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Abstract: Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD),
which can progress to end stage renal disease (ESRD), are a worldwide health burden. Organ
transplantation or kidney dialysis are the only effective available therapeutic tools. Therefore, in vitro
models of kidney diseases and the development of prospective therapeutic options are urgently
needed. Within the kidney, the glomeruli are involved in blood filtration and waste excretion and are
easily affected by changing cellular conditions. Puromycin aminonucleoside (PAN) is a nephrotoxin,
which can be employed to induce acute glomerular damage and to model glomerular disease. For this
reason, we generated kidney organoids from three iPSC lines and treated these with PAN in order to
induce kidney injury. Morphological observations revealed the disruption of glomerular and tubular
structures within the kidney organoids upon PAN treatment, which were confirmed by transcriptome
analyses. Subsequent analyses revealed an upregulation of immune response as well as inflammatory
and cell-death-related processes. We conclude that the treatment of iPSC-derived kidney organoids
with PAN induces kidney injury mediated by an intertwined network of inflammation, cytoskeletal
re-arrangement, DNA damage, apoptosis and cell death. Furthermore, urine-stem-cell-derived
kidney organoids can be used to model kidney-associated diseases and drug discovery.

Keywords: urine cells; iPSCs; organoids; puromycin aminonucleoside; AKI; inflammation; apoptosis;
DNA damage; RAAS

1. Introduction

Kidney diseases such as acute kidney injury (AKI) and chronic kidney disease (CKD)
are a worldwide health problem. While AKI describes a sudden loss of renal function and
can be caused by diverse conditions such as sepsis, nephrotoxicity or ischemia-reperfusion
injury (IRI) [1], CKD is defined as a gradual deprivation of kidney function over a time
period of more than three months [2]. Major causes of CKD include diabetes and hyper-
tension as well as oxidative stress and inflammation [2,3]. The progression of CKD leads
to end-stage renal disease (ESRD) requiring dialysis or organ transplantation [4]. Besides
CKD and AKI, various conditions such as diabetes, hypertension and obesity can lead to
the emergence of ESRD [5].

Hypertension may result in damage of the glomeruli in the kidney, as an increased
hydraulic pressure disrupts the delicate glomerular capillary system [6]. The glomerulus
is an organ compartment, essential for blood filtration and the excretion of toxins. The
glomerular barrier consists of a basement membrane, endothelial cells and intertwined
podocytic foot processes [5]. Part of the filtration barrier is formed by slit diaphragms, as-
sembled by podocyte-associated proteins nephrin, podocin, synaptopodin, CD-2-associated
protein (CD2AP) and the zonula occludens protein-1 (ZO-1) [7]. In many cases, the main
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target of various kidney diseases, including minimal change disease (MCD) and focal
segmental glomerulosclerosis (FSGS), are glomerular podocytes [8]. Moreover, various
nephrotoxic substances lead to podocyte injury [5,7].

One such nephrotoxic substance is puromycin aminonucleoside (PAN), a purine an-
tagonist, which is classified as an antibiotic, antineoplastic and antimetabolite substance [7].
It inhibits RNA synthesis and is known to induce acute glomerular damage. Interestingly,
other than rats, monkeys and humans, no other species is affected by PAN nephrotoxi-
city [7]. It was first shown in 1990 that PAN affects and alters the ultrastructure of rat
glomerular podocytes of kidney slices, leading to a decrease in or loss of microvilli, flatten-
ing of the podocyte cell bodies and the emergence of membranous blebbing [9].

To date, human models of kidney diseases are sparse. As most primary cells lose
their functionality and viability in vitro, numerous kidney diseases were modelled in ro-
dents [10,11]. However, as murine models do not accurately recapitulate the human disease
conditions, the knowledge gained from this research cannot be completely extrapolated to
human kidney-associated diseases [10].

Besides improving rodent models, the establishment of pluripotent stem-cell-based
kidney cells in 2D or 3D organoids holds great potential for gaining further insights into
disease mechanisms and potential therapies [12]. Recent studies have suggested using
primary kidney cells for the generation of kidney organoids as an alternative to pluripotent
stem cells [13–15]. Kidney organoids are composed of a variety of kidney cell types and
fulfil organ functions to a certain degree, which make them the best option for modelling
kidney diseases. Approaches to model podocyte injury and possible therapies were made
by harnessing PAN treatment on iPSC-derived podocytes and kidney organoids [5].

In this study, we applied puromycin aminonucleoside for the induction of renal
damage in our kidney organoids to model kidney injury, and we then used transcriptome-
based analyses to identify affected pathways and gene ontologies such as DNA damage
and inflammation.

2. Materials and Methods
2.1. Cell Cultivation and Formation of Kidney Organoids

Integration-free iPSC lines used for the generation of kidney organoids were urine-
cell-derived—UM51 and UF21 [16,17]—and foreskin-fibroblast-derived—B4 [18]. The cells
were reprogrammed with episomal plasmids.

Cells were maintained in mTeSR1 medium (Stem Cell) with daily medium change.
Single-cell splitting was carried out at 70–80% confluence. The iPSCs were incubated in
0.5% EDTA/PBS for 5–10 min, and the total cell number was determined by counting in
a Neubauer Counting Chamber. Approximately 0.2–0.5 × 105 cells per well were seeded
into a low-attachment, 96-well plate (Thermo Fisher, Darmstadt, Germany). The plate was
centrifuged at 300× g for 3 min. After 3–5 days, iPSCs clustered to small, round and dense
cell aggregates, which were transferred to non-adherent, bacterial 92 × 16 mm Petri-dishes
and placed in a shaking incubator at 37 ◦C, 5% CO2, normoxia and 60 rpm. Undifferentiated
iPSC spheroids were maintained in basal spheroid medium (BSM) (see Table S1).

