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Abstract: Emerging evidence has shown that cell-cell interactions between testicular cells, in par-
ticular at the Sertoli cell-cell and Sertoli-germ cell interface, are crucial to support spermatogenesis.
The unique ultrastructures that support cell-cell interactions in the testis are the basal ES (ectoplas-
mic specialization) and the apical ES. The basal ES is found between adjacent Sertoli cells near the
basement membrane that also constitute the blood-testis barrier (BTB). The apical ES is restrictively
expressed at the Sertoli-spermatid contact site in the apical (adluminal) compartment of the sem-
iniferous epithelium. These ultrastructures are present in both rodent and human testes, but the
majority of studies found in the literature were done in rodent testes. As such, our discussion herein,
unless otherwise specified, is focused on studies in testes of adult rats. Studies have shown that the
testicular cell-cell interactions crucial to support spermatogenesis are mediated through distinctive
signaling proteins and pathways, most notably involving FAK, Akt1/2 and Cdc42 GTPase. Thus,
manipulation of some of these signaling proteins, such as FAK, through the use of phosphomimetic
mutants for overexpression in Sertoli cell epithelium in vitro or in the testis in vivo, making FAK
either constitutively active or inactive, we can modify the outcome of spermatogenesis. For instance,
using the toxicant-induced Sertoli cell or testis injury in rats as study models, we can either block
or rescue toxicant-induced infertility through overexpression of p-FAK-Y397 or p-FAK-Y407 (and
their mutants), including the use of specific activator(s) of the involved signaling proteins against
pAkt1/2. These findings thus illustrate that a potential therapeutic approach can be developed to
manage toxicant-induced male reproductive dysfunction. In this review, we critically evaluate these
recent findings, highlighting the direction for future investigations by bringing the laboratory-based
research through a translation path to clinical investigations.

Keywords: testis; toxicants; cadmium; PFOS; adjudin; cell-cell interactions; signaling proteins

1. Introduction

Toxicants that were shown to exert their disruptive effects at the intercellular junctions
in target organs, including cells and tissues, such as at the neuromuscular interface, be-
tween embryonic mesenchymal cells during development possibly to perturb intercellular
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communication, were first reported in the 1950s and 1980s [1–4]. Interestingly, toxicants that
exert their disruptive effects at the cell-cell interface, most notably in cell junctions (or cell
adhesion sites) in testicular cells, such as Sertoli cells, germ cells, and Leydig cells, which in
turn lead to defects in spermatogenesis and male reproductive dysfunction, were not found
in the literature until the 1980s and 1990s [5–8]. Since then, studies that evaluate toxicant-
induced changes in cell-cell interactions in the testis, the epididymis and the prostate, which
in turn impede male reproductive function, leading to male infertility, including cadmium,
PFOS (perfluorooctane sulfonate), phthalates, and others, have grown rapidly, and many of
these studies have been summarized in recent reviews [9–18] (Table 1). Since many of these
intercellular junctions utilize actin as attachment sites for the integral membrane proteins
and/or adaptors of the adhesion protein complexes, it is not unexpected that cytoskeletons,
such as actin and microtubule cytoskeletons, are one of the primary targets of toxicants, as
recently reviewed [16,19,20]. Furthermore, the most notable and consistent phenotype in
these earlier studies following exposure of rodents to toxicants is germ cell exfoliation from
the seminiferous epithelium. Nonetheless, the signaling proteins and the detailed signaling
cascade utilized by toxicants to mediate male reproductive dysfunction through changes at
the cell junction level remain largely unexplored. Even though earlier studies that focused
on studying toxicant-induced germ cell apoptosis have illustrated the involvement of the
Fas system [21–24] or the ion channel (e.g., calcium ion channel), and they are likely key
pathways of cell apoptosis in the mammalian testis [25–27]. Nevertheless, the involved
signaling proteins and the pathways at the cell junction level remain unknown.

