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Abstract

:

Alterations of methionine cycle in steatohepatitis, cirrhosis, and hepatocellular carcinoma induce MAT1A decrease and MAT2A increase expressions with the consequent decrease of S-adenosyl-L-methionine (SAM). This causes non-alcoholic fatty liver disease (NAFLD). SAM administration antagonizes pathological conditions, including galactosamine, acetaminophen, and ethanol intoxications, characterized by decreased intracellular SAM. Positive therapeutic effects of SAM/vitamin E or SAM/ursodeoxycholic acid in animal models with NAFLD and intrahepatic cholestasis were not confirmed in humans. In in vitro experiments, SAM and betaine potentiate PegIFN-alpha-2a/2b plus ribavirin antiviral effects. SAM plus betaine improves early viral kinetics and increases interferon-stimulated gene expression in patients with viral hepatitis non-responders to pegIFNα/ribavirin. SAM prevents hepatic cirrhosis, induced by CCl4, inhibits experimental tumors growth and is proapoptotic for hepatocellular carcinoma and MCF-7 breast cancer cells. SAM plus Decitabine arrest cancer growth and potentiate doxorubicin effects on breast, head, and neck cancers. Furthermore, SAM enhances the antitumor effect of gemcitabine against pancreatic cancer cells, inhibits growth of human prostate cancer PC-3, colorectal cancer, and osteosarcoma LM-7 and MG-63 cell lines; increases genomic stability of SW480 cells. SAM reduces colorectal cancer progression and inhibits the proliferation of preneoplastic rat liver cells in vivo. The discrepancy between positive results of SAM treatment of experimental tumors and modest effects against human disease may depend on more advanced human disease stage at moment of diagnosis.
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1. Introduction


In 1951, Cantoni discovered the enzymatic formation of SAM, by the nucleophilic transfer of the adenosyl moiety of adenosinetriphosphate (ATP) to the sulphur atom of L-methionine [1] (Figure 1), which has been thereafter studied extensively in liver cancer [2,3].



SAM is the first product of the “methionine cycle” and is implicated in the synthesis of polyamines and in the transsulfuration pathway leading to homocysteine and reduced glutathione (GSH) biosynthesis (Figure 2). SAM is synthesized from methionine and ATP in a reaction catalyzed by methionine adenosyltransferases (MATs) [4]. These enzymes are encoded by two genes, MAT1A and MAT2A. MAT1A encodes the α1 subunit of the tetramer MAT(α1)4 (MATI) and of the dimer MAT(α1)2 (MATIII). MAT2A encodes the α2-subunit of the MATII isoform, widely distributed. MAT1A is expressed in adult liver while MAT2A is prevalently expressed in fetal liver [5]. MATI and MATIII isozymes have intermediate (23 μM–1 mM) and high (215 μM–7 mM) Km for methionine, respectively. Thus, the physiological liver SAM level (60 μM) has low inhibitory effect on MATI and stimulates MATIII activity [4,5]. MATII has the lowest Km for methionine (4–10 pM) and is inhibited by the reaction product [5]. A third gene, MAT2B, encoding the subunit (β), regulates MATII by lowering its Km for methionine and Ki for SAM [6]. Therefore, the association of the β-subunit with the α2-subunit renders MATII more liable to be inhibited by SAM [6].