The protocols for differentiating iPSC spheroids towards kidney were adapted from
Low et al. [19] with slight modifications. The induction of primitive streak was started by
culturing the cells for 4 days in basal differentiation medium (BDM) (see Table S2) supple-
mented with 10 µM CHIR99021 (Tebu-bio, Offenbach, Germany), which is a GSK3 inhibitor
and WNT pathway activator. The medium was changed to BDM without additional sup-
plements to achieve the second stage of intermediate mesoderm for 3 days. The emergence
of nephron progenitor cells was induced by incubating the cells with BDM supplemented
with 3 µM CHIR99021 and 50 ng/mL FGF9 (peprotech, Cranbury, NJ, USA) for 2 days.
Over the course of 5 days, the spheroids were fed with BDM plus 50 ng/mL FGF9 to induce
nephrogenesis. Starting from D14, a supplementation with 1 µM of CHIR99021 was applied.
Patterning was carried out for 6 days with BDM supplemented with 1 µM of CHIR99021.
Kidney organoids were then maintained in unsupplemented BDM until further use. Four
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independent organoid batches in biological duplicates (see Table 1) were generated. The
names of the kidney organoid batches are composed of their origin, the donors’ gender
and the replicate number (see Table 1). The FFK1/2 organoids were derived from foetal
foreskin and were only named after their cellular origin and the replicate number without
the donors’ gender (see Table 1). The organoids were used for kidney injury modelling by
induction with the cytotoxic substance puromycin aminonucleoside (PAN) (Sigma-Aldrich,
Taufkirchen, Germany). In previous works, we determined the ideal PAN concentration
for our kidney organoids (not shown). We tested the concentrations 10, 50 and 100 µg/mL
PAN and selected the concentration of 50 µg/mL for subsequent experiments. To induce
kidney damages, kidney spheroids were treated with 50 µg/mL PAN for 48 h.

Table 1. Representation of naming for all kidney organoid batches.

Description Gender and Ethnicity Age Abbreviation

iPSC spheroids derived from
urine cell UM51 iPSCs Male, African 51 iPSC spheroids (SPH)

Kidney organoids derived from
urine cell UM51 iPSCs,
biological replicate 1

Male, African 51 UM51 kidney organoids_1 (UMK1)

Kidney organoids derived from
urine cell UM51 iPSCs,
biological replicate 2

Male, African 51 UM51 kidney organoids_2 (UMK2)

Kidney organoids derived from
foetal foreskin (FF) iPSCs,

biological replicate 1
Male, Caucasian foetal FF kidney organoids_1 (FFK1)

Kidney organoids derived from
foetal foreskin (FF) iPSCs,

biological replicate 2
Male, Caucasian foetal FF kidney organoids_2 (FFK2)

Kidney organoids derived from
urine cell UF21 iPSCs,
biological replicate 1

Female, Caucasian 21 UF21 kidney organoids_1 (UFK1)

Kidney organoids derived from
urine cell UF21 iPSCs,
biological replicate 2

Female, Caucasian 21 UF21 kidney organoids_2 (UFK2)

2.2. Cryosectioning

Kidney organoids were fixed in 4% Formaldehyde (Polysciences, Warrington, FL,
USA) prior to embedding. Dehydration was achieved by washing the cells with distinct
concentrations of sucrose solutions. Thereafter, the organoids were placed in moulds filled
with TissueTek O.C.T Compound (Sakura Finetek, Umkirch, Germany). 2-methylbutan
(Carl Roth, Karlsruhe, Germany) and dry ice were used to snap-freeze the organoids.
Sections of 10 µm thickness were prepared with a Cryostat (CM1850, Leica, Nussloch,
Germany).

2.3. Western Blotting

Total protein from kidney organoids, treated with 50 µg/mL PAN and the specific
untreated control, and the undifferentiated iPSC spheroids was extracted with RIPA buffer
(Sigma-Aldrich) containing protease and phosphatase inhibitors (Roche, Mannheim, Ger-
many). Protein concentrations were determined using the Pierce BCA Protein Assay Kit
(Thermo Fisher). Approximately 20 µg of the protein lysates were separated in a 4–12%
SDS-PAGE and the proteins transferred to a nitrocellulose membrane by wet blotting.
Membranes were then stained with anti-P53, anti-cleaved Caspase 3 and anti-γH2A.X,
and compatible secondary antibodies were used subsequently (for dilutions, see Table S3).
Beta-actin was used to normalize protein expression. Protein bands were visualized with
ECL Western Blotting Detection Reagents (Cytiva, Freiburg, Germany) and detected in
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a UV chamber. Band intensity was quantified in the software Fiji: Image J (version 1.52a,
National Institues of Health, Bethesda, MD, USA) and was normalized to beta-actin levels.

2.4. Immunocytochemistry

Frozen sections were thawed to room temperature. TissueTek was washed off with
PBS. Organoid sections were encircled with a hydrophobic pen and were incubated in 0.5%
Triton/PBS to permeabilize the cells within the sections. Unspecific binding sites were
blocked with 3% BSA for 1 h. The primary antibody solution was incubated overnight at
4 ◦C (see Table S3). After thoroughly washing off the primary antibodies, 1 h incubation
with secondary antibodies was conducted. Nuclei were stained with Hoechst. Stained
sections were analysed using a Zeiss fluorescence microscope (LSM 700). Particular staining
regions were observed under a Zeiss confocal microscope (LSM 700).

2.5. Immunohistochemistry and Histology

Proximal tubules within the kidney organoid sections were detected by immunohis-
tochemistry via glycoprotein Lotustetragonolobus lectin (LTL) (Vectorlabs, Burlingame,
CA, USA). The histochemistry procedure was conducted following the manufacturer’s
instruction manual. Streptavidin Alexa488 antibody (R&D Systems, Bleiswijk, Netherlands)
was used to detect LTL.

Histological images of kidney organoids were prepared with Haematoxylin and Eosin
staining. A standard protocol was followed for the histological staining. Tissue structures
were imaged under a light microscope.

2.6. Fluorometric Renin Assay

The conditioned media of kidney organoids 48 h after PAN treatment and the specific
untreated control were used for the detection of Renin concentration employing the Renin
assay kit (Abcam). Samples were prepared in technical duplicates. The fluorometric assay
was conducted following the manufacturer’s instructions manual. Fluorescence intensity
was measured using the micro plate reader infinite M1000 Pro (Tecan, Grödig/Salzburg,
Austria) at Ex/Em = 540/590 nm. The renin standards were plotted in a standard curve and
were subsequently used for the determination of renin concentration in the conditioned
media of kidney organoids.

2.7. In Vitro Dextran Uptake Assay

A 100 µg/mL concentration of Alexa Fluor™ 647-coupled dextran (10.000 MW;
Thermo Fisher) was applied to kidney organoids and iPSC spheroids for 4 h. Thereafter,
the medium was replenished, and live organoids were visualized under a fluorescence
microscope. Kidney organoids and iPSC spheroids were then cultivated for 24 h without
dextran and were visualized under a fluorescence microscope.

2.8. qRT-PCR

RNA was isolated from 3-4 kidney spheroids treated with and without PAN as well as
the undifferentiated iPSC spheroids using the QIAgen RNeasy Micro Kit. RNA extraction
was conducted following the manufacturer’s protocol. In brief, kidney spheroids were
lysed in 350 µL of RLT buffer. Supernatant was mixed with an equal volume of 70% ethanol
and centrifuged through a gDNA eliminator column. After several washing steps, the
RNA was solved in 25 µL of RNAse-free water. A total of 500 ng RNA was used as an
input for cDNA synthesis, and qRT-PCR based on SYBR Green was conducted. The primer
sequences are presented in Table S4.