Studies in recent years, however, have reported the involvement of members of the
mitogen-activated protein kinases (MAPKs), such as p38 MAPK and ERK1/2 and their
activated isoforms, in mediating blood-testis barrier (BTB) function at the Sertoli cell-cell
interface [28–32]. In this context, it is of interest to note that the BTB is constituted by the
actin-based tight junction (TJ), basal ES (ectoplasmic specialization) and gap junction, as
well as the intermediate filament-based desmosome [33–35]. The BTB, in turn, divides the
seminiferous epithelium into the basal and apical (adluminal) compartments. These reports
have provided the initial indication that intercellular junctions in the testis may be one of
the targets of toxicants. In fact, one of the earliest studies illustrating the likely involvement
of MAPKs in mediating toxicant (e.g., cadmium)-induced Sertoli cell TJ barrier function at
the BTB in vivo was first reported in 2003 [32], and also in vitro [31]. Subsequent studies
using Sertoli cell cultures or Sertoli-germ cell cocultures have also reported the involvement
of other signaling proteins (e.g., ROCK, LIMK) and small GTPases (e.g., Rho B), besides
MAPKs (e.g., p38 MAPK), in toxicant-induced testis and Sertoli cell injury [31,36]. In short,
studies have shown that PFOS and cadmium are two of the environmental toxicants, among
others, that induce Sertoli cell and/or testis injury by perturbing cell-cell interactions in the
testis through activation of MAPKs, including p38-MAPK, ERK1/2 and JNK [32,37–39]. It is
also noteworthy to mention that the doses of toxicants (e.g., cadmium chloride at 3 mg/kg
b.w. in studies in vivo or 5–10 µM in primary Sertoli cell cultures in vitro, PFOS at 20 µM in
primary Sertoli cell cultures in vitro) used in these studies were not cytotoxic to the testicular
cells [40,41]. However, these doses were higher than normal human exposures. For instance,
the current oral TWI (tolerable weekly intake) for cadmium is 2.5 µg/kg b.w. (http://www.
efsa.europa.eu/en/efsajournal/pub/1975, accessed on 7 December 2021) and the oral
TDI (tolerable daily intake) for PFOS is 150 ng/kg/day (https://www.efsa.europa.eu/en/
news/efsa-opinion-two-environmental-pollutants-pfos-and-pfoa-present-food, accessed
on 7 December 2021) for humans [42]. Thus, these levels are considerably lower than
the doses used for acute-dose studies in rodents in order to yield distinctive phenotypes
within a short experimental period. However, cadmium and PFOS have a relatively long
human elimination half-life of >20 years and 5 years, respectively [42], and high levels
of these toxicants can build up in the human body, especially among industrial workers.
Collectively, these findings thus provide an opportunity to manage toxicant-induced male
reproductive dysfunction. For instance, if the signaling protein(s) that are responsible
for mediating the effects of toxicant-induced reproductive dysfunction is known, the use
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of specific inhibitors and/or activators, along with agonists and/or antagonists, can be
explored for their use to block, and perhaps rescue (or reverse), toxicant-induced male
Sertoli cell (or testis) injury or germ cell exfoliation. This possibility has been examined
in recent studies, and these reports are carefully evaluated below. In brief, these findings
thus open a new window to manage male reproductive dysfunction. However, since the
involvement of MAPKs, ERKs and JNKs (and also their role in oxidative stress) in mediating
toxicant-induced male reproductive dysfunction has recently been reviewed [43–46], we do
not discuss these MAPK-based signaling proteins in this short review to avoid redundancy.