SAM may be decarboxylated by a specific decarboxylase. Decarboxylated SAM (dSAM) (Figure 2) is used for the synthesis of polyamines and 5′-methylthioadenosine (MTA). The latter, after transformation to methylthioribose by a specific nucleosidase, may be further used in the “salvage pathway” of methionine re-synthesis [7]. Furthermore, SAM plays an essential role as methyl-donor for the methylation reactions during which it is transformed to S-adenosylhomocysteine (SAH). SAH, a strong inhibitor of transmethylations, is transformed to homocysteine (HCY) by a specific hydroxylase (Figure 2). HCY may be transformed by a synthetase to cystathionine, a precursor of GSH, or is methylated for the resynthesis of methionine (Figure 2). This resynthesis, catalyzed by betaine homocysteine methyltransferase, may be coupled to the Bremer pathway [8,9] for the synthesis of phosphatidylcholine from phosphatidylethanolamine by phosphatidylethanolamine methyltransferase (PEMT). Alternatively, methionine resynthesis may be coupled to the folate cycle that provides methyl groups [10,11] during the synthesis of 5-tetrahydrofolate (THF) from 5-methyltetrahydrofolate (MTHF), catalyzed by a synthetase. THF is transformed to 10-methylenetetrahydrofolate (MeTHF), a precursor of MTHF, by methyltetrahydrofolate reductase, in a reaction coupled with the resynthesis of glycine from sarcosine (Figure 2). The methionine cycle plays a fundamental role in the cellular metabolism and the alteration of its functionality causes important disorders linked to modification of DNA methylation and gene expression, redox imbalance and metabolic reprogramming in liver and brain [12,13,14,15].




2. The Methionine Adenosyltransferase Switch


Liver cirrhosis and HCC of rodents and humans are characterized by a decrease of MAT1A expression and a rise in MAT2A expression with a consequent decrease of MAT1A:MAT2A ratio (the so-called MAT1A/MAT2A switch) [16]. MATI/III downregulation, consequent to the oxidation of cysteine residue in the ATP binding site, and GSH fall occur in cirrhotic liver [17,18]. SAM administration reconstitutes the GSH pool, protects MATI/III [17,18], and inhibits liver fibrosis in rats and humans [2,17,18,19,20,21]. Due to its inhibition by the reaction product, MATII upregulation does not compensate for MATI/III fall. Consequently, the SAM decrease in rapidly growing cancer cells depends on the diminution of MATI/III:MATII ratio, the increase in SAM decarboxylation for polyamine synthesis [22] and the inhibition of BHMT activity by SAM [12,14,23]. On the whole, these findings indicate that the MAT1A/MAT2A switch and the decrease in SAM level are implicated in hepatocarcinogenesis. Therefore, chronically SAM deficient MAT1A-KO mice, even in the presence of MAT2A induction, undergo hepatomegaly without histologic abnormalities at three months of age, steatosis of 25–50% of hepatocytes and infiltration of mononuclear cell in periportal areas, at eight months, and HCC at 18 months of age [24].




3. Regulatory Mechanisms of the Methionine Cycle


The methionine and folate cycles exert various regulatory functions (Figure 3). SAM “long range interactions” inhibit MATII and activate MATI/III, thus impeding the MATI/III/MATII switch [18].



Furthermore, SAM inhibits BHMT [11,12,13] and MTHFR [14,15] and then the methionine re-synthesis and the purine and deoxythymidylate synthesis, with a consequent rise of homocysteine and GSH synthesis. The inhibition of MeTHFR by SAM causes the decrease of free MTHF and is followed by the dissociation of GNMT-MTHF complex [13,17]. In addition, GNMT regulates the SAM/SAH ratio and SAM-dependent methyl transfer reactions. The Km value of GNMT for SAM is relatively high, and GNMT is poorly inhibited by SAH because its Ki value for SAH (35–80 μM) is higher than that for other SAM-dependent methyltransferases that are inhibited by SAH [8,13]. Thus, GNMT is active at SAM and SAH physiological levels (0.1–0.2 μmol/g and 0.02–0.06 μmol/g of the liver, respectively). Its activity may influence SAM/SAH ratio and the activity of other methyltransferases. Besides, GNMT protein binds folate and is inhibited by MTHF [8,9,10,11,16]. The rise of free GNMT avoids excessive SAM increase. On the contrary, due to the decrease in SAM concentration, MeTHFR inhibition is released, MTHF availability rises, and the free GNMT falls. Therefore, by increasing the cellular folate level and thus the MTHFR-dependent SAH remethylation, GNMT acts as a “salvage pathway” [16,25,26,27,28,29,30].




