myofibroblasts
of tubular epithelial cells (TECs) and alter the extracellular matrix metabolism of resident
kidney cells [14–16].

However, reliable diagnostic biomarkers for kidney fibrosis are still lacking. Therefore,
to identify new biomarkers of kidney fibrosis, we performed a prospective study of kidney
tubule cell RNA sequencing from human with glomerulopathy. Among a large number of
differentially expressed genes, chemokine (C-C motif) ligand 8 (CCL8) was significantly
upregulated in most glomerulopathies with fibrosis, compared to minimal change disease
and focal segmental glomerulosclerosis, which were fibrotic, and inflammatory processes
were reduced in disease progression. This may be tangible evidence that chemokines
and their receptors play a crucial role in the progression of CKD [17]. Therefore, we next
investigated whether CCL8 could be used as a marker for clinical disease progression.

CCL8, also known as monocyte chemoattractant protein-2 (MCP-2), was first identified
in human osteosarcoma cells and functions in a wide variety of inflammatory cells as a
chemotactic factor by binding chemokine receptors including CCR2 [18–20]. Human CCL8
was only recently identified, and its elevation has been described in limited diseases, such as
graft-versus-host disease (GVHD) [18], idiopathic pulmonary fibrosis (IPF) [21], and allergic
dermatitis [22]. The serum CCL8 level in GVHD patients correlates closely with GVHD
severity and is a promising specific serum marker for early and accurate diagnosis [18].
Moreover, a recent study suggested that CCL8 concentrations in bronchoalveolar lavage
fluids and CCL protein expression in lung tissues were significantly higher in patients with
IPF, and that high levels of CCL8 were associated with a reduced survival rate [21]. In 2013,
Islam et al. also reported that CCL8, which is highly expressed in the skin, serves as an
agonist for CC chemokine receptor 8 (CCR8) in mouse, and that the elevated CCL8 would
be related with activation of CCR8 in chronic inflammation process in human [22].

However, none of the above studies have addressed the role of CCL8 in kidney disease.
Furthermore, the serum or urine levels of CCL8 have not been explored in CKD patients.
Therefore, we aimed to examine the serum levels and tissue expression of CCL8 in patients
with CKD and to investigate their association with kidney fibrosis in CKD model.

2. Materials and Methods
2.1. Study Population and Data Collection

Patients with a diagnosis of IgAN, diabetic nephropathy (DN), and normal healthy
controls, confirmed by kidney biopsy, were recruited at the Seoul National University
Hospital between January 2015 and October 2020. Patients under 18 years of age, missing
medical records, presence of active infection, and diagnosis of malignancies/rheumatologic
disease were excluded. At the time of diagnosis, demographic and clinical features, includ-
ing age, sex, body mass index (BMI); and biochemical parameters, such as serum creatinine
(Cr), estimated glomerular filtration rate (eGFR), spot urine protein/creatinine ratio (uPCR),
and other laboratory findings (serum hemoglobin, albumin, and high-sensitivity C-reactive
protein levels), were collected from the patients’ electronic medical records.

2.2. Measurement of Serum CCL8 Levels by Enzyme-Linked Immunosorbent Assay (ELISA)

Serum levels of CCL8 (Lifespan Biosciences, Seattle, WA, USA) were quantified by
using an enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s
protocol. All measurements were performed in duplicate in a blinded manner. The lower
limit of detection for CCL8 was 12.5 ng/mL.

2.3. Histopathologic Evaluations

Kidney tissue samples were evaluated by light, electron, and immunofluorescence
microscopy and diagnosed by a nephropathologist. The degree of interstitial fibrosis
and tubular atrophy was assessed. Interstitial fibrosis, tubular atrophy, and interstitial
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inflammation were scored based on the percentage of affected area as follows: 0, none;
1, mild, ≤25%; 2, moderate, 26–50%; and 3, marked, >50% or diffuse pattern.