2.9. Analysis of Gene Expression Data

Duplicates of spheroids and kidney organoids treated with PAN as well as untreated
samples were hybridized at the BMFZ (Biomedizinisches Forschungszentrum) core facil-
ity of the Heinrich-Heine University (Düsseldorf, Germany) on the Affymetrix Human
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Clariom S assay. Raw data (CEL files) delivered from the core facility were read into
the R/Bioconductor environment for follow-up-processing. The Bioconductor package
oligo [20] was employed to correct data for background signals and to normalize data via
the Robust Multi-array Average (RMA) method. Via the VennDiagram package [21], Venn
diagrams were generated for the dissection of genes annotated uniquely to microarray
probesets. Probesets were considered expressed when their detection-p-value was below
a threshold of 0.05. The detection-p-value was calculated by a statistic over designated
background probesets on the microarray, as described in Graffmann et al. [22]. With the R
hierarchical clustering function hclust, a clustering dendrogram of genes with a coefficient
of variation greater than 0.1 was produced using Pearson correlation as the similarity mea-
sure and complete linkage agglomeration. Heatmaps and associated clustering analyses
were generated with the function heatmap.2 from the R gplots package [23]. Genes that were
expressed in at least one of the experiments were marked with an asterisk (p-value < 0.05).

2.10. Over-Representation Analysis of Pathways and Gene Ontologies (GOs)

The test associated with the hypergeometric distribution which is implemented in R
was employed to calculate the over-representation of KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathways [24], which had been downloaded from the KEGG website in July
2020. GOs were analysed for over-representation via the R package Gostats [25].

2.11. Metascape Analysis

Gene enrichment analyses of differential GO/KEGG terms, biological processes, etc.
comparing UMK1_con and UMK1_PAN were performed using the software metascape
(http://metascape.org, [26]). Exclusive gene-sets of UMK1_con and UMK1_PAN based
on Venn analysis were used as data sources. The metascape software applied hierarchical
clustering to display calculated significant GO terms into a tree, which was spread into
term clusters with a 0.3 kappa score as a threshold. The top enrichment clusters were
represented as heatmaps with a colour scale ranging from grey to dark orange. Statistical
significance was hereby displayed in dark orange and lack of enrichment in a grey colour.

2.12. Kidney-Associated Cytokine Assay

Cell culture supernatants of untreated kidney organoids and kidney organoids treated
with PAN (2 days after treatment) were kept for cytokine array. Relative expression levels of
specific human kidney-associated and urinary proteins were determined using the Human
Kidney Biomarker Array Kit from R&D Systems. The cytokine assay was implemented as
recommended by the manufacturer. In brief, membranes were blocked for 1 h on a rocking
platform. Prepared samples were incubated in the Detection Antibody Cocktail for 1 h
at room temperature. Thereafter, the antibody–sample mixtures were pipetted onto the
membranes and were incubated overnight at 2–8 ◦C on a rocking platform. The membranes
were washed thoroughly and Streptavidin-HRP was added onto the membranes, which
were incubated for 30 min at room temperature. ECL detection reagent was used to detect
the spots on the membrane.

2.13. Image and Data Analysis of the Kidney Cytokine Assay

Untreated organoids and organoids treated with PAN, which had been subjected
to analysis with the kidney cytokine assay Human Kidney Biomarker Array Kit (R&D
Systems) and scanned, were image-analysed with ImageJ [27]. The Microarray Profile
plugin by Bob Dougherty and Wayne Rasband (https://www.optinav.info/MicroArray_
Profile.htm) was employed to localize and quantify all spots on the array. As read-out, the
integrated density generated by the Microarray profile plugin function Measure RT was
used. In R/Bioconductor [28], the data resulting from the quantification was normalized
with the Robust Spline Normalization from the Bioconductor lumi-package [29].

http://metascape.org
https://www.optinav.info/MicroArray_Profile.htm
https://www.optinav.info/MicroArray_Profile.htm
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3. Results
3.1. Kidney Organoids Possess Structured Lobes with Distinct Tubular and Basement
Membrane Structures

Kidney organoids of three iPS cell lines in duplicates were generated in approxi-
mately 20 days (Figure 1a; Table 1). In contrast to the round-shaped iPSC spheroids, kidney
organoids acquired a lobular morphology (Figure 1b). H&E staining of kidney organoid sec-
tions revealed structures morphologically similar to renal tubules and glomeruli (Figure 1c;
Figure S1a). The tubule-like structures are marked with an asterisk and glomeruli framed
with a dashed square (Figure 1c; Figure S1a). The presence of tubule-like structures was
also detected by LTL and α-Actinin 4 (ACTN4) staining (Figure 1d). A structure at the rear
end, which was negative for LTL but positive for ACTN4, was morphologically similar
to a glomerulus and is marked with an arrow (Figure 1d). Additionally, the tubule-like
structures were positive for an antibody against the Organic Cation Transporter 2 (OCT2),
which marks the tubular plasma membranes (highlighted with a dotted line) (Figure 1d).
The functional activity of the kidney organoids was shown with a dextran uptake assay
(Figure 1e). A strong fluorescent signal was detected in kidney organoids incubated with
dextran for a 4 h pulse (Figure 1e). In comparison, no signal was detected in dextran-treated
iPSC spheroids (Figure 1e). After a 24 h chase, kidney organoids still showed a fluorescent
signal (Figure 1e).
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Figure 1. Lobular kidney organoids contain distinct kidney structures. (a) Schematic depiction of
the protocol for generating kidney organoids. (b) Overview of iPSC spheroids at D8 after generation
(a.,b.) and kidney organoids UMK2 at D21 (c.,d.) with binocular. (a.) 4× magnification under light
microscope. Scale bar depicts 500 µm. (b.) 10× magnification under light microscope. Scale bar
depicts 200 µm. (c.) 1× magnification. Scale bar depicts 2000 µm. (d.) 4× magnification. Scale
bar depicts 2000 µm. (c) Morphology of organoid section via histological H&E staining. A typical
glomerulus-like structure is depicted by a dashed rectangle. Tubule-like structures are marked with
an asterisk. Scale bar depicts 50 µm. (d) Confocal pictures of glomerular (ACTN4, yellow) and
tubular (LTL, green) structures in UMK1 sections. Nuclear OCT2 (POU2F2) (red) is expressed in
UMK1 sections. A glomerulus-like structure was marked with an arrow. Scale bar depicts 50 µm.
(e) Monitoring of iPSC spheroids and kidney organoids in a dextran uptake assay. (a.) iPSC spheroids
treated with dextran after 4 h pulse. (b.) kidney organoids treated with dextran after 4 h pulse.
(c.) kidney organoids treated with dextran after 24 h chase. Scale bar depicts 200 µm.
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3.2. iPSC Spheroids Lose Pluripotent Gene Expression and Gain Kidney-Associated Genes
during Differentiation