4. The Deregulation of Methionine Metabolism in Preneoplastic and Neoplastic Liver


The decrease of MAT1A expression in alcoholic hepatitis, liver cirrhosis and HCC [16,31] on the whole depends, transcriptionally, on the methylation of CpG of the MAT1A promoter and the deacetylation of histone H4 and, post-transcriptionally, on the interaction of MAT1A mRNA with the AUF1 protein that increases its decay [32]. In contrast, the upregulation of MAT2A gene in HCC depends on the promoter hypomethylation and histone H4 acetylation, and the increased stability of MAT2A mRNA due to its interaction with HuR (human antigen R) protein [32,33,34]. Furthermore, different activating factors, including Sp1, c-Myb (avian myeloblastosis viral oncogene homolog), nuclear factor kappa B (NF-kB), and AP-1 concur to MAT2A transcriptional upregulation in HCC [35,36].



MATα2 regulates the expression of BCL-2 in the RKO human colon cancer cell line and in the HepG2 liver cancer cell line [37]. In both cell lines MATα2 activates BCL-2 gene transcription by binding to its promoter. It also directly interacts with BCL-2 protein enhancing its stability. These MATα2 effects involve the ubiquitin-conjugating enzyme 9 required for the sumoylation of MATα2 at K340, K372, and K394, necessary for MATα2 stability [38]. MAT2B encodes the MAT2β regulatory subunit that modulates the activity of—encoded isoenzyme MAT2A. The mechanisms regulating of MAT2β expression are poorly known. MAT2β promoter is activated by Sp1 [38]. In HCC, two dominant splicing variants of MAT2B, V1, and V2 are upregulated. TNFα (tumor necrosis factor α) and leptin activate the MAT2B V1 promoter while SAM inhibits it by mechanisms involving ERK and AKT signaling [39]. MATβ2 protein regulates various other proteins [39,40,41], including GIT1 that is activated by MATβ2 [42]. GIT1 activates the RAS/RAF/MEK1/2/ERK1/2 signaling, thus inducing liver and colon cancer cells proliferation [43].



HuR is a key regulator of cellular mRNAs containing adenylate/uridylate–rich elements (AREs). SAM regulates HGF (hepatocyte growth factor)-mediated hepatocyte proliferation through a mechanism implicating the activation of LKB1/AMPK/eNOS cascade [44]. It also regulates the cytoplasmic HuR function in cancer cells via AMP-activated kinase [45]. mRNA-binding proteins are involved in the post-transcriptional deregulation of gene expression. Thus, AUF1 increases mRNA decay while HuR selectively binds to AU-rich elements increasing mRNA stability [32,46,47,48,49]. Interestingly, Mat1A decrease, Mat1A:Mat2A switch, and low SAM levels are associated with CpG hypermethylation and histone H4 deacetylation of Mat1A promoter, and prevalent CpG hypomethylation and histone H4 acetylation of Mat2A promoter. In the HCC of genetically resistant BN rats, very low changes in the Mat1A:Mat2A ratio, CpG methylation, and histone H4 acetylation occur. The levels of AUF1 protein, which destabilizes MAT1A mRNA, Mat1A-AUF1 ribonucleoprotein, HuR protein, which stabilizes MAT2A mRNA, and the Mat2A-HuR ribonucleoprotein increase in HCC of genetically susceptible F344 rats and in human HCC with poorer prognosis (HCCP), and undergo low/no increase in BN HCC and human HCC with better prognosis (HCCB) [50]. In human HCC, Mat1A:MAT2A expression and MATI/III:MATII activity ratios are negatively correlated with cell proliferation and genomic instability, and positively correlated with apoptosis and DNA methylation. Forced MAT1A overexpression in the liver carcinoma cell lines HepG2 and HuH7 results in a rise in SAM level, inhibits cell proliferation and induces apoptosis [50]. These changes are associated with the down-regulation of Cyclin D1, E2F1, IKK, NF-kB, and the antiapoptotic BCL2 and XIAP genes, and with the up-regulation of BAX and BAK proapoptotic genes. Moreover, SAM treatment of rats, during the development of preneoplastic foci, impedes NF-kB activation [51] and stimulates the expression of the oncosuppressor gene PP2A (protein phosphatase 2) and other oncosuppressors that inhibit the progression of preneoplastic nodules to HCC. Accordingly, PP2A is underexpressed in human and rat HCCs with low SAM content, high pAKT and pERK expression and proliferation rate [18,51,52,53].