Instead, we focus our discussion on the latest findings regarding the role of an emerg-
ing signaling protein and its downstream pathway(s) in mediating toxicant-induced Sertoli
and testis injury based on studies in rodents and humans, namely the focal adhesion kinase
(FAK) (Figure 1), the Akt1/2 (Figure 2) and the FAK/Cdc42-based signaling pathways
(Figure 2). It is rather unusual that FAK plays such an important role in mediating cell-cell
interaction in the testis since focal adhesion kinase (FAK), as its name implies, is a signaling
protein involved in focal adhesion complex (FAC) dynamics. FAK is one of the best-studied
cytoplasmic non-receptor protein tyrosine kinases [47,48]. It is restrictively expressed at the
actin-based cell-extracellular matrix (ECM) interface designated FAC (or focal contact) in
multiple epithelia and/or endothelia (and a cell-matrix anchoring junction type), but not at
the cell-cell interface [49]. Interestingly, in the testis, studies using electron microscopy have
shown that there is no ultrastructure similar to FAC detected at the base of the seminiferous
epithelium between Sertoli cells and the basement membrane (a modified form of ECM in
the testis) [50,51], which is the site where FAK supposed to exert its regulatory function.
Instead, FAK and two of its activated/phosphorylated forms, p-FAK-Y397 and p-FAK-Y407,
are robustly but restrictively expressed at the apical ES [52,53] and apical/basal ES [54], re-
spectively, which are the testis-specific cell-cell anchoring junction type [35,55,56] (Figure 3).
Critical evaluation of these data, and, in particular, findings from more recent reports, have
shed new insights regarding the path that should be taken so that this information can be
considerably expanded in future studies. One of the main goals is to bring this research
to a translation path so that this information can be brought to clinics. It is noted that our
discussion in this review relies mostly on findings derived from studies in the rat testes
unless otherwise specified. However, studies based on scRNA-Seq have shown that many
of the proteins found in the rat testes, including those regulatory proteins residing at the
apical and basal ES, are also expressed in human testes [57], implicating that our evaluation
here is applicable to human spermatogenesis.
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Figure 1. Schematic illustration of the functional domains of human FAK. The human FAK is a
polypeptide comprised of 1058 amino acid residues. From its N-terminus, it is comprised of the
FERM domain, to be followed by the intrinsic kinase domain and the FAT domain at its C-terminus.
It has three distinctive PR1 domains and several distinctive Tyr phosphorylation sites. Within the
FERM domain, it also consists of NLS, NES, KDBS and F1-F3 domains. The intrinsic kinase domain
also consists of the NES and FDBS domains. Abbreviations used: FERM, F for 4.1 protein, E for
ezrin, R for radixin and M for moesin; NLS, nuclear localization sequence; KDBS, kinase domain
binding site; NES, nuclear export sequence; FDBS, FERM domain binding site; EGF, epidermal growth
factor; PDGF, platelet-derived growth factor; p53, tumor protein p53; Mdm2, mouse double minute
2 homology (also known as E3 ubiquitin-protein ligase, a regulator of the p53 tumor suppressor);
Arp2/3, actin-related protein 2/3 complex; N-WASP, neuronal Wiskott–Aldrich syndrome protein;
c-Met, MET proto-oncogene, receptor tyrosine kinase; GATA4, GATA binding protein 4; ERBB2,
Rrb-b2 receptor tyrosine kinase 2; RET, rearranged during transfction, a proto-oncogene; Shc, SHC-
adaptor protein; Src, cellular Src transforming kinase; PI3K, phosphatidylinositol 3-kinase; Grb7,
growth factor receptor bound protein 7; Nck-2, NCK adaptor protein 2; PLCγ, phospholipase C
γ1; p120 RasGAP, RAS p21 protein activator 1; SOCS, suppressor of cytokine signaling 3; p130Cas,
p130 Cas family acaffolding protein; ASAP1, ArfGAP with SH3 domain, ankyrin repeat and PH
domain 1; GRAF, GTPase regulator associated with FAK; PSGAP, a novel pleckstrin homology and
Src homology 3 domain containing RhoGAP protein; Csk, C-terminal Src kinase; Hic5, transforming
growth factor ß1 induced transcript 1; Rgnef, Rho guanine nucleotide exchange factor 28; Grb2,
growth factor receptor bound protein 2; MBD2, MBD2, methyl-CpG binding domain protein 2; p190
RhoGEF, an activator of Rho-family GTPases.
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Figure 2. Schematic illustration of the signaling cascade and the involving protein kinases and
regulatory biomolecules that mediate FAK-based signaling to support spermatogenesis. This figure
was prepared based on current findings in the field, as discussed herein (see text for details). MARK4,
microtubule-affinity regulating kinase 4; MAP-1a, microtubule-associated protein 1a.
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Figure 3. Schematic illustration of the current working model of the FAK-based signaling involving
Cdc42 that modulates remodeling of apical ES and basal ES/BTB to support spermatogenesis. The
apical ES (top) and basal ES/BTB (lower) shown on the left panel illustrate the intact ES at the
Sertoli-spermatid and Sertoli cell-cell interface, respectively, such as at stage VII of the epithelial
cycle. However, treatment of rats or Sertoli cells cultured in vitro or in the testis in vivo with CdCl2
or PFOS based on studies discussed herein have shown that these toxicants induced Sertoli cell
and/or testis injury by inducing remodeling of the ES at both sites. In brief, for the MT cytoskeleton,
there is a change in the distribution of MT regulatory proteins, such that + TIP (e.g., EB1) is no
longer tightly bound to the MT plus (+) end, with a concomitant increase in the binding of -TIP
(e.g., CAMSAP2), which in turn de-stabilize the MTs, facilitating MT catastrophe. On the other hand,
MAPs (e.g., MAP1a) no longer tightly bind onto the MTs to stabilize the MT cytoskeleton. Instead,
MARK4 induces phosphorylation of MAPs, causing their detachment from microtubules, which
also de-stabilizes MTs, leading to MT catastrophe. For the actin cytoskeleton, there is an increase in
the Arp2/3 complex activity through induction of its upstream regulator (e.g., N-WASP), causing
branched actin polymerization. On the other hand, there is a considerable decline in the expression
of actin-bundling protein (e.g., palladin) or the actin barbed end-capping and bundling protein Eps8.
This reduced actin-bundling activity, coupled with an increase in Arp2/3 complex activity, lead to
remodeling of the F-actin network, facilitating the conversion of actin filaments from a bundled to an
unbundled configuration, thereby de-stabilizing the F-actin network. These changes thus contribute
to reduced adhesion at the Sertoli-spermatid interface and the Sertoli cell-cell interface at the apical
ES and basal ES/BTB, respectively. In brief, exfoliation of elongated spermatids and unwanted
remodeling of the BTB take place simultaneously, causing defects in spermatogenesis that lead to
male reproductive dysfunction.
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2. Unique Features of Cell Junctions in the Testis