2.4. Immunohistochemistry of Kidney Biopsy Samples

Eighty-three kidney tissue samples were processed for immunohistochemistry. Un-
stained tissue samples obtained from the study population were used. Paraffin-embedded
kidney tissue samples were cut into 4-µm-thick sections, deparaffinized, and rehydrated
using xylene and ethanol. After blocking the endogenous streptavidin activity using 3% hy-
drogen peroxide, the sections were stained with anti-CCL8 antibody (Ab) (Novus Biologics,
Littleton, CO, USA) anti-CCR8 Ab (Invitrogen, Carlsbad, CA, USA) and anti-CCR2 Ab (Ab-
cam, Cambridge, UK) and incubated at 4 ◦C overnight. Next, the samples were incubated
with dextran polymer conjugated with horseradish peroxidase (GBI Labs, Bothel, WA,
USA) for 5 min at room temperature. Finally, all sections were counterstained with Mayer’s
hematoxylin (Sigma–Aldrich, St Louis, MO, USA) and examined by light microscopy
(DFC-295; Leica, Mannheim, Germany). Quantification of CCL8 and CCR2-positive cells
was performed using a computer-based morphometric analysis (Qwin 3 and LAS-4000,
Leica, Mannheim, Germany). The intensity scoring was performed in a blinded manner
by calculating the mean values of the positive areas (%). All analyses were reviewed and
confirmed by the renal pathologist who had no knowledge of each experimental group.

2.5. Isolation and Primary Culture of Human Proximal Tubular Epithelial Cells

The protocol for obtaining and processing human kidney specimens was reviewed
and approved by the Institutional Review Board of Seoul National University Hospital
(IRB no. 1002-045-309). Human proximal tubule segments unaffected by tumors were
isolated from the kidneys surgically removed from patients who were diagnosed with
renal cell carcinoma. After dissecting the cortex, the minced specimens were digested with
Hank’s balanced salt solution (HBSS) containing 3 mg/mL collagenase (Sigma-Aldrich)
and incubated at 37 ◦C for 1 h. The digested kidney cells were washed through a series
of sieves (120, 70, and 40 µm in diameter) using phosphate-buffered saline, followed by
centrifugation at 500× g for 5 min. Human tubular epithelial cells (hTECs) were recovered
from the pellet and incubated in DMEM/F12 for 4 h. Tubules floating in the media were
gathered and cultured on collagen-coated Petri dishes (BD Biosciences, San Jose, CA,
USA) until epithelial cell colonies were established. Cells were used after 2–3 passages.
hTECs (2 × 105 cells/well) were seeded in six-well plates. Following serum starvation,
fibrosis was induced with 2 ng/mL of recombinant (r) TGF-β (R&D Systems, Wiesbaden,
Germany) for 48 h. To evaluate the role of CCL8 in fibrosis, rTGF-β-stimulated hTECs were
simultaneously treated with anti-CCL8 monoclonal antibody (mAb; Novus Biologics) at
1 µg/mL, or recombinant (r)CCL8 (R&D Systems) at 1 µg/mL. After 2 days of treatment,
cell fibrosis was observed. In vitro experiments were performed at least twice.

2.6. Western Blot Analysis

After the hTECs were removed from culture dishes, the proteins were retrieved using
radioimmunoprecipitation assay (RIPA) buffer containing Halt protease inhibitor (Pierce,
Rockford, IL, USA). Western blotting was performed using primary antibodies against
fibronectin (Abcam), CCL8 (Novus Biologics), E-cadherin (Abcam), BCL-2 (Santa Cruz
Biotechnology, Dallas, TX, USA), CD44 (Abcam), CCR2 (Abcam), and β-actin (Sigma-
Aldrich) CD44 (Abcam), a transmembrane receptor, interacts with cell-matrix components,
such as fibronectin and collagen, and is a potential marker of fibrosis. Equal amounts of
extracted proteins (20~40 µg) were isolated on 10% sodium dodecyl sulfate-polyacrylamide
gels and transferred onto Immobilon-FL 0.4 µm of polyvinylidene difluoride membranes
(Millipore, Burlington, MA, USA). Anti-rabbit IgG (Cell Signaling Technology, Danvers,
MA, USA) and anti-mouse IgG (Cell Signaling Technology) were used as horseradish
peroxidase-conjugated secondary antibodies. The immunoblot bands were visualized and
images were captured using an ImageQuant LAS 4000 Mini instrument (GE Healthcare,
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Princeton, NJ, USA). Western blotting results were quantified using ImageJ (National
Institutes of Health, Bethesda, MD, USA).