Interestingly, in a SAM-deficient cell line, isolated from an from an HCC of MAT1A-KO mouse LKB1 expression is required for cell survival mouse, LKB1 expression is required for cell survival [54]. LKB1 regulates the AMPK and mTORC2 and controls the apoptotic response through the phosphorylation and retention of p53 in the cytoplasm and the regulation of HAUSP and HuR nucleocytoplasmic shuttling [54].



Recent observations indicate the existence of relationships between some miRNAs and the expression of MATs. The individual knockdown of miR-664, miR-485-3p, and miR-495 in Hep3B and HepG2 cells induces MAT1A expression. Hep3B cells tumorigenesis in nude mice is decreased by the stable overexpression of these miRNAs and increased by their knockdown [55,56], suggesting that their upregulation contributes to hepatocarcinogenesis by lowering MAT1A expression. These observations indicate that both transcriptional and post-transcriptional mechanisms contribute to MAT1A/MAT2A switch and SAM decrease during hepatocarcinogenesis, and suggest that MAT1A/MAT2A switch and SAM reduction may have a prognostic value for hepatocarcinogenesis. Recent research indeed showed that miR-21-3p lessens MAT2A and MAT2B expression in HepG2 cells by targeting their 3′-primer untranslated regions (3′-UTRs) and inhibits cell growth [56]. Furthermore, miR-203 expression is inversely correlated with MAT2A and MAT2B expression and the expression of markers of HCC proliferation and aggressiveness [57]. MiR-203 expression is genetically regulated and contributes to patients’ outcomes [57] and MiR-203 transfection in liver cancer cells targets the 3′-UTR of MAT2A and MAT2B genes and strongly inhibits their expression. These findings suggest that miR-203 expression could predict HCC prognosis and may function as a biomarker for patient stratification and drug selection.




5. SAM Inhibitory Effects


Different pathologic conditions leading to a decrease of the SAM cellular content are antagonized by the administration of exogenous SAM. Thus, SAM antagonizes rat liver damage induced by galactosamine [58] or acetaminophen [59] prevents the steatosis induced by ethanol in rats and mice [18,19,20,60,61]. These effects largely depend on the capacity of SAM to preserve an adequate GSH content and the transport of GSH into mitochondria [62,63]. Indeed, the treatment with SAM of rats, subjected to the intraperitoneal injection of CCl4, causes a decrease of the incidence of hepatic cirrhosis and of the liver SAM/SAH ratio and induces an increase of serum homocysteine thus preventing the decrease of liver folates and GSH [63,64]. SAM inhibits collagen synthesis by human fibroblasts in vitro [65], protects against the alcohol induced acute hepatotoxicity in rats, mice, and baboons and decreases the synthesis of collagen by cultured fibroblasts [65,66,67,68,69,70]. In ethanol intoxicated rats, the decreased synthesis of phosphatidylcholine by the phosphatidylethanolamine methyltransferase (Bremer pathway) [71] is contrasted by SAM [8,9]. Furthermore, the treatment with SAM of the hepatocytes isolated from fatty liver induced by a choline-deficient diet may activate the synthesis of phosphatidylcholine by the CDP-choline pathway (Kennedy pathway) [72]. It was indeed demonstrated that a high cellular SAM pool allows the substitution of the transmethylation by the Kennedy pathway to supply the phosphatidylcholine moiety of lipoproteins [73].



The induction of liver cancer in rats fed adequate diet causes a fall in liver SAM content and SAM/SAH ratio that persists in dysplastic nodules (DN) and HCC even after the interruption of carcinogen administration [2,3,23,74]. A decrease of SAM/SAH ratio was also found in human HCC [75]. The administration of SAM to carcinogen-treated rats prevents hepatocarcinogenesis [76,77,78,79,80] and SAM intravenous infusion inhibits the orthotropic HCC development in liver of rats injected with H4IIE human HCC cells [80]. However, the infusion of SAM for 24 days to rats after the development of tumors is without effect, probably because SAM accumulation is prevented by the compensatory induction of GNMT [81]. The inhibition by SAM and MTA of colon carcinogenesis has also been observed and tentatively attributed to their therapeutic effect on the chronic inflammation that represents a major risk factor for this cancer [81]. In in vitro growing human colon cancer cells MAT2A is overexpressed, its inhibition by SAM and MTA blocks the growth [82]. SAM treatment of rats during the development of preneoplastic and neoplastic liver lesions inhibits the proliferation and induces apoptosis of preneoplastic cells [75,76,83,84]. Furthermore, an increase in SAM content, associated with the inhibition of proliferation, occurs in Huh7 liver tumor cells transfected with MAT1A [83].