Global gene expression was investigated employing RNA Microarray Analysis. RNA
of UMK1 kidney organoids, PAN-induced (PAN) and untreated control (con) were prepared
in technical duplicates. Along with the aforementioned samples, RNA of iPSC spheroids
(SPH) of the same genetic background as UMK1 was also analysed. A cluster dendrogram
demonstrated similarities between UMK1_con and UMK1_PAN, whereas the duplicates of
SPH clustered separately (Figure 2a). In order to control for successful differentiation into
the kidney, we compared the gene-sets between SPH and UMK1_con. This revealed a total
common gene-set of 15332 genes (Figure 2b). In total, 500 genes were exclusively expressed
in SPH, and 310 exclusive genes were expressed in UMK1_con (Figure 2b). The common
gene-set included upregulated and kidney-related GO terms such as “urogenital system
development”, “mesonephric epithelium development”, “ureteric bud development”,
“renal tubule development” and “nephron epithelium development” (see Supplementary
File S1). A heatmap analysis displays the expression of pluripotency-associated genes in
UMK1_con and SPH (Figure 2c). The genes SOX2, FGF2, DNMT3B, CER1, GREM1 and
POU5F1 were expressed in SPH, whereas expression of the genes BMP4, TGFB1 and INHBA
was observed in UMK1_con (Figure 2c).
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Figure 2. Comparative analysis of gene expression in iPSC spheroids and kidney organoids.
(a) Similarities between spheroids and non-treated and PAN-treated organoids are shown in the
cluster dendrogram. Control and PAN-treated UMK1 cluster together, and iPSC spheroids cluster
separately. (b) The common gene-sets between spheroids and untreated kidney organoids consists
of 15,332 genes. In total, 500 genes are exclusively expressed in spheroids and 310 genes in control
organoids. (c) Expression of pluripotency-associated genes in UMK1_con and SPH depicted in a
Pearson heatmap. (d) Expression of kidney-associated genes in UMK1_con and SPH depicted in a
Pearson heatmap.

The differentiation of iPSC spheroid towards kidney organoids was confirmed with a
heatmap analysis composed of genes of early and late nephrogenesis (Figure 2d). Genes
typical of early kidney development—GDNF, SOX17, BMP7, SALL4, LMX1B and HOXD11—
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were expressed in SPH, while podocyte-associated genes—NPHS1, NPHS2, PECAM1,
PODXL and SYNPO—as well as renal-tubule-related genes—AQP2 and CUBN—were
expressed in UMK1_con (Figure 2d).

3.3. PAN Negatively Affects Podocytes and Partly Tubular Cells

The kidney organoids sustained a high proliferation rate during the entire differentia-
tion process. Immunofluorescence-based analysis of organoid sections detected proliferat-
ing KI67-positive cells, which were found to be reduced in organoid sections treated with
PAN (Figure 3a).
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Figure 3. PAN leads to less defined glomerular and tubular structures. (a) PAN induction leads to 
a decrease in the number of highly proliferative KI67+ cells (red). Nuclei were stained with 
Hoechst33342 (blue). Scale bar depicts 50 µm. (b) Expression of the podocyte marker SYNPO is up-
regulated (UMK1, FFK1, FFK2, UFK2) after PAN treatment. Error bars depict standard error. (c) 
PODXL+ glomeruli (yellow) are less defined after PAN treatment. Glomeruli are marked with a 
white arrow. Nuclei were stained with Hoechst33342 (blue). Scale bar depicts 50 µm. (d) Confocal 
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Figure 3. PAN leads to less defined glomerular and tubular structures. (a) PAN induction leads
to a decrease in the number of highly proliferative KI67+ cells (red). Nuclei were stained with
Hoechst33342 (blue). Scale bar depicts 50 µm. (b) Expression of the podocyte marker SYNPO is
upregulated (UMK1, FFK1, FFK2, UFK2) after PAN treatment. Error bars depict standard error.
(c) PODXL+ glomeruli (yellow) are less defined after PAN treatment. Glomeruli are marked with
a white arrow. Nuclei were stained with Hoechst33342 (blue). Scale bar depicts 50 µm. (d) Con-
focal microscopy pictures of PODXL+ glomeruli with and without PAN. Scale bar depicts 20 µm.
(e) LTL+ proximal tubules (green) and ACTN4+ glomeruli (yellow) are less defined after PAN treat-
ment. Glomeruli are marked with a white arrow. Nuclei were stained with Hoechst33342 (blue). Scale
bar depicts 50 µm. (f) Comparative confocal pictures of ACTN4 (yellow) and LTL-stained (green)
organoid sections treated with and without PAN. Scale bar depicts 20 µm. Glomeruli are marked with
a white arrow. (g) Expression of the tubular markers ABCC4, CLDN10 and NR3C2 are downregulated
by PAN. Error bars depict standard error.

Gene expression analysis revealed the upregulated expression of the podocyte-associated
gene SYNPO in UMK1, FFK1, FFK2 and UFK2 kidney organoids (Figure 3). The podocyte
marker PODXL was expressed by glomerular-like cells at the rear ends of the tubule-like
structures (Figure 3; Figure S1b). Treatment with PAN resulted in a reduction in PODXL-
expressing cells, and glomerular-like structures appeared to be less defined (Figure 3). The
blurred boundaries of glomerular-like structures induced by PAN were closely observed by
confocal microscopy (Figure 3). Additionally, tubular-like structures were found to be LTL-
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positive, and their rear ends were positive for ACTN4 (Figure 3). Reduced numbers of LTL+

and ACTN4+ cells were observed in PAN-treated organoid sections (Figure 3). In addition,
the expression of the tubular markers—ABCC4, CLDN10 and NR3C2—was downregulated
in all organoid batches except for UMK2 (Figure 3). PAN treatment was found to negatively
affect glomerular-like cells and partially affect tubular-like cells as well.