2.7. Flow Cytometry

A single-cell suspension was prepared by filtering the homogenate using a 40-µm
pore cell strainer (BD Pharmingen, San Jose, CA, USA). Cells were incubated with Fc
Block anti-CD16/32 (IC1918F, BD Pharmingen) and stained with fluorescein isothiocyanate-
conjugated anti-fibronectin or isotype control (IC002F, R&D Systems) for 1 h. Fibronectin-
positive cells and E-cadherin-positive cells were analyzed using a BD FACS Diva instrument
(version 8.0; BD Biosciences). Fibrosis was induced in hTECs with 2 ng/mL rTGF-β (R&D
Systems) for 48 h. To evaluate the role of CCL8 in fibrosis, rTGF-β-stimulated hTECs
were simultaneously treated with an anti-CCL8 monoclonal antibody (50 or 100 ng/mL;
Invitrogen). To quantify cell fibrosis and adhesion, cells were harvested and stained with
antibodies against fibronectin (Invitrogen) and E-cadherin (R&D Systems) according to
the manufacturers’ protocols. Apoptosis and necrosis were quantified by flow cytometry
using an annexin V/propidium iodide assay. hTECs stained with propidium iodide and
FITC-conjugated annexin V were incubated for 30 min in the dark, followed by analysis
with the BD FACS Diva instrument.

2.8. Quantitative Real-Time PCR

Total RNA was isolated from hTECs and kidney tissues using TRIzol reagent (Thermo
Fisher Scientific, Waltham, MA, USA). cDNA synthesis was performed using a reverse tran-
scription kit (Promega, Madison, WI, USA) and a C1000 thermal cycler (Bio-Rad, Hercules,
CA, USA). Subsequently, quantitative PCR was performed using a LightCycler-480 instru-
ment II (Roche Molecular Systems Inc., Basel, Switzerland). Fibronectin, IL-8, CCR8, CCR2,
and P53 mRNA levels were analyzed using the comparative Ct method (∆∆Ct) after normal-
ization to GAPDH. PCR primers used for qRT-PCR are listed in Supplementary Table S1.

2.9. Confocal Microscopic Examination

rTGF-β-stimulated hTECs treated with or without anti-CCL8 monoclonal antibody
(Invitrogen) were washed with Phosphate-buffered saline and fixed in 4% paraformalde-
hyde for 20 min. Following fixation, the cells were permeabilized with 0.3% Triton X and
stained with antibodies against CCL8 (Biorbyt, St Louis, MO, USA) and CCR2 (Lifespan
Biosciences) in a blocking agent overnight at 4 ◦C. Alexa 488/555-conjugated probes (In-
vitrogen) were used as secondary antibodies, and 4′,6-diamidino-2-phenylindole (DAPI;
Invitrogen) was used to counterstain the nuclei. The primary antibodies were omitted in the
negative controls. Immunofluorescence images were acquired with a confocal microscope
(Leica TCS SP8, Leica Microsystem GmbH, Wetzlar, Germany).

2.10. Animals and Unilateral Ureteral Obstruction Model Establishment

Animal experiments were performed with the approval of the Institutional Animal
Care and Use Committee (IACUC) of Seoul National University Hospital. C57BL/6 (WT)
mice (The Jackson Laboratory, ME, USA) weighing 20 g were randomly divided into
4 groups (n = 6/group), which consisted of sham groups (1- and 2-week models) and
unilateral ureteral obstruction (UUO) groups (3-day, and 1- and 2-week models). The
UUO operation procedure has been described in detail in supplementary methods. After
3, 7, or 14 days after UUO, the mice were sacrificed, and the UUO left kidneys were
collected for further analyses. Formalin-fixed, paraffin-embedded tissues were cut into
4-µm sections. For assessing fibrosis and apoptosis, staining was performed using Sirius
Red and antibodies against Bax (Santa Cruz Biotechnology) and CCL8. 3–5 fields (×40) for
each sample were randomly selected and quantified using computer-based morphometric
analysis (Qwin 3). Scoring was performed in a blinded manner using the mean values of
the positive areas (%).
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2.11. Statistical Analysis

Chi-squared test was used to compare categorical data, such as frequencies and
proportions. Continuous variables were expressed as mean ± standard deviation, or
standard error of the mean where appropriate, and were compared using either the t-test or
one-way analysis of variance test. Mann–Whitney U test or Kruskal–Wallis test was used
to analyze nonnormally distributed variables, expressed as medians with an interquartile
range. Pearson correlation coefficients were calculated to explore the linear relationship
between serum CCL8 levels and various clinical parameters. All statistical analyses were
performed using SPSS version 22 (IBM software, Armonk, NY, USA) and GraphPad Prism
9.0.2 (GraphPad Software, San Diego, CA, USA). Statistical significance was determined at
p < 0.05.

3. Results
3.1. Correlation between Serum CCL8 ELISA Results and Clinico-Pathological Variables in CKD

The baseline characteristics of each of the three groups according to the diagnosis are
shown in Table 1 (n = 157). BMI, serum C-reactive protein levels, and serum CCL 8 levels
showed no significant differences among the three groups. However, compared to patients
with IgAN, those with DN were older; had lower serum hemoglobin levels and eGFR; and
higher blood urea nitrogen and serum creatinine levels and uPCR. Compared to patients in
the IgAN group, those in the normal group were younger and showed lower blood urea
nitrogen and serum creatinine levels and uPCR, and higher eGFR.