Ornithine decarboxylase (ODC) is overexpressed in DNs and HCCs of carcinogen-treated F344 rats [21,84]. Early studies on HCC chemoprevention by SAM showed a decrease of ODC activity and polyamine synthesis in preneoplastic and neoplastic liver lesions [21,78]. MTA, an end-product of polyamine synthesis, inhibits SAM decarboxylase, thus limiting this synthesis. Moreover, MTA prevents lipid peroxidation and fibrogenesis induced by carbon tetrachloride [85]. It must be considered, however, that SAM treatment leads to the accumulation of only moderate amounts of MTA, probably because of MTA implication in the “salvage pathway” leading to methionine synthesis [86]. Interestingly, SAM and MTA treatments of CCl4-intoxicated rats were found to maintain a high GSH level [87]. This suggests that an antioxidative effect concurs to the HCC chemopreventive action of these compounds [88,89]. It must be considered, however, that SAM exerts an anticarcinogenic effect higher and independent of that of MTA [76].



Early studies on the influence of SAM on signal transduction pathways showed that SAM injection to carcinogen-treated rats, during the development of preneoplastic liver lesions, inhibits ODC activity [84] and c-myc, H-ras, and K-ras expression [83] (Figure 4).



This inhibition could depend on the MTA production during polyamine synthesis [2] and the protooncogenes inhibition could be attributed to the reversion of their hypomethylation. SAM also causes a decrease of ERK1/2 activity by inducing the ERK1/2 inhibitor DUSP1 [90,91] (Figure 4). In fast growing DNs and HCCs of F344 rats, genetically susceptible to hepatocarcinogenesis, and in human HCCs with poor prognosis (HCCP) ERK1/2 overexpression is associated with a low expression of DUSP1 [91]. ERK1/2 phosphorylates DUSP1 allowing its ubiquitination by the SKP2-CKS1 ubiquitin ligase followed by its proteasomal degradation [91] (Figure 4). ERK1/2 sustains the activity of SKP2-CKS1 via its target FOXM1, which mediates the ERK1/2 effects on cell cycle, cell survival, and angiogenesis [92]. In accordance with these findings, the livers of MAT1A-KO mice and cultured mouse and human hepatocytes have low levels of ERK1/2 mRNA and protein [90]. SAM inhibits the proteasomal degradation of DUSP1 and its administration to MAT1A-KO mice increases the expression and causes a decrease in the ERK1/2 activity [90]. The ERK activity was unrestricted during HCC progression by activating the ubiquitin-mediated proteolysis of its specific inhibitor DUSP1 [91]. Thus, DUSP1 may represent a valuable prognostic marker and ERK, CKS1, or SKP2 potential therapeutic targets for human HCC [92]. FOXM1 upregulation is associated with the acquisition of a susceptible phenotype in rats and influences human HCC development and prognosis [93]. FOXM1 expression is also sustained by the TNF-/HIF-1 axis [93,94]. The hypoxia may redu ce the SAM level of HCC cells by binding HIF-1 to the MAT2A promoter [95]. The activation of PP2A by SAM has other important consequences. PP2A inhibits LKB1/AMPK, AKT, and ERK [96,97]. Lkb1 induces the HuR nuclear/cytoplasmic translocation that stabilizes Cyclins mRNA thus inducing cell proliferation [98]. Furthermore, LKB1 induces the hyperphosphorylation and cytoplasmic retention of p53 allowing its interaction with the de-ubiquitinating enzyme, USP7, that blocks p53 inhibition by MDM2 [99]. Furthermore, cytosolic HuR stabilizes p53 and USP7 mRNAs [100]. SAM blocks LKB1/AMPK activation [100] (Figure 4). Notably, cytoplasmic staining of p53 and p-LKB1 (Ser428) occurs in NASH and HCC of MAT1A-KO mice and in liver biopsies of human HCC induced by ASH and NASH [54]. However, these observations contrast with the LKB1 loss found in different tumors, including HCC [44]. LKB1 is considered an oncosuppressor gene [101], and AMPK activated by LKB1 inhibits AKT signaling [102]. The downregulation of the AMPK is present in undifferentiated HCC [103].