3.4. Transcriptome Analysis Reveal Kidney-Related GO Terms Are Expressed in
Urine-Stem-Cell-Derived iPSC Spheroids and Kidney Organoids

A Venn diagram comparison between UMK1_con and UMK1_PAN revealed a com-
mon gene-set of 15344, 298 exclusive genes in UMK1_con and an exclusive gene-set of 215
in UMK1_PAN (Figure 4). The top ten GO biological pathways of the exclusive UMK1_PAN
gene-set are further described in Table S5 (see Supplementary File S2).
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untreated and PAN-treated kidney organoid sections (Figure 5A). Interestingly, quantita-
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levels in PAN-induced UMK1 compared to an untreated control (Figure 5A). DNA dam-
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Figure 4. Transcriptome analysis of UMK1 with and without PAN treatment. (a) The common
gene-sets between UMK1_con and UMK1_PAN consisted of 15344 genes. Exclusively expressed in
UMK1_con and UMK1_PAN are 298 and 215 genes, respectively. (b) Expression of kidney-associated
genes in UMK1_con and UMK1_PAN is displayed in a Pearson heatmap.

The expression of genes associated with nephrogenesis was compared between
UMK1_con and UMK1_PAN with a Pearson heatmap (Figure 4b). Expression of the
podocyte-associated genes NPHS1, NPHS2, PECAM1, PODXL and SYNPO as well as the
tubular genes SLC3A1, AQP1, CUBN and CLDN5 was observed in UMK1_con but was
downregulated in UMK1_PAN (Figure 4b).

3.5. PAN Induces DNA Damage in Kidney Organoids

DNA damage in PAN-induced kidney organoids was evaluated by immunofluores-
cence and Western blot analysis. The DNA damage marker γH2A.X was expressed in both



Cells 2022, 11, 635 10 of 20

untreated and PAN-treated kidney organoid sections (Figure 5a). Interestingly, quantitative
Western blot analysis revealed a three-fold increase in γH2A.X protein expression levels in
PAN-induced UMK1 compared to an untreated control (Figure 5a). DNA damage induced
by PAN was also observed by the detection of total P53 protein, which was expressed
at higher levels in PAN-treated UMK1 than in the controls (Figure 5b). Additionally, a
higher amount of cleaved Caspase 3 protein was observed upon PAN treatment (Figure 5b).
We could also observe higher amounts of γH2A.X, P53 and cleaved Caspase 3 protein in
the other PAN-treated kidney organoid batches—UMK2, FFK1, FFK2, UFK1 and UFK2
(Figure S1c). However, in the UFK2 organoids, we observed reduced levels of γH2A.X and
cleaved CASP3 after PAN treatment (Figure S1c). Further indicators of cell damage were
also observed in upregulated GO enrichment clusters such as “p53 transcriptional gene
network”, “autophagy”, “TRAIL-activated apoptotic signalling pathway” and “negative
regulation of cell cycle” (Figure 5c).
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Figure 5. PAN treatment induces DNA damage in kidney organoids. (a) Elevated expression of
γH2A.X (red) in PAN-treated kidney organoids UMK1. Nuclei were stained with Hoechst33342
(blue). Scale bar depicts 50 µm. (b) Elevated expression of t-P53 and cleaved Caspase 3 in
PAN-treated kidney organoids UMK1. (c) Upregulated enrichment clusters include cell damage.
(d) Cell-cycle-related enrichment clusters were downregulated by PAN treatment.

Additionally, other downregulated cell-cycle-related GO enrichment clusters included
“mitotic cell cycle” and “developmental growth” (Figure 5d). Besides other effects caused by
PAN, the substance is known to damage podocytes, which particularly affects the podocyte
membranes. With regard to this, we observed the downregulation of the GO terms “cell
junction organization”, “regulation of plasma membrane bounded cell projection orga-
nization”, “actin-filament-based process” and “cell–cell adhesion via plasma-membrane
adhesion molecules” (Figure 5d). Similarly, a KEGG pathway analysis revealed the down-
regulation of genes associated with “cell cycle” (Table S6; Supplementary File S3), as well as
upregulated genes within the “P53 signalling pathway” (Table S7; Supplementary File S4).
Treating kidney organoids UMK1 with PAN was associated with the regulation of various
biological pathways. We especially concentrated on the 215 genes solely expressed by the
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PAN-treated UMK1 organoids as seen in the Venn analysis (Figure 4). With a detection
p-value below the threshold of 0.05, we focused on the top 10 expressed GO biological
pathways, which included: “lipoxygenase pathway”, “inflammatory response”, “establish-
ment of skin barrier”, “hepoxilin biosynthetic process”, “regulation of adaptive immune
response based on somatic recombination of immune receptors built from immunoglobulin
superfamily domains”, “lactate transmembrane transport”, “response to biotic stimulus”,
“establishment of localization”, “multicellular organismal water homeostasis” and “regula-
tion of cytokine production” (Table S5). Interestingly, pathways involved in inflammation
and immune responses were significantly regulated in kidney organoids treated with PAN.
We could also confirm the transcriptome data by qRT-PCR, which demonstrated an upreg-
ulation of genes associated with the lipoxygenase pathway (ALOX12B) and P53 signalling
pathway (SESN2, FAS) and a downregulation of cell-cycle-related genes (CCNB2, PLK1 and
BUB1) (Figure S2a).

3.6. Inflammation-Associated Processes Are Elevated in PAN-Induced Kidney Organoids

As the transcriptome analysis revealed indications that PAN induces inflammation and
acute immune responses, we analysed the expression of markers of the myeloid cell lineage
via Pearson heatmap analysis (Figure 6a). Various pro-inflammatory –CXC- and –CC-
chemokines as well as DPP4—an established marker of the proximal tubular compartment—
were expressed in UMK1_PAN but not in UMK1_con (CXCR4, DPP4, CCL20, CCL2, CXCL5,
CXCR3, CXCL1 and CXCL6) (Figure 6a). In contrast, anti-inflammatory –CXC- and –
CC- chemokines were primarily expressed in UMK1_con and not UMK1_PAN (CX3CL1,
CXCL17, CCR2, CXCL2 and CXCL3) (Figure 6a).

The expression of pro-inflammatory cytokines—IL8 and IL6—was upregulated in all
organoid batches, except for UMK1, after PAN treatment compared to their specific controls
(Figure 6b). Cytokine secretion of PAN-induced UMK1 was additionally analysed using
a “Human Kidney Biomarker array” and compared to an untreated control. A cluster
dendrogram based on the cytokine array data showed clustering of the duplicates control
versus PAN treatment (Figure 6c). Upon PAN treatment, the concentrations of ADIPOQ,
ANPEP, ANXA5, DPP4, EGF, EGFR and IL1RN increased significantly (Figure 6d). In
contrast, CXCL1, CCL2, MMP9, THBS1, PLAU and VCAM1 were secreted at lower levels
compared to untreated controls (Figure 6d).