Table 1. Baseline characteristics of serum CCL8 ELISA group.

IgAN
(n = 110)

DN
(n = 32)

HC
(n = 15)

p

Group IgAN vs. HC IgAN vs. DN DN vs. HC

Age (years) 45.95 ± 15.77 54.78 ± 15.04 38.93 ± 16.47 0.003 0.136 0.005 0.004
Male (%) 64 (58.2%) 20 (62.5%) 7 (46.7%) 0.589

Body mass index
(kg/m2) 24.03 ± 3.87 24.47 ± 3.43 23.31 ± 4.36 0.631 0.559 0.595 0.244

CKD stage 1–2 28 (25.5%) 9 (28.1%)
CKD stage 3 55 (50.0%) 15 (46.9%)

CKD stage 4–5 27 (24.5%) 8 (25.0%)
Hemoglobin (g/dl) 12.39 ± 1.99 10.89 ± 1.68 13.42 ± 1.48 <0.001 0.066 <0.001 <0.001

CRP (mg/dL) 0.28 ± 0.82 0.10 ± 0.13 0.21 ± 0.47 0.634 0.704 0.432 0.375
Albumin (g/dL) 3.84 ± 0.57 3.61 ± 0.57 4.21 ± 0.30 <0.001 0.004 0.016 <0.001
BUN (mg/dL) 23.35 ± 13.21 28.81 ± 14.18 12.00 ± 4.16 <0.001 <0.001 0.018 <0.001

Creatinine (mg/dL) 1.80 ± 1.52 2.00 ± 1.42 0.77 ± 0.17 <0.001 <0.001 0.513 <0.001
eGFR (CKD-EPI,

mL/min/1.73 m2) 53.01 ± 32.26 47.59 ± 27.43 104.27 ± 18.53 <0.001 <0.001 0.529 <0.001

uPCR 1.59 ± 1.97 3.21 ± 2.02 0.65 ± 0.73 <0.001 <0.001 <0.001 <0.001
Serum CCL8 ELISA

(pg/mL) 335.27 ± 194.08 283.46 ± 131.25 229.55 ± 131.59 0.103 0.05 0.335 0.138

Data are presented as mean ± SD or n (%). Comparison was performed using Mann–Whitney U test or Kruskal–
Wallis test. Abbreviations: CCL8, chemokine (C-C motif) ligand 8; CKD, chronic kidney disease; CRP, C-reactive
protein; DN, diabetic nephropathy; eGFR, estimated glomerular filtration rate; HC, healthy controls; IgAN, IgA
nephropathy; uPCR, urine protein/creatinine ratio.

The relationship between clinical variables and serum CCL8 levels was investigated in
IgAN and DN patients and healthy controls (Figure 1). The type of diagnosis, CKD stage
according to eGFR, and uPCR were included in the analysis. In all patients, serum CCL8
levels were significantly higher in those at CKD stage 3–5 (p = 0.049; Figure 1b) and those
with a uPCR ≥ 1 group (p = 0.021; Figure 1c). In IgAN patients, serum CCL8 levels were
significantly higher in the uPCR ≥ 1 group (p = 0.032; Figure 1e).
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Figure 1. Serum CCL8 level were compared among patients with IgA nephropathy (IgAN, n = 110),
diabetic nephropathy (DN, n = 32), and healthy controls (HC, n = 15) to investigate relation with
clinical variables, such as type of diagnosis, chronic kidney disease stage and urine protein creatinine
ratio (uPCR). In total patients, serum CCL8 level showed no difference according to diagnosis,
but significantly higher in chronic kidney disease stage 3–5 group and uPCR ≥ 1 group (a–c). No
difference in serum CCL8 level was observed according to uPCR level in DN patients, but significantly
higher in IgAN patients with uPCR ≥ 1 (d,e). * p < 0.05.

Serum CCL8 levels were compared among IgAN and DN patients and healthy controls,
to investigate their relationship with pathological factors identified in kidney biopsy results,
including interstitial fibrosis (Figure 2a–c), interstitial atrophy (Figure 2d–f), and interstitial
inflammation (Figure 2g–i). Serum CCL8 levels were significantly correlated with interstitial
fibrosis, especially with marked-diffuse fibrosis, in all patients and patients with IgAN
(p < 0.01; Figure 2a,c).