Studies based on the use of in vivo and in vitro models have shown that cell junc-
tions at the Sertoli cell-cell or Sertoli-germ cell interface in the testis are one of the targets
of environmental toxicants, including cadmium, PFOS, bisphenol A (BPA), phthalates
and others [8,31,32,36,37,40,58–61]. Interestingly, intercellular junctions in the testis share
many features of epithelial junctions in other tissues/organs, while there are some unique
features in the testis not found in other tissues/organs. For instance, in the rat testis, at
the Sertoli-spermatid (steps 8–19 spermatids) interface and the Sertoli cell-cell interface,
there is a unique cell-cell anchoring junction known as the apical ES and basal ES, respec-
tively [35,56,62] (Figure 3). Both apical and basal ES share similar ultrastructural features
in which a distinctive array of actin filament bundles that are aligned perpendicular to the
plasma membranes at either the Sertoli-spermatid (apical ES) or the Sertoli cell-cell (basal
ES) interface is found (Figure 3). This array of actin bundles is sandwiched in between the
apposing plasma membranes of Sertoli cell-spermatid (apical ES) or Sertoli cell-cell (basal
ES) and the cisternae of endoplasmic reticulum (ER) in Sertoli cells at the ES, and is not
found in spermatids (Figure 3). The apical and basal ES, in turn, are supported by another
network of actin filaments and protofilaments of microtubules that are aligned parallel to
the plasma membrane that lay adjacent to the actin filament bundles (Figure 3), illustrating
the intimate structural relationship between the actin and microtubule cytoskeletons. These
networks of actin and MT cytoskeletons thus confer ES with unusual adhesive strength.
As such, ES is considered to be one of the strongest adhesive cell-cell junctions in the
mammalian body based on a study in which the force required to “pull” the involving
Sertoli cell and spermatid apart was quantified [63]. Interestingly, once apical ES appears
between haploid step 8 spermatids and Sertoli cells in stage VII tubules of rat testes, it is
the only anchoring junction between developing spermatids and Sertoli cells, replacing
the desmosome and gap junctions, and persists until the end of spermiogenesis in the rat
testis (Figure 3). Apical ES undergoes degeneration in late stage VIII tubules to facilitate
the release of sperm at spermiation (Figure 3). Interestingly, unlike apical ES, the basal ES
does not exist alone. Instead, it coexists with the actin-based TJs and gap junctions, which,
together with the intermediate filament-based desmosome, they constitute the BTB in the
testis [34,35]. As such, these junctions work in concert as a group to confer strong adhesion
between adjacent Sertoli cells near the base of the seminiferous epithelium at the BTB,
making the BTB one of the tightest blood-tissue barriers in the mammalian body, similar
to the blood-brain barrier (BBB) [34,64–67]. Even though the ES is such a strong adhesive
junction, it is exceedingly sensitive to toxicants, in particular the pharmaceutical drug
adjudin [15,62,68]. Indeed, studies have shown that adjudin (a male contraceptive drug
under intense investigation in our laboratory [69–71]) exerts its effects primarily at the actin
cytoskeleton [72], and it effectively perturbs apical ES adhesion [68]. Other studies have
also shown that the basal ES/BTB and the apical ES are also highly sensitive to the environ-
mental toxicant cadmium in the testis [61,73,74]. These findings seemingly suggest that the
ES that supports spermatid and Sertoli cell adhesion in the seminiferous epithelium during
spermatogenesis may be utilizing specific signaling proteins and/or cascades, perhaps
different from other cell epithelia. If these signaling proteins and/or pathways are known,
it may provide insights in managing toxicant-induced Sertoli cell and/or testis injury. In
this context, it is of interest to note that the toxicants to be discussed in this review have
also been studied extensively in other epithelia and tissues, including their likely mech-
anisms of action in causing different pathological conditions. For instance, studies have
shown that cadmium, a known carcinogen and a toxicant with a relatively long half-life of
>20 years [18], causes cancers (in lung, breast, kidney and other organs) via multiple mecha-
nisms, including inhibition of DNA damage repair, induction of oxidative stress, inhibition
of apoptosis, and aberrant gene expression [75–77]. However, it is not known based on
these earlier reports whether cadmium induces disruption of cell-cell anchoring junctions as
noted in the testis [39,78]. Even though cadmium has been banned in consumer products, it
remains widely used in industry, particularly in the production of nickel-cadmium (Ni-Cd)
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rechargeable batteries, solar cells, plastic stabilizers and pigments. While the exposure
of humans to PFOS and PFOA may not have a causal relationship between cancer [79]
and any immune-related health condition [80], the potential risk of human exposure to
PFOS/PFOA and neurotoxicity, developmental toxicity (e.g., inducing neonatal mortality)
and genetic aberration [81–83] have led to the global PFOA ban with exemptions of indus-
trial use. This is due to its thermal and chemical stability, stain resistance, and surfactant
nature, making it a key ingredient in fire-fighting foam, hydraulic fluid for aviation and
photolithography (https://cen.acs.org/environment/presistent-pollutants/Governments-
endorse-global-PFOA-ban/97/web/2019/05 (accessed on 7 December 2021).

3. FAK (Focal Adhesion Kinase) and Small GTPase Cdc42

Using different toxicant models, accumulating evidence has suggested that differ-
ent toxicants, including 2,5-hexanedione, carbendazim [16,20], PFOS [41,84,85] and cad-
mium [38,86,87], are targeting the actin and microtubule cytoskeletons in the testis. Some
of these toxicants, in particular PFOS and cadmium, have shown to exert their disruptive
effects through FAK (focal adhesion kinase) signaling (Figures 1 and 2), likely involving
small GTPase Cdc42 [88,89], consistent with studies in other epithelia [90,91] and also the
mTORC1/rpS6/Akt1/2 signaling complex [13,92].

3.1. Focal Adhesion Kinase (FAK)

p-FAK-Y397 and p-FAK-Y407 are the 2 phosphorylated/activated forms of FAK first
reported to be expressed in the testis of adult rats in 2003 [52] and 2010 [54], respectively
(Figure 1). We provide a critical review on each of these two FAK isoforms regarding their
role in regulating spermatogenesis, pertinent to our discussion herein.