The exclusive gene-sets of UMK1_con (298 genes) and UMK1_PAN (215 genes) from
the Venn analysis in Figure 4 were subjected to metascape-based analysis (Figure 5e,f and
Figure 6). When comparing the enriched gene clusters of UMK1_con and UMK1_PAN, the
gene clusters “regulation of adaptive immune response based on somatic recombination of
immune receptors built from immunoglobulin superfamily domains” and “synthesis of
12-eicosatetraenoic acid derivates” emerged in UMK1_PAN (Figure 6e). These fatty acids
are involved in inflammatory processes and thus implying that PAN induces inflammatory
responses in the kidney organoids. The analysis of non-redundant enrichment clusters
additionally supported the observation that PAN treatment induces inflammation and
immune response as the enrichment clusters comprised “synthesis of 12-eicosatetraenoic
acid derivates“ and “regulation of cytokine production involved in immune response”
(Figure 6f).
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available renin assay kit. An increase in renin secretion after PAN treatment was observed 
in the organoid batches UMK1, UMK2 and UFK2, whereas statistical significance with 
respect to the control was only found in UMK2 and UFK2 (α-value ≤ 0.05) (Figure 7B). No 
significant difference was observed between control and PAN treatment in FFK1, FFK2 
and UFK1 organoids (Figure 7B). The mRNA expression of the key genes of the RAAS 
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Figure 6. Inflammation-associated gene expression and cytokine secretion in untreated and PAN-
treated kidney organoids. (a) Pearson heatmap of the expression of immune-related genes in control
and PAN treatment. (b) Expression of IL-6 and IL-8 is elevated in PAN-induced kidney organoids as
measured by qRT-PCR. Error bars depict standard error. (c) Cluster dendrogram with the technical
duplicates of untreated kidney organoids clustering together and the PAN-treated kidney organoids
cluster separately. (d) Cytokine array data comparing expression between untreated control and
PAN treatment. (e) Metascape-generated heatmap comparing UMK1_PAN and UMK1_con included
inflammation- and immune-response-related GOs. Subjected gene-sets are based on the Venn analysis
in Figure 4. (f) Bar graph of non-redundant enrichment clusters after PAN treatment.

3.7. PAN Activates the Renin–Aldosterone–Angiotensin System (RAAS)

Kidney injury, especially glomerular damage, is associated with altered blood pressure.
We examined this by investigating the renin–aldosterone–angiotensin System (RAAS). The
transcriptome data revealed PAN-induced downregulation of the renin-secretion-associated
genes—PAC1, AQP1, Cav, IP3R, PLC, sGC, PDE1, PDE3 and Cn (Figure 7a). The secretion of
renin by the kidney organoids was measured using a commercially available renin assay
kit. An increase in renin secretion after PAN treatment was observed in the organoid
batches UMK1, UMK2 and UFK2, whereas statistical significance with respect to the
control was only found in UMK2 and UFK2 (α-value ≤ 0.05) (Figure 7b). No significant
difference was observed between control and PAN treatment in FFK1, FFK2 and UFK1
organoids (Figure 7b). The mRNA expression of the key genes of the RAAS pathways—
AGT and AGTR1—was upregulated in almost all kidney organoids (Figure 7c). AGT was
downregulated in PAN-treated UFK2 organoids and AGTR1 was downregulated in PAN-
treated UFK1 organoids (Figure 7c). In the Pearson’s heatmap of genes involved in RAAS,
we could survey a section in which the genes MME, NR3C2, AGTR2, ACE and AGT were
mostly expressed in UMK1_con (Figure 7d). On the other hand, the genes ATP6AP2, PRCP,
KLK2 and PREP were mainly expressed in UMK1_PAN (Figure 7d).
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foreskin fibroblast cells [18] (see Table 1). Kidney damage was modelled by stimulating 
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nonucleoside (PAN).  

In our previous studies, we observed that urine-derived renal progenitor cells 
(UdRPCs) are MSCs and additionally could be differentiated into tubular- and podocyte-
like cells [17,30]. Interestingly, we observed that UdRPC-derived iPSCs spheroids (SPH) 
and untreated kidney organoids (UMK1_con) shared a common set of 15332 expressed 
genes, while they clustered distinctly. From this common gene-set, we observed upregu-
lated genes associated with kidney-related GO terms such as “urogenital system develop-
ment”, “mesonephric epithelium development”, “ureteric bud development”, “renal tu-
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Figure 7. PAN induction affects the RAAS in kidney organoids. (a) PAN induces downregula-
tion of genes of the KEGG pathway renin secretion. Downregulated genes are marked in blue.
(b) Renin concentration (ng/µL) in conditioned media of untreated and PAN-treated kidney
organoids. Significance is determined by α-value ≤ 0.05. (c) Expression of RAAS-associated AGT
and AGTR1 is upregulated in PAN-induced kidney organoids. Error bars depict the standard error.
(d) Pearson’s heatmap depicting the expression of RAAS-associated genes in untreated and PAN-
treated kidney organoids.

4. Discussion

In this study, we demonstrated the successful generation of kidney organoids. We
used three iPS cell lines of distinct genetic background in technical duplicates, of which
two were derived from urine-derived renal progenitor cells [16,17] and one from foetal
foreskin fibroblast cells [18] (see Table 1). Kidney damage was modelled by stimulat-
ing kidney organoids for 48 h with 50 µg/mL of the nephrotoxic substance puromycin
aminonucleoside (PAN).

In our previous studies, we observed that urine-derived renal progenitor cells (UdR-
PCs) are MSCs and additionally could be differentiated into tubular- and podocyte-like
cells [17,30]. Interestingly, we observed that UdRPC-derived iPSCs spheroids (SPH) and
untreated kidney organoids (UMK1_con) shared a common set of 15332 expressed genes,
while they clustered distinctly. From this common gene-set, we observed upregulated
genes associated with kidney-related GO terms such as “urogenital system development”,
“mesonephric epithelium development”, “ureteric bud development”, “renal tubule de-
velopment” and “nephron epithelium development”. Additionally, our heatmap analysis
revealed that a set of genes associated with kidney development was expressed in both
untreated kidney organoids as well as iPSC spheroids (e.g., CUBN, NPHS1, NPHS2 and
SYNPO). Additional and deeper investigations regarding the potential of UdRPCs is be-
yond the scope of the current study and should be conducted in the future.