The DNA damage induced by the reactive nitrogen species, produced via iNOS/eNOS during chronic hepatitis, may be involved in carcinogenesis [104]. SAM hepatoprotective effect may be also mediated by the modulation of NO production [29,105,106,107,108,109,110]. The variations of SAM levels may modify the mitogenic stimulus of HGF through the modulation of intracellular SAM levels. The mitogenic response to HGF is repressed by the inhibition of NO synthase-2 a process overwhelmed by the addition of an NO donor. This effect depends on the intracellular SAM levels. Accordingly, SAM inhibits HGF-induced cyclin D1 and D2 expression, activator protein 1 induction, and hepatocyte proliferation. Thus, NO may switch hepatocytes into a growth factor-responsive state through the down-regulation of SAM levels. This effect depends on the intracellular SAM levels [110]. The rise of NO production in hepatocytes after PH or treatment with growth factors inhibits MATI/III by S-nitrosylation of cysteine 121 and, consequently, reduces SAM cellular levels. This preserves HGF-induced hepatocyte proliferation from the inhibitory action of SAM [110].



Furthermore, convincing evidence indicates that MTA may influence hepatocarcinogenesis independently of its conversion to SAM. Oral MTA administration to Mdr2(-/-) mice for three weeks reduces liver inflammation and fibrosis [111]. It was found that MTA may have multiple molecular and cellular targets including the inhibition of inflammatory and profibrogenic cytokines, and the attenuation of cultured myofibroblast activation and proliferation. Downregulation of JunD and cyclin D1 expression in myofibroblasts may be important regarding the mechanism of action of MTA. This compound could be a good candidate to be tested for the treatment of (biliary) liver fibrosis.



The mitogenic response to HGF (hepatocyte growth factor) is reduced when inducible NO synthase is inhibited, a process overwhelmed by the addition of a NO. donor. This effect depends on the methionine concentration in the culture medium as well as on the cellular SAM level. NO modulates inducible nitric oxide synthase gene expression [112]. Further, MTA administration to murine macrophage RAW 264.7 cells, and isolated rat hepatocytes treated with pro-inflammatory cytokines completely prevented LPS-induced lethality. This was associated to the suppression of circulating (TNF-α), inducible NO synthase (iNOS) expression, and the stimulation of IL-10 synthesis. These responses to MTA were also found in LPS-treated RAW 264.7 cells. MTA prevented the transcriptional activation of iNOS by pro-inflammatory cytokines in isolated hepatocytes, and the induction of cyclooxygenase 2 (COX2) in RAW 264.7 cells. In these cells MTA inhibited the activation of MASPK (p38 mitogen-activated protein kinase), c-jun phosphorylation, degradation of IkB-α (inhibitor kappa B-α) and NFKB (nuclear factor kappaB) activation. These effects were independent of the metabolic conversion of MTA into SAM [112].



The interaction of MTA with the cAMP signaling pathway, is involved in its anti-inflammatory effect. The methylation of RAF proteins by PRMT5 (protein arginine methyltransferase 5) leads to a decrease of ERK1/2 phosphorylation [113]. The PRMT5-dependent methylation enhances the degradation of active CRAF and BRAF and deceases their activity. The inhibition of PRMT5 or the expression of RAF mutants (that are not methylated) affects the amplitude and duration of ERK phosphorylation in response to growth factors and redirects from the proliferation to differentiation the response of PC12 cells to EGF.