3.1.1. p-FAK-Y397

In the rat testis, p-FAK-Y397 is predominantly expressed at the apical ES, at the interface
of Sertoli cells and step 8-19 spermatids, surrounding the head of haploid spermatids [52,54],
which persists until late stage VIII of the epithelial cycle, just prior to the release of sperms
at spermiation [53]. These findings thus suggest that p-FAK-Y397 is crucial to support
haploid spermatid adhesion in the seminiferous epithelium during spermiogenesis of the
epithelial cycle [17,93]. Indeed, studies in vivo following overexpression of p-FAK-Y397E,
the phosphomimetic (and constitutively active) mutant of p-FAK-Y397, in the testis of adult
rats was found to delay the release of sperm at spermiation [94]. Furthermore, step 19
spermatids were consistently detected in the seminiferous epithelium, embedded deep
inside the epithelium in stage VIII tubules near the basement membrane when spermiation
had occurred [94]. Step 19 spermatids were also remarkably noted inside the epithelium
even in stage IX tubules, coexisting with step 9 spermatids [94]. This is unusual since
these step 19 spermatids should have been differentiated into sperms and be released
into the tubule lumen at spermiation at stage VIII, as seen in control testes. This unusual
retention of step 19 spermatids that embedded deep inside the seminiferous epithelium in
late stage VIII-XI tubules suggest that there were defects in the cytoskeletons, since ES is
an actin-rich and MT-dependent anchoring junction. Indeed, detailed examination of the
seminiferous epithelium indicated that the actin cytoskeleton surrounding the apical ES,
in stage VIII tubules remained uncharacteristically intact [94], unlike control testes when
actin cytoskeletons should have undergone degeneration to facilitate the release of sperm. A
closer investigation showed that there was a persistent expression of Eps8 (an actin barbed
end-capping and bundling protein [95]), thereby maintaining the F-actin network at the site
to retain step 19 spermatids in the epithelium [94] when it should have been considerably
reduced to facilitate remodeling of the apical ES to support spermiation [17,96]. Furthermore,
both nectin 2 (an apical ES adhesion protein expressed by both Sertoli cell and spermatids)
and nectin 3 (an apical ES protein expressed only by spermatids) that utilized actin as
an attachment site [97,98] were also detected at the apical ES in late stage VIII due to the
persistent presence of the F-actin cytoskeletal network [94]. In brief, these findings illustrate
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that overexpression of p-FAK-Y397E impedes the timely remodeling of the actin cytoskeleton
to facilitate the release of sperm at spermiation since the spatio-temporal expression of p-
FAK-Y397 at the apical ES is necessary to support haploid spermatid maturation. Yet its
persistent presence in late stage VIII tubules (through its overexpression) causes unwanted
retention of mature elongated spermatids, leading to defects in spermatogenesis.

3.1.2. p-FAK-Y407

On the other hand, p-FAK-Y407 is also robustly expressed in the rat testis at the apical ES,
but unlike p-FAK-Y397, p-FAK-Y407 is also highly expressed at the basal ES/BTB at the Sertoli
cell-cell interface, near the basement membrane [54]. Using different phosphomimetic mutants,
including both constitutively active and inactive mutants of p-FAK-Y397 and pFAK-Y407, it
was shown that p-FAK-Y397 is primarily used to support apical ES, whereas p-FAK-Y407
supports basal ES/BTB function. These two FAK isoforms regulate the corresponding ES
function through their effects on actin dynamics, in particular actin polymerization, which
in turn modulates actin cytoskeletal organization across the seminiferous epithelium [54].
Studies have shown that primary Sertoli cells cultured in vitro are capable of establishing a
functional TJ permeability barrier that mimics the BTB in vivo [33]. However, treatment of
Sertoli cells with PFOS (20 µM) in vitro was found to perturb the Sertoli cell TJ permeability
barrier function concomitant with extensive disruption of actin filaments across the Sertoli cell
cytosol and a down-regulation of p-FAK-Y407 expression [41]. Interestingly, overexpression of
p-FAK-Y407E, the phosphomimetic and constitutively active mutant of p-FAK-Y407, in Sertoli
cells cultured in vitro was capable of rescuing Sertoli cells from the PFOS-mediated TJ barrier
disruption [41]. More important, overexpression of p-FAK-Y407E was capable of rescuing
PFOS-induced F-actin disorganization across the Sertoli cell cytosol [41]. This finding has thus
unequivocally demonstrated that FAK exerts its effects to support spermatogenesis through
cytoskeletal organization. In fact, the use of FAK-specific miR-135b (microRNA-135b, specific
to knockdown FAK [99,100]) was found to worsen the PFOS-induced Sertoli cell TJ barrier
disruption and also the PFOS-mediated disruptive organization of actin cytoskeleton across
the Sertoli cell cytosol [41]. The role of p-FAK-Y397 and p-FAK-Y407 that supports apical and
basal ES function is summarized and shown in Figure 3.