3.2. Localization of CCL8 and CCR2-Positive Cells in the Kidney by
Immunohistochemical Analysis

The baseline characteristics of each of the three groups according to the diagnosis are
shown in Table 2 (n = 83). Compared to patients in the IgAN group, those in the normal
group were younger and had lower BMI, serum creatinine levels, and uPCR, and higher
eGFR and serum albumin levels. CCL8 was found to be expressed in 16.4 ± 15.0% of
cells in the kidney. Immunohistochemical analysis of kidney tissue sections showed that
CCL8 was expressed predominantly in tubular cells and the inflamed tubulointerstitium.
CCL8-positive cells were found in tubulointerstitial areas, but rarely in the glomeruli
(Figure 3a,b).

CCL8 expression levels were significantly higher in patients with IgAN or DN than in
healthy controls (p < 0.01; Figure 3c). CCL8 expression correlated with renal function at the
time of biopsy, increasing significantly with advancing disease stage, especially in CKD
stages 3 and 4 (p < 0.01; Figure 3d). The percentage of CCL8-positive areas correlated with
uPCR (Figure 3e,f). CCL8 expression was significantly higher in patients with a marked
degree of tubular atrophy, interstitial fibrosis, and interstitial inflammation (Figure 3g–i).
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Figure 2. Serum CCL8 level were compared among patients with IgA nephropathy (IgAN, n = 110),
diabetic nephropathy (DN, n = 32), and healthy controls (HC, n = 15) to investigate relation with
pathologic factor of kidney biopsy result. Interstitial fibrosis (a–c), tubular atrophy (d–f), and
interstitial inflammation (g–i) were investigated. In total patients and patients with IgAN, serum
CCL8 level was significantly correlated with interstitial fibrosis (a,c). * p < 0.05.
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Table 2. Baseline characteristics of tissue CCL8 expression immunohistochemistry group.

IgAN
(n = 46)

DN
(n = 22)

HC
(n = 15)

p

Group IgAN vs. HC IgAN vs. DN DN vs. HC

Age (years) 47.6 ± 14.9 54.9 ± 12.4 37.3 ± 16.7 0.003 0.061 0.180 0.002
Male (%) 21 (45.7%) 15 (68.2%) 6 (40.0%) 0.146

Body mass index
(kg/m2) 24.7 ± 4.4 24.5 ± 3.9 21.2 ± 3.5 0.023 0.023 1.000 0.070

CKD stage 1 10 (21.7%) 4 (18.2%)
CKD stage 3 24 (52.2%) 12 (54.6%)
CKD stage 4 12 (26.1%) 6 (27.3%)

Hemoglobin (g/dL) 12.3 ± 1.9 12.0 ± 2.1 13.7 ± 1.9 0.046 0.083 1.000 0.056
Albumin (g/dL) 3.6 ± 0.6 3.8 ± 0.4 4.1 ± 0.4 0.009 0.008 0.664 0.203

Creatinine (mg/dL) 1.67 ± 0.85 1.52 ± 0.52 0.84 ± 0.32 0.001 0.001 1.000 0.018
eGFR(CKD-EPI,

mL/min/1.73 m2) 55.8 ± 35.7 44.5 ± 22.9 95.7 ± 28.6 <0.001 <0.001 0.517 <0.001

uPCR 2.9 ± 2.5 3.1 ± 2.5 0.6 ± 0.4 0.002 0.003 1.000 0.006
CCL8 positive area

(%) 20.2 ± 16.7 16.8 ± 12.4 6.0 ± 5.4 0.005 0.004 1.000 0.077

Data are presented as mean ± SD or n (%). Comparison was performed using Mann–Whitney U test or Kruskal–
Wallis test. Abbreviations: CCL8, chemokine (C-C motif) ligand 8; CKD, chronic kidney disease; DN, diabetic
nephropathy; eGFR, estimated glomerular filtration rate; HC, healthy controls; IgAN, IgA nephropathy; uPCR,
urine protein/creatinine ratio.

The correlation between serum CCL8 levels and the number of CCL8-positive cells at
the same time point was assessed in 45 patients. Serum CCL8 levels positively correlated
with CCL8 expression levels from immunohistochemical analysis (p = 0.039; Figure 3j).