While comparing kidney organoids with iPSC spheroids, we observed that kidney
organoids had a more lobular morphology in comparison to the typical round morphol-
ogy of iPSC spheroids. Moreover, H&E stainings as well as immunofluorescence-based
stainings showed the emergence of tubular- as well as glomerular-like structures within
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our kidney organoids. Previous studies demonstrated the ability of proximal tubules to
take up dextrans within hPSC-derived kidney organoids [19,31]. Therefore, the function-
ality of our kidney organoids was evaluated with a dextran uptake assay. Endocytosis
of dextran was demonstrated in our kidney organoids, whereas iPSC spheroids did not
take up dextran. As previously mentioned, the kidney organoids are composed of LTL-
and OCT2-positive tubular- and glomeruli-like structures, which express PODXL and
ACTN4. PODXL is expressed on the podocyte cell surface [32] and is involved in the
formation of the slit diaphragm, while ACTN4 co- localizes with cytoskeleton filaments
within the foot processes [33]. Stimulation with the nephrotoxic purine antagonist PAN
interestingly led to the upregulation of SYNPO expression. However, our transcriptome
data suggest PAN-induced podocyte damage, as we found the increased expression of
podocyte-associated factors such as NPHS2 and PODXL in UMK1_con and reduced ex-
pression in UMK1_PAN. Corroborating our findings, Luimula et al. [34] and Lee et al. [35]
observed reduced NEPHRIN expression in regions of foot processes effacement after PAN
injection in rats. NPHS1 mutation or reduced NEPHRIN expression was found to be in-
volved in various glomerular diseases [35,36]. A lack of filtration of proteins due to a defect
in the slit diaphragm results in proteinuria [37], which can eventually lead to reversible
podocyte detachment from the glomerular basement membrane (GBM) [7]. Downregulated
enrichment clusters “cell junction organization”, “regulation of plasma membrane bounded
cell projection organization”, “actin-filament-based process” and “cell–cell adhesion via
plasma-membrane adhesion molecules” imply that PAN treatment interferes with cell–cell
contact. Based on these findings, we concluded that our PAN-treated kidney organoids can
be used to model glomerular-associated diseases.

The kidney organoids contained a high number of KI67+ -proliferative cells, which
were reduced by PAN induction. KI67 expression is found in cells during the interphase
of the cell cycle but is absent in the G0 phase [37]. Adult kidney cells have a slow pro-
liferation rate [38]. Especially glomerular cells, such as podocytes, are in the postmitotic
G0 phase [38]. Therefore, we suspect that our kidney organoids are rather immature and
similar to findings of previous studies, where hPSC-derived kidney organoids resemble
human foetal kidneys [31,39,40]. Besides the reduction in KI67-positive cells, we observed
upregulation in the enrichment terms “negative regulation of cell cycle” and downregula-
tion of “mitotic cell cycle” and “developmental growth “in PAN-treated kidney organoids.
In addition, the levels of t-P53 protein increased in all PAN-treated organoid batches, and
an enrichment of the KEGG pathway “p53 transcriptional gene network” was observed.
Therefore, we assumed a progression from interphase to G0 resulting in cell cycle arrest in
our PAN-treated kidney organoids.

DNA damage triggered by PAN treatment might be the reason for the observed cell
cycle arrest. Even though we did not observe a difference in the level of γH2AX between
the control and PAN-treated UMK1 in the IF-based staining, we found a 2-fold higher
amount of protein in PAN-treated UMK1 than in the untreated control. A higher level
of γH2AX was also observed in the other organoid batches—UMK2, FFK1, FFK2 and
UFK1. PAN treatment induced increased apoptosis in the kidney spheroids—UMK1,
UMK2, FFK1, FFK2 and UFK1—which was detected by increased levels of cleaved Caspase
3 in PAN-treated kidney organoids. This finding was also observed by Kang et al. [8],
where they detected active Caspase 3 in PAN-induced podocytes [8]. In addition, they
found autophagy was induced by PAN prior to apoptosis [8]. Similar to their observation,
in our kidney organoid model, enriched clusters of “autophagy” and “TRAIL-activated
apoptotic signalling pathway” were upregulated upon PAN treatment. Interestingly, less
γH2AX and cleaved Caspase 3 was found in PAN-treated UFK3 organoids. This finding
can be attributed to the variability in batches of organoids. There are manifold reasons
for a high variability between organoids, depending on the employed cell lines or the
heterogeneity of clones and the genotypes [12]. As the other organoid batches showed the
same tendencies regarding increased levels of γH2AX and cleaved Caspase 3, we conclude
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that PAN treatment results in DNA damage and the activation of cell-death-associated
processes.

Besides the induction of DNA damage, we also observed the upregulation of inflamma-
tory processes upon PAN treatment. The pro-inflammatory regulators IL-6 and IL-8 as well
as the expression of other pro-inflammatory genes such as CXCR4, CXCL12, DPP4, CCL20,
CCL2, CXCL5, CXCR3, CXCR2, CX3CR1, CXCL1, CXCL8 and CXCL6 were upregulated
in PAN-treated UMK1. From the results of the cytokine array, we observed the secretion
of the reno-protective cytokines ADIPOQ, Diannexin (ANXA5), EGF and EGFR. These
cytokines are known to protect against renal ischemia and reperfusion injury as well as to
promote recovery after AKI [41,42]. Moreover, ADIPOQ levels are used as a prognostic
tool for ESRD [42]. We therefore propose that PAN treatment causes renal inflammation
and as a consequence, the activation of protective and anti-inflammatory reactions within
cells. On the other hand, previous studies have demonstrated that tubular epithelial cells
express the pro-inflammatory Interleukin-1α, which is involved in immune response [43].
This cytokine induces local inflammation via chemokine secretion, subsequently attracting
neutrophils, macrophages and lymphocytes [43]. Signalling is dependent on the IL-1 re-
ceptor, which can be blocked by the anti-inflammatory antagonist IL1RN [43,44]. This led
us to the assumption that the higher amounts of IL1RN in the secretome of PAN-treated
kidney organoids functioned as a counteraction to the induced inflammation. Likewise, our
transcriptome data suggest a cytokine-induced immune reaction in PAN-treated kidney
organoids as the non-redundant enrichment cluster “regulation of cytokine production
involved in immune response” was unveiled.

Moreover, the untreated kidney organoids primarily expressed anti-inflammatory
genes such as CX3CL1, CXCL17, CCR2, CXCL2, GPR35, CXCL3 and CCR1, which might
imply a form of protection against inflammatory processes in the control kidney organoids
UMK1_con.