3.1.3. Potential Therapeutic Use of p-FAK-Y407E for Management of Toxicant-Induced
Male Infertility

An important breakthrough in the study of FAK and its likely impact on male repro-
ductive function in humans came unexpectedly from a study using a human p-FAK-Y407E
phosphomimetic (and constitutively active) mutant and primary human Sertoli cells to
examine its role in Sertoli cell function in 2017 [85]. Earlier studies have shown that over-
expression of rat p-FAK-Y407E mutant in primary cultures of rat Sertoli cells can mitigate
the PFOS-induced Sertoli cell injury [41]. For instance, treatment of Sertoli epithelium
with an established functional TJ barrier with PFOS (15 µM) induces a transient Sertoli cell
TJ permeability barrier disruption, and silencing of FAK by RNAi using a specific FAK
miRNA (miR-135b) also worsens the PFOS-mediated Sertoli cell TJ barrier disruption [41].
These observations have been reproduced in studies using human Sertoli cells and a human
p-FAK-Y407E mutant [85]. To further expand the earlier findings in rat Sertoli cells, it has
been shown that overexpression of human p-FAK-Y407E in human Sertoli cells with an
established functional TJ barrier is capable of blocking PFOS (20 µM)-induced F-actin and mi-
crotubule cytoskeletal disorganization [85]. These findings thus illustrate that p-FAK-Y407E
is not only capable of promoting F-actin organization but also microtubule cytoskeletal orga-
nization. It is likely that p-FAK-Y407E exerts its protective effects by promoting the proper
distribution of the actin regulatory proteins, namely Eps8 and Arp3, at the human Sertoli cell
cortical zone [101]. In this context, it is noted that Eps8 is an actin barbed-end capping and
bundling protein [102,103], whereas Arp3, which together Arp2 creates the Arp2/3 complex,
is crucial to support branched actin polymerization [103,104]. As such, the combined effects
of Eps8 and the Arp2/3 complex are necessary to provide plasticity to the Sertoli cell-cell
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interacting site (e.g., basal ES) that constitutes the BTB to facilitate continuous remodeling
to support the transport of developing preleptotene spermatocytes across the BTB [103].
The actions of Eps8 and the Arp2/3 complex also confer plasticity to the Sertoli-spermatid
interacting site (e.g., apical ES) to support the transport of haploid spermatids across the
seminiferous epithelium in the adluminal (apical) compartment [103]. Furthermore, over-
expression of the human p-FAK-Y407E constitutively active mutant also promotes proper
re-distribution of microtubules across the human Sertoli cell cytosol which are disrupted
by PFOS, mitigating the disruptive effects of PFOS on Sertoli cell microtubule cytoskeletal
organization [85]. This microtubule effect is likely mediated through a re-distribution of the
microtubule plus (+) end targeting protein (+TIP) EB1 (end binding protein 1) [85]. Earlier
studies have shown that EB1 promotes microtubule stability, preventing microtubules from
undergoing shrinkage that leads to microtubule catastrophe [105,106].

3.1.4. Additional Remarks—Possible Involvement of Akt1/2 Activation

Studies have shown that FAK is typically considered an upstream signaling protein of
Akt, most notably during pathogenesis, such as cancer metastasis in colon and prostate can-
cers [107–109]. It was also shown that treatment of primary rat Sertoli cells by PFOS (20 or
50 µM) also induced a considerable down-regulation of p-Akt1/2, most notably p-Akt1-T308,
p-Akt1-S473 and p-Akt2-S474 [84]. However, the use of SC79 (2-amino-6-chloro-α-cyano-3-
(ethoxycarbonyl)-4H-1-benzopyran-4-acetic acid ethyl ester, Mr 364.78) is capable of mitigating
the PFOS-induced Sertoli cell injury [84]. This observation is important since SC79 is a specific
p-Akt1/2 activator that is known to bind to the pleckstrin homology (PH) domain of Akt, mim-
icking the binding of PtdIns (3,4,5)P3 to activate Akt by inducing conformational change, which
in turn enhances phosphorylation at the p-Akt1-T308 and p-Akt1-S473 sites [110]. Furthermore,
the disruptive effects induced by PFOS on rat Sertoli cells [84] regarding disruption of the cy-
toskeletal organization of both the actin and microtubule cytoskeletons are similar to that noted
in human Sertoli cells [85]. The use of SC79 promotes the proper organization of these two
cytoskeletons by rescuing Sertoli cells from the PFOS-mediated injury [84]. Additionally, the
use of SC79 also rescues Sertoli cell injury induced by PFOS regarding disruptive changes in the
localization of TJ (e.g., CAR, ZO-1) and basal ES (N-cadherin, β-catenin) proteins, and also the
corresponding actin (actin bundling protein palladin, branched actin nucleation protein Arp3,
and p-FAK-Y407) and microtubule (e.g., EB1, detyrosinated α-tubulin) regulatory proteins (or
its more stabilized isoform) at the Sertoli cell-cell interface [84]. In brief, SC79 is capable of
restoring PFOS-induced Sertoli cell injury through its effects on both actin and microtubule
cytoskeletons, analogous to the use of p-FAK-Y407E for its overexpression in Sertoli cells. Taken
collectively, these studies have demonstrated unequivocally that both FAK and its downstream
signaling partner, p-Akt1/2, are two involving non-receptor protein kinases in the signaling
cascade mediated by PFOS to perturb cell-cell interactions between testicular cells during male
reproductive dysfunction. These findings are summarized and shown in Figure 2. Additionally,
these findings provide an important framework to take these studies to a translational path to
investigate the possibility of using this approach to manage male reproductive dysfunction,
including infertility, in particular, if toxicants are involved in the etiology.