SAM Metabolism and Epigenetic Regulation


Epigenetic events, involved in changes in gene expression, are important for tumor progression, and variation in genes involved in epigenetic mechanisms could be important in cancer susceptibility. A large case-control study identified 63 single nucleotide polymorphisms (SNPs) that were genotyped in 75 human cancer cell lines from different tumor types to assess the existence of an association between them and six epigenetic measures. No statistically significant association was found. However, a trend was observed: homozygotes for the rare alleles of the EHMT1, EHMT2, and PRDM2 had a mean value for both trimethylation of K9 and K27 of histone H3 remarkably different to the homozygotes for the common alleles [114]. These preliminary observations suggest the possible existence of a functional consequence of harboring these genetic variants in histone methyltransferases. Tagging single-nucleotide polymorphisms in antioxidant defense enzymes and susceptibility to breast cancer.



The hypermethylation status of the p16INK4a (p16) gene promoter was analyzed in normal-appearing mucosa of patients with colorectal cancer. The hypermethylation of p16 was associated with reduced survival. Germ line polymorphisms in methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR) and methionine synthase reductase (MTRR) were analyzed. No differences in cancer-specific or disease-free survival of stage I-III patients according to polymorphic variants and in cancer-specific or disease-free survival were detected in patients sub-grouped according to the MTHFR or MTR genotype and dichotomized by p16 hypermethylation status in mucosa. Patients with the MTRR 66 AA/AG genotypes had a worse survival when the mucosa was positive for p16 hypermethylation. In contrast, there was no difference in survival among patients with the MTRR 66 GG genotype stratified by p16 hypermethylation status. These results indicate a relationship between genetic germ-line variants of the MTRR gene and p16 hypermethylation in mucosa, which may affect the clinical outcome of patients with colorectal cancer [115].





6. SAM and Human Disease


6.1. Alcoholic Liver Disease


The alcoholic liver disease (ALD) is the prevalent chronic liver disease worldwide that may progress from alcoholic fatty liver (AFL) to alcoholic steatohepatitis (ASH). Chronic ASH may lead to fibrosis and cirrhosis and, in some patients, to HCC. Furthermore, severe ASH can lead, in a subset of individuals, to alcoholic hepatitis with liver failure and high mortality. The variability of ALD phenotype probably depends on genetic, epigenetic and non-genetic factors. The pathogenesis of ALD includes hepatic steatosis, oxidative stress, acetaldehyde toxicity, and inflammation induced by cytokines and chemokines. As a consequence of ETOH toxicity, excessive alcohol consumption induces progressive liver injury including steatosis, steatohepatitis and cirrhosis. ROS production is implicated in these effects [70,116]. In the patients with ALD, the deficiencies of nutrients essential for normal methionine metabolism have deleterious effects since they impair the remethylation of homocysteine, by MTHFR and BHMT, and GSH synthesis, thereby decreasing the defenses against oxidative stress.



A two-year Spanish multi-center study examined the effect of 1.2 g/day of oral SAM in 123 patients with cirrhosis caused by ALD [117]. This study found that mortality decreased from 30% in the placebo group to 16% in SAM-treated but this decrease was not statistically significant unless the patients with more advanced disease were excluded. Long-term treatment with SAM improved the survival or delayed liver transplantation of the patients with alcoholic liver cirrhosis, especially of those with less advanced liver disease [117].



SAM plays a role in numerous cellular reactions. Because of the decrease in its synthesis in various liver diseases, different studies have considered the effects of the reconstitution of SAM cellular pool by SAM therapy. Some randomized clinical trials have considered this therapy in the treatment of specific human diseases. SAM increases intra-hepatic GSH and improves clinical biochemistry in patients with alcoholic and non-alcoholic liver disease, it was demonstrated that SAM increases intra-hepatic GSH and improves clinical biochemistry [118,119,120,121]. It must be considered that the ethanol metabolite acetaldehyde displaces the active form of pyridoxal phosphatase (vitamin B6) from its hepatic binding site [122,123]. The deficiency of vitamin B6, prejudices homocysteine remethylation by MTHFR and BHMT (Figure 2) and its metabolism to form GSH, thus impairing the defenses against oxidative stress. The consequent increase in hepatocellular homocysteine will alter the catalytic equilibrium of the reversible enzyme SAH hydrolase, and consequently the SAM:SAH ratio thus inhibiting many SAM dependent methylation reactions.