We further investigated the tissue expression of CCR2, which is a known counterpart
of CCL8. CCR2 immunohistochemical analysis in patients with IgAN in CKD showed that
CCR2-positive cells were predominantly located in the periglomerular and inflamed tubu-
lointerstitial area, especially in advanced CKD stages (Figure 4a). In immunofluorescence
staining after induction of fibrosis with rTGF-β in hTECs, the increased expression regions
of CCL8 and CCR2 were correlated and alleviation of expression was also observed in
both after blocking CCL8 (Figure 4b). CCR2 expression levels were significantly higher in
patients with CKD than in healthy controls, increasing significantly with advancing disease
stages, especially in CKD stages 3 and 4 (p < 0.001; Figure 4c,d). The percentage of CCR2
expression was positively correlated with that of the CCL8 expression in kidney tissue
(Figure 4e).

In addition, we further investigated the tissue expression of CCR8, which is a possible
counterpart of CCL8. CCR8 expression levels were significantly higher in patients with
CKD than in healthy controls, increasing significantly with advancing disease stages,
especially in CKD stages 3 and 4 (p < 0.001; Supplementary Figure S1a,b). The per-
centage of CCR8-positive areas positively correlated with that of the CCL8-positive area
(Supplementary Figure S1c).

3.3. TGF-β Induces Fibrosis in Primary Cultured hTECs

To confirm that CCL8 is expressed during kidney fibrosis in hTECs, the cells were
treated with rTGF-β, and CCL8 protein expression was evaluated by western blotting.
CCL8 was upregulated by rTGF-β treatment, which was accompanied by an increase in
fibronectin and a decrease in E-cadherin and BCL-2 expression (Figure 5a,b). These results
indicated that TGF-β induced fibrosis in hTECs via the upregulation of CCL8.
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< 0.001. 

Figure 3. Representative photographs of kidney sections of healthy controls (HC), chronic kidney
disease stage 1, 3, and 4 of IgA nephropathy (IgAN) patients (original magnifications, Panel (a),
×40 and (b), ×200). CCL8 immunohistochemical analysis in patients with IgAN showed that CCL8-
positive cells were predominantly located in the periglomerular and inflamed tubulointerstitium (a,b).
Quantification of CCL8-positive cells was performed by computer-based morphometric analysis.
CCL8 expression were compared among patients with IgAN (n = 46), diabetic nephropathy (DN,
n = 22), and HC (n = 15) (c), which correlated with kidney function at the time of biopsy. The
expression of CCL8 increased significantly with advancing stages, especially in chronic kidney
disease stage 3 and 4 (d). The level of CCL8 positive area was correlated with urine protein/creatinine
ratio (uPCR) (e,f). CCL8 expressions were significantly higher in marked degree of tubular atrophy (g),
interstitial fibrosis (h) and interstitial inflammation (i). In 45 patients who were examined for serum
CCL8 and number of CCL8-positive cell simultaneously, serum CCL8 levels positively correlated
with CCL8 expression levels from immunohistochemical analysis (j). * p < 0.05, ** p < 0.01, and
*** p < 0.001.
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Figure 4. Representative photographs of kidney sections of healthy controls (HC), chronic kidney
disease stage (CKD) 1, 3, and 4 of IgA nephropathy (IgAN) patients (original magnifications, Panel
(a), ×100). CCR2 immunohistochemical analysis in patients with IgAN showed that CCR2-positive
cells were predominantly located in the periglomerular and inflamed tubulointerstitium (a). After
induction of fibrosis with rTGF-β in hTECs, the increased expression regions of CCL8 and CCR2
were correlated in immunofluorescence staining and alleviation of expression was also observed in
both after blocking CCL8 (original magnifications, Panels b, ×400 (b)). CCR2 expression levels were
significantly higher in patients with IgAN and advanced CKD stages (c,d). The percentage of CCR2
positively correlated with that of the CCL8 (e). * p < 0.05, and *** p < 0.001.
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Figure 5. Western blot analysis of primary cultured hTECs after induction of fibrosis with rTGF-β 
(2 ng/mL). CCL8 was up-regulated by rTGF-β treatment (a). rTGF-β increased fibronectin and CCR2 Figure 5. Western blot analysis of primary cultured hTECs after induction of fibrosis with rTGF-β
(2 ng/mL). CCL8 was up-regulated by rTGF-β treatment (a). rTGF-β increased fibronectin and CCR2
and decreased E-cadherin and BCL-2 protein expression. The simultaneous treatment with anti-CCL8
mAb at 1.0 µg/mL, mitigated the rTGF-β-induced increase in fibronectin and CCR2 and decrease
E-cadherin and BCL-2 protein levels. Bars represent means ± SDs (b). rCCL8 alone had no direct
effect on increasing in fibronectin expression. The simultaneous treatment with rTGF-β and rCCL8
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(1 µg/mL), enhanced the rTGF-β-induced increase in fibronectin and decrease E-cadherin and BCL-2
protein expression (c). Representative FACS analysis of isolated primary cultured hTECs. After
induction of fibrosis with rTGF-β (2 ng/mL) for 48 h, there were significant increase in fibronectin cell
populations and decrease in E-cadherin cell populations. The simultaneous treatment with anti-CCL8
mAb (50 and 100 ng/mL) alleviated the rTGF-β-induced increase in fibronectin in a dose-dependent
manner and decrease E-cadherin cell populations (d). The antiapoptotic effect of the anti-CCL8 mAb
was also demonstrated by Annexin V/propidium iodide staining assay (e). Quantitative real-time
PCR analysis of CCR8, CCR2, IL-8, fibronectin, and P53 with anti-CCL8 mAb (50 and 100 ng/mL)
treatment (f). * p < 0.05, ** p < 0.01, and *** p < 0.001.