3.2. Small GTPase Cdc42

Studies have shown that Cdc42, a member of the Rho GTPase family, which together
with other family members, including RhoA, Rac1, Rac2, RhoH, RohD/F, RhoU/V affect
cell movement, endocytosis, cell morphology and cell cycle progression through their
effects on actin cytoskeletal organization [111–115]. More important, Cdc42, together with
Rac1 and RhoA, affect the dynamics of filopodia, lamellipodia and stress fibers, namely their
assembly (formation), disassembly and maintenance [116–120]. The concerted efforts of
these GTPases thus confer cell migration in fibroblasts, macrophages, and other locomotive
cells under physiological conditions, including cancer cells during tumorigenesis, making
GTPases one of the prime targets of cancer treatment. On the other hand, Cdc42 is an
emerging downstream modulator of FAK by regulating the cytoskeletal organization of
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actin and possibly microtubules [121–123]. In fact, Cdc42 is likely working in concert with
FAK to support cytoskeletal organization in Sertoli cells in response to the epithelial cycle
of spermatogenesis based on studies using the NC1-peptide model [88] and the TGF-ß3
model [89]. Studies have shown that NC1 peptide is released from the structural collagen α3
(IV) chains in the basement membrane, which in turn, serves as a biologically active peptide
to induce Sertoli cell BTB remodeling, thereby facilitating the transport of preleptotene
spermatocytes across the BTB at stage VIII-early stage IX of the epithelial cycle [124]. In brief,
the NC1-peptide that induces Sertoli cell BTB remodeling, such as by perturbing the Sertoli
cell-TJ permeability barrier function following its overexpression in Sertoli cells, is mediated
through changes in the organization of both actin and microtubule cytoskeletons [124,125].
Additionally, these effects on cytoskeletal organization are mediated through activation of
Cdc42, but not RhoA [88]. Overexpression of a Cdc42-T17N dominant negative mutant in
Sertoli cells cultured in vitro, via a single mutation of amino acid residue 17 from Thr (T) to
Asn (N) by site-directed mutagenesis, making this mutant constitutively inactive [89], is
able to abolish the disruptive effects of NC1-peptide on Sertoli cell-TJ barrier function [88].
More importantly, a recent report has shown that NC1-peptide-induced BTB disruption
and defects in spermatogenesis in the testis in vivo following its overexpression in the
testis are also associated with a considerable down-regulation of p-FAK-Y397 and p-FAK-
Y407 [126]. Taken collectively, these findings have thus demonstrated unequivocally that
the NC1-peptide-induced effects on spermatogenesis involves Cdc42 activation and p-FAK-
Y407 down-regulation, suggesting that FAK and Cdc42 are two signaling proteins that
work in concert to modulate testis function. Other recent reports have also shown that
Cdc42 is essential to support spermatogenesis. First, Cdc42 expressed by Sertoli cells is
required for male germline niche development in mice [127]. It was shown that Sertoli
cell-specific Cdc42-deficient mice failed to sustain germline niche development, likely
due to a down-regulation of GDNF [a critical factor known to support spermatogonial
stem cell (SSC) maintenance], DMRT1 and SOX9 (both genes are necessary to support
Sertoli cell development) and a concomitant reduced MAPK1/3 expression in the Sertoli
cell nucleus [127]. Collectively, these data suggest that Sertoli cell Cdc42 is essential
for germline niche function via MAPK1/3-dependent GDNF expression [127]. Second,
conditional deletion of Cdc42 in Sertoli cells also led to a loss of Sertoli cell polarity,
an increase in apoptosis, and round spermatids, which failed to develop to elongated
spermatids through spermiogenesis due to Sertoli cell defects [128], illustrating the pivotal
role of Cdc42 in supporting spermatogenesis. This latter finding is important since studies
have shown that proteins that support cell polarity, such as the Par-, the Crumbs-, and the
Scribble-based polarity complexes all exert their effects through cytoskeletons [129,130].
Collectively, these findings thus support the notion that Cdc42 likely mediates its effects
through changes in cytoskeletal organization, including its role at the germline niche.

4. Concluding Remarks and Future Perspectives

As discussed above, it is increasingly clear that cell-cell interactions between testicular
cells in the testis can induce activation of several signaling proteins, most notably FAK and
its downstream signaling partner Ak1/2 (Figure 2), to support spermatogenesis based on
studies of toxicant and pharmaceutical models (Table 1). Importantly, some of these studies
performed earlier in rodents have been reproduced and expanded in primary cultures of
human Sertoli cells, making these findings more clinically relevant. The immediate step
in the near future is to move these studies to a translation path so that these findings can
be carefully evaluated using a therapeutic approach. Furthermore, research should also
be expanded to develop a new approach to target these reagents, either the plasmid DNA
(e.g., pcDNA 3.1 (+)/FAK-Y407E mutant) used for transfection or the activator of p-Akt1/2,
directly to the testis in order to reduce any unwanted side effects, if any, in unintended
organs/tissues. The use of nanoparticle-based technology should be considered in future
investigations, such as the use of an FSH-based approach since Sertoli cells exclusively
express FSH receptors in the body of human males.
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In this context, it is also noteworthy to mention the possible effects of pollutants (e.g.,
heavy metals including chromium, copper) that induce molecular alterations of sperm nu-
clear basic proteins (SNBP) and DNA damage through alterations in protamines/histones
ratio and oxidative DNA damage, as well as changes in sperm protamine-like
proteins [131,132], which in turn induce transgenerational inherited defects in humans.
Besides these studies in humans, sub-toxic doses of cadmium (at 5 µM) were also found
to induce alterations of sperm protamine-like proteins in mussels, which are the major
basic nuclear component of sperm chromatin, affecting chromatin organization of sper-
matozoa [133], similar to studies in humans. Another heavy metal, mercury (Hg), at 1, 10
and 100 pM as HgCl2, was also found to induce alterations of protamine-like proteins that
impeded sperm chromatin organization in mussels, causing DNA damage [134,135]. Fur-
thermore, oxidative stress, such as that mediated by exposure of humans to environmental
toxicants/pollutants, in particular heavy metals, are also known to impede spermatoge-
nesis and human sperm metabolism and apoptosis [136,137]. At present, it is not known
if the toxicant-induced epigenetic and transgenerational reprogramming of reproductive
function, or oxidative mediated DNA damages, involve disruptive changes in signaling
cascade. This possibility must be carefully evaluated in future studies.