An inflammation response upon PAN treatment was additionally detected in the
metascape-based analysis with the enrichment clusters “synthesis of 12-eicosatetraenoic
acid derivates” and “regulation of adaptive immune response based on somatic recombina-
tion of immune receptors built from immunoglobulin superfamily domains”. Moreover,
we found “synthesis of 12-eicosatetraenoic acid derivates” to be the top non-redundant
enrichment cluster in UMK1_PAN. Eicosatetraenoic acids are metabolites from the lipoxy-
genase pathway, which we observed as one of the top GO biological pathways within the
215 exclusive genes of the PAN-treated UMK1 organoids. Eicosanoids are synthesized from
polyunsaturated fatty acids such as arachidonic acids [45,46]. Lipoxygenases synthesize
5-, 12-, or 15-hydroxyeicosatetraenoic (HETE) acids from arachidonic acids [47]. They
are involved in various metabolic processes such as cellular inflammation [45,46]. It was
recently discovered that lipoxygenases play a role in kidney damage of diabetic nephropa-
thy and their synthesised products induce the synthesis of stimulants involved in kidney
fibrosis [47]. One of the lipoxygenases is the 5-lipoxygenase (ALOX5), which is involved
in inflammatory diseases [48]. Previous reports suggest that inhibiting 5-lipoxygenase
led to a reduction in renal fibrosis and CKD progression [48]. Additionally, the synthesis
product 5-HETE stimulates T-cell production, one of the major immune cells [47]. In addi-
tion, it has been described that 12-lipoxygenase and 15-lipoxygenase synthesize 12-HETE
and 15-HETE, which contribute to the overexpression of pro-inflammatory cytokines in
macrophages [47]. We detected the elevated expression of 12-lipoxygenase in PAN-treated
kidney organoids and together with the findings of our transcriptome data, it suggests that
PAN stimulation leads to an increase in inflammation and other injury-associated processes.
We conclude that PAN induction of pro-inflammatory processes in kidney organoids can
be considered for modelling inflammation-associated acute kidney injury and associated
diseases.

Due to their inherent transport activity, proximal tubules are susceptible to damage
by kidney injury, renal ischemia and nephrotoxicity [49]. LTL staining detected proximal
tubules in our kidney organoids, and we observed these to be partially affected by PAN
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induction. Structurally, tubules of PAN-induced kidney organoids had partly disrupted
cell membranes, and tubular-associated genes such as ABCC4, CLDN10 and NR3C2 were
downregulated. Additionally, our transcriptome data revealed the low-level expression
of tubule-associated genes such as CUBN and AQP1 in PAN-treated UMK1 organoids
compared to the control. Similar observations of tubular damage and stimulated glomerular
nephropathy were made in rats when PAN was administered chronically [50]. Additionally,
PAN-treated kidney organoids secreted significantly higher amounts of FABP, ANPEP
(CD13) and DPP4 (CD26), which are associated with the proximal tubule compartment.

Within the proximal tubular compartment, L-FABP is capable of binding to lipid
peroxide and protects from oxidative stress [51]. However, tubular damage results in the
secretion of L-FABP into urine [51]. The proteins ANPEP and DPP4 are expressed in the
apical brush border epithelium of proximal tubules and are shed into urine upon increased
tubular stress, caused by various renal injuries [52]. This may lead to an impairment of
the glomerular filtration rate and thus a shedding of glomerular proteins [52]. The higher
amounts of proteins in urine eventually exceed the capacity of proximal tubules to reabsorb
proteins, which further adds up to proteinuria [52]. Since the aforementioned proteins
are cumulatively secreted into urine upon renal injuries, this was an indication that our
kidney organoids can be used for kidney injury models, specifically the proximal tubular
compartment.

We observed that PAN had an effect on the renin–angiotensin–aldosterone system
(RAAS). The RAAS has a key role in the maintenance of blood pressure and body fluid
homoeostasis. In the kidney, the RAAS is essential for normal development, and complica-
tions can lead to congenital anomalies of the kidney and the urinary tract (CAKUT) [53].
A heatmap analysis revealed the expression of ATP6AP2, PCRP, KLK2 and PREP in our
PAN-treated, but not in the untreated kidney organoids. Upon pathological conditions such
as renal dysfunction, previous studies observed the activation of pro-inflammatory and
pro-fibrotic molecules by ATP6AP2 [54]. Similarly, KLK2 plays a major role in inflammatory
kidney diseases, where it is involved in various physiological processes [55]. On the other
hand, PCRP and PREP have reno-protective properties [56,57]. While PRCP degrades
ANGII to ANG (1–7) [56], studies in hypertensive rats revealed that PREP synthesizes
anti-fibrotic molecules, which also decrease the infiltration of inflammatory cells [57].

In the untreated kidney organoids, we observed the expression of key components of the
RAAS such as AGT, ACE and AGTR2, as well as MMP and NR3C2. MMP acts together with
ACE2 for the production of ANG (1-7) to counteract against overproduced ANGII, which
finally prevents hypertension and organ damage [58,59]. Even though NR3C2 is involved in
the regulation of fluid, electrolytes and blood pressure homoeostasis [60], an over-activation
can cause organ injury induced by inflammatory and fibrotic processes [61,62].

Interestingly, KEGG pathway analysis revealed the downregulation of renin-secretion-
associated genes, mainly involved in the calcium and cGMP-PKG signalling pathways.
Renin secretion is directly linked to cAMP formation, which is regulated by intracellu-
lar Ca2+ concentration [63]. High levels of Ca2+ correlate with decreased renin secre-
tion [63]. Additionally, high levels of cGMP were also found to negatively affect renin
metabolism [64]. The results of the renin secretion assay as well as the KEGG analysis
revealed decreased calcium signalling and increased renin secretion in the PAN-treated
kidney organoids. Previous studies suggest that increased renin and angiotensinogen
(AGT) levels lead to an increased ANGII concentration, thereby stimulating hypertension
and organ damage [65]. We made a similar observation, as we measured an upregulation
of AGT expression in PAN-induced kidney organoids. Additionally, we demonstrated the
upregulated expression of the ANGII receptor AGTR1. Besides its role in the regulation of
blood pressure, AGTR1 is associated with various pathological conditions such as hyper-
tension and diabetic nephropathy [66]. In conclusion, PAN treatment induced upregulated
renin secretion, which subsequently increased ANGII and AGTR1 expression and which
may lead to the emergence of pathological conditions such as high blood pressure under
certain circumstances.
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5. Conclusions

This study has revealed that human kidney organoids treated with puromycin aminonu-
cleoside hold promise in the study of various pathological kidney conditions, which affect
the glomerular and tubular regions. PAN induces immune response such as inflammation,
DNA damage, apoptosis and cell death. Furthermore, PAN activated the RAAS pathway,
therefore demonstrating the relevance in pro-inflammatory and reno-protective processes
as well as the emergence of pathological kidney conditions such as ANGII-induced hy-
pertension over time. In the future prospect, a deeper understanding of kidney-related
disease mechanisms by harnessing kidney organoid models can be beneficial for novel
drug discovery and development.
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