3.4. Effect of CCL8 Blockade and rCCL8 Induced by rTGF-β in hTECs

To evaluate the role of CCL8 in fibrosis, hTECs were simultaneously treated with
anti-CCL8 mAb and rTGF-β. CCL8 blockade mitigated the rTGF-β-induced increase in
fibronectin and CCR2 and decreased E-cadherin and BCL-2 protein levels (all p < 0.05)
(Figure 5b). There was no significant difference in the expression of CD44. Based on these
results, TGF-β induced kidney fibrosis in hTECs, an effect that was abrogated by blocking
CCL8 function.

However, in the case of rCCL8, rCCL8 alone had no significant effect on inducing
fibrosis. Simultaneous treatment with rTGF-β and rCCL8 enhanced the rTGF-β-induced
increase in fibronectin expression (p < 0.05) (Figure 5c). The decrease in E-cadherin and
BCL-2 expression induced by rTGF-β was not significantly changed by rCCL8 treatment,
as determined by western blotting. Moreover, there were no significant differences in
CD44 expression.

Fluorescence-activated cell sorting analysis of isolated primary cultured hTECs
(Figure 5d), after induction of fibrosis with rTGF-β, there was a significant increase in
fibronectin cell populations and a decrease in E-cadherin cell populations. Simultaneous
treatment with anti-CCL8 mAb alleviated the rTGF-β-induced increase in fibronectin in a
dose-dependent manner and decreased E-cadherin cell populations. The anti-apoptotic
effect of the anti-CCL8 mAb was also demonstrated by Annexin V/propidium iodide
staining using hTECs (Figure 5e). When treated with rTGF-β, the number of apoptotic
cells increased significantly compared with the number of apoptotic cells after control
IgG treatment.

Furthermore, CCR2/CCR8, positive correlation factor with CCL8; IL-8, a pro-
inflammatory cytokine; fibronectin, a marker of fibrosis; and P53, an apoptosis marker,
were analyzed by quantitative reverse transcription PCR. The mRNA expression levels of
the indicated markers showed similar expression patterns to those observed by western
blotting. The levels of all analyzed markers increased after treatment with rTGF-β, and
these increases were significantly less pronounced, in a dose-dependent manner, after
blocking CCL8 function (Figure 5f). These results indicated that the upregulation of CCL8
contributed to renal fibrosis and apoptosis.

3.5. Expression of CCL8 and Fibrosis- and Apoptosis-Related Markers in a UUO Model

The immunohistochemical analysis showed that the expression of type I collagen,
Bax, a marker of apoptosis, and CCL8 was strongly induced 1 week after the UUO and
became more pronounced 2 weeks after the UUO. In the morphometric analysis, the three
indicated marker-positive area was increased significantly over time (Figure 6b), which
was in agreement with our in vitro findings.
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Figure 6. The immunohistochemical analysis showed that the expression of type I collagen, Bax, a
marker of apoptosis, and CCL8 was strongly induced 1 week after the unilateral ureteral obstruction
(UUO) and became more pronounced 2 weeks after the UUO (original magnifications, Panel (a),
×40). Quantification was performed by computer-based morphometric analysis. The three indicated
marker-positive area was increased significantly over time (b). * p < 0.05, ** p < 0.01, and *** p < 0.001.

4. Discussion

Our results are the first to suggest a role for CCL8 in the kidney fibrosis process. Higher
serum CCL8 levels were associated with advanced CKD stage, urine protein creatinine
ratio, and kidney fibrosis in biopsy samples, and CCL8 was highly expressed in kidney
tissue. Consistent with these in vitro findings, CCL8 was highly expressed in kidney tissue
in a mouse model of CKD. Inhibition of CCL8 signaling using an anti-CCL8 mAb abrogated
rTGF-β-induced kidney fibrosis in primary cultured hTECs.