In a study [124] on a cohort of 37 patients with alcoholic liver disease treated with 1.2 g of SAM by mouth for 24 weeks, the entire cohort showed an overall improvement of AST, ALT, and bilirubin levels at the end of the treatment. However, there were no differences between the SAM-treated and controls in any clinical or biochemical parameters and in liver histopathology scores for steatosis, inflammation, fibrosis, and Mallory-Denk hyaline bodies. It was concluded that SAM was no more effective than placebo in the treatment of alcoholic liver disease. It must be considered, however, that in this relatively small study only a six-month follow-up was performed.



In a study according to the intention-to-treat methodology, data provided by the Cochrane Collaboration, nine randomized clinical trials including a heterogeneous sample of 434 patients with ALD, were identified and analyzed [125]. Eight out of nine trials were placebo controlled. Only one trial including 123 patients with alcoholic cirrhosis used adequate methodology, no significant effects of SAM were found on all-cause mortality, liver-related mortality or liver transplantation or complications. SAM was not associated with non-serious adverse events. It was concluded that there was no evidence supporting or refuting the use of SAM for patients with ALD. In conclusion, no evidence in support or denial of SAM therapy is available. More long-term, high-quality randomized trials studying patients with ALD, treated with oral/parenteral administration of SAM versus placebo, are necessary for SAM may be recommended for clinical practice.




6.2. Non-Alcoholic Fatty Liver Disease


NAFLD is a metabolic syndrome affecting people that do not abuse alcoholic beverages. It is associated with obesity, insulin resistance or type 2 diabetes mellitus, and dyslipidemia, and is characterized by the development of steatosis, non-alcoholic steatohepatitis (NASH), and cirrhosis [126,127,128]. Obesity, diabetes, insulin resistance, sedentary lifestyle, and Western diet generally underlay NAFLD, a common liver disease in developed countries. NAFLD may further progress to NASH, fibrosis, cirrhosis, and HCC. The hepatic steatosis and extrahepatic clinical manifestations, including adipose tissue inflammation and gastrointestinal imbalances determine the evolution of NAFLD to NASH. Recent evidence indicates that gut-derived bacterial toxins, the activation of the innate immune system, and oxidative stress are common pathogenic mechanisms determining the progression of alcoholic liver disease and NASH [129,130]. Recent research has found that cholesterol metabolism is closely related to the pathogenesis and severity of NASH [131]. A “multi-parallel hit” hypothesis has been proposed. Cholesterol affects membrane fluidity and membrane protein function through genetic factors and can also induce unfolded protein response and generate toxic oxysterol. Free cholesterol can activate hepatic Kupffer and stellate cells to produce inflammatory cytokines and collagen. The formation of cholesterol crystallization and crown-like structures can damage liver cells and activate Kupffer cells. Hepatocytes alteration by free cholesterol accumulation is also induced by the by disruption of mitochondrial and endoplasmic reticulum membrane integrity, causing mitochondrial oxidative injury, promoting toxic oxysterols generation, and inducing adipose tissue dysfunction. Accumulation of oxidized LDLs may activate Kupffer and hepatic stellate cells with consequent inflammation and fibrogenesis. Furthermore, the damage induced by cholesterol also depends on elevated cholesterol uptake from circulating lipoproteins and reduced cholesterol excretion. Extensive dysregulation of cellular cholesterol homeostasis by nuclear transcription factors sterol regulatory binding protein (SREBP)-2, liver X-receptor, (LXR)-α and farnesoid X receptor (FXR) plays a key role in hepatic cholesterol accumulation in NASH [132].



Different experimental models of NASH, generally based on feeding methionine and choline-deficient diet, have been developed in mice [133,134,135,136,137]. Apoptosis, associated with p53 activation and TRAIL receptor expression, occurs in experimental NASH [134]. Different studies on NAFLD pathogenesis have shown that the