In summary, this review provides a timely evaluation of how environmental toxicants
may impede male infertility through changes in signaling cascades/pathways, providing a
fresh view on the worldwide declining male fertility in countries across the globe [138–140].

Table 1. Effects of CdCl2 and PFOS on testis and Sertoli cell function *.

Toxicant Species Tissue/Cell Doses/Route Observed Effects Reference

Cadmium
Chloride
(CdCl2)

Rat Testis 3 mg/kg b.w., i.p. Loss of occludin at the BTB in the epithelium [32]

Rat Testis 3 mg/kg b.w., i.p.
Changes in spatial distribution of MAPs
(MAP1a and CAMSAP2) in the
seminiferous epithelium

[87]

Rat Testis 3 mg/kg b.w., i.p.

CdCl2-induced BTB disruption, an increase in
TGF-β2 and TGF-β3 (but not TGF-β1) and
p-p38 -MAPK, a down-regulation of occludin
and ZO-1

[78]

Rat Testis 3 mg/kg b.w., i.p.
Down-regulates the expression of efflux (e.g.,
P-glycoprotein, Mrp1, Abcg1) and influx (e.g.,
Oatp3, Slc15a1, Scl39a8) drug transporters

[141]

Mouse Testis 2 mg/kg b.w., i.p. Induces germ cell apoptosis in testes [142]

Rat Testis 2 mg/kg b.w., i.p.

Reduces body weight and testes weight,
increases malondialdehyde content, reduces
superoxide dismutase, glutathione peroxidase,
catalase, and glutathione contents

[143]

Rat Testis 3 mg/kg b.w., i.p.
Induces epithelial damage (e.g., edema),
disorganization of collagen fibers,
microvascular damage

[144]

Rat Sertoli Cell 3 µM Perturbs TJ barrier, induces occludin
endocytosis in parallel with FAK and ZO-1 [38]

Rat Sertoli Cell 5–10 µM Perturbs TJ assembly dose-dependently
without any apparent cytotoxicity [40]

Rat Sertoli Cell 0.1–5 µM Perturbs Sertoli cell TJ barrier
dose dependently [40]

Human Human
Sertoli cell 0.5–20 µM Induces truncation actin filaments via

disruptive distribution of Eps8 and Arp3 [86]
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Table 1. Cont.

Toxicant Species Tissue/Cell Doses/Route Observed Effects Reference

Perfluoro-
octanesulfonate
(PFOS)

Rat Sertoli Cell 10–20 µM

Induces Sertoli cell TJ barrier disruption
mediated by a reduced expression of
p-FAK-Tyr407 and Cx43, F-actin
disorganization and impaired GJ intercellular
communication, mislocalization of proteins at
the cell-cell interface

[41]

Rat Sertoli Cell 10, 20, 50 µM

Induces Sertoli cell injury by perturbing TJ
barrier, disorganization of actin cytoskeleton
due to mis-localization of Arp3 and palladin,
mis-distribution of BTB-associated proteins,
downregulation of p-Akt1-S473
and p-Akt2-S474.

[84]

Rat Sertoli Cell 20–40 µM

Induces Sertoli cell injury through truncation
of actin filaments and MTs, which can be
rescued by overexpressing
p-FAK-Y407E mutant

[84]

Rat Sertoli Cell 20 µM

Perturbs Sertoli cell TJ barrier, causing
disruption of actin filaments in cell cytosol,
perturbing the localization of cell junction
proteins, reducing expression of GJ
protein Cx43

[145]

Rat
Sertoli
Cell/Gonocyte
Cocultures

0, 1, 10, 50, and
100 µM

Reduces cell viability, induces reactive oxygen
species (ROS) production dose-dependently
and disrupts organization of vimentin and
actin filaments

[146]

Mouse Testis
Sertoli Cell

0.25–50
mg/kg/day (oral
gavage)
10–30 µM

Reduces sperm count, induces Sertoli cell
injury via an increase in vacuolization in
Sertoli cells in seminiferous epithelium,
disruptive changes in BTB ultrastructure
leading to disassembly based on studies
in vivo;
perturbs Sertoli TJ barrier function, induces
mis-distribution of BTB-associated proteins at
the cell-cell interface, and increases expression
of activated p38-MAPK and Erk1/2

[37]

* This table is not intended to be exhaustive. It contains several selected recent reports to illustrate intercellular
junctions are the target of environmental toxicants using cadmium and PFOS as study models. References from
many investigators could not be cited due to space limitations.
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