CCL8 is a CC chemokine that belongs to a family of small cytokines. The CCL8 protein
starts out as a 109-amino-acid precursor, which is then cleaved to create mature CCL8 with
75 amino acids [19,23]. CCL8 chemotactically attracts and activates a variety of immune
cells, including mast cells, eosinophils, basophils, monocytes, T cells, and NK cells, all of
which are implicated in the inflammatory response [24,25]. Fibrosis of diverse organs and
tissues is regarded as a pathological consequence of a chronically altered wound healing
response by the recruitment of immune cells. It is known that CCL8 is produced via toll-like
receptors (TLRs) when fibroblasts and endothelial cells that are co-stimulated with IL1-β
and interferon (IFN)-γ [26]. Lee et al. reported that CCL8 was overexpressed in IPF lungs
compared to normal lungs, and CCL8 could be a candidate biomarker for the diagnosis and
prediction of survival in IPF [20]. Although several chemokines and chemokine receptors,
such as CXCL, CCL, CX3CL, and XCL groups, have been shown to be associated with
kidney fibrosis [27], the role of CCL8 has not been previously investigated.
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The most important finding of our study is the validation of the anti-fibrotic and
anti-apoptotic effects of CCL8 blockade in the kidney fibrosis process. Inflammation is a
key factor in the pathogenesis of CKD, and, at the molecular level, TGF-β is known to be
a key factor in the kidney fibrosis pathway, including inflammatory reactions [28–30]. It
was previously thought that resident renal fibroblasts and infiltrating inflammatory cells
are crucial mediators of kidney fibrosis. However, recent studies have shown that EMT of
tubular epithelial cells is critical for the induction of fibrosis [31,32]. Following repeated
exposure to certain growth factors, such as TGF-β, tubular epithelial cells transform into
fibroblasts via EMT. In this process, the breakdown of intercellular connections begins with
the downregulation of adhesion molecules such as E-cadherin [33,34]. Previous studies
have shown that apoptosis plays a crucial role in the development of TGF-β-induced injury
in kidney tubular epithelial cells [35,36], and it has been reported that miRNAs play a role
in some physiological processes, including cell differentiation, proliferation, apoptosis,
stress resistance, and angiogenesis [37]. It has also been shown that upregulation of CCL8
leads to apoptosis in association with miRNAs [38,39]. In the present study, treatment of
cultured hTECs with rTGF-β induced EMT and reduced the level of E-cadherin, which was
accompanied by enhanced fibronectin expression. CCL8 blockade markedly ameliorated
fibrosis and apoptosis in rTGF-β-induced hTECs. Thus, inhibiting EMT and anti-apoptotic
effects by blocking CCL8 can prevent kidney fibrosis induced by TGF-β.

CCR8 has been recently identified as a receptor for CCL18 [40–42]. This chemokine
receptor is expressed on T helper type 2 cells and regulatory T cells as well as monocytes
and macrophages in kidney [43]. In the present study, immunohistochemistry results
showed co-expression and positive correlation of CCL8-CCR2 axis and CCR8 expression in
the kidney of patients with CKD. Our results suggest that CCL8-CCR2 axis might activate
CCR8 or induce their inflammatory reactions of CCR8 in kidney fibrosis.

There are several limitations to our study that should be mentioned. First, we did not
investigate the effects of a CCL8 inhibitor in vivo. However, the TGF-β-induced fibrosis
in vitro model clearly demonstrated the effects of CCL8 inhibition on kidney fibrosis.
Second, we did not examine the differences in change over time in the in vitro model, and
it was impossible to confirm the long-term association with CCL8 levels. Third, we did
not investigate the detailed mechanisms underlying the association between CCL8 and
fibrosis and the apoptosis pathway or the CCL8-CCR2 axis and CCR8 interaction during
the progression of CKD. Therefore, further studies investigating these mechanisms should
be performed to validate our findings fully.

5. Conclusions

Taken together, our results demonstrate that the CCL8 pathway is associated with an
increased risk of kidney fibrosis, and that CCL8 blockade can ameliorate kidney fibrosis
and apoptosis. Thus, therapeutic strategies that inhibit CCL8 function may be effective in
preventing the development and progression of CKD.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11040658/s1, Table S1: Primer sets used for qRT-PCR. Figure S1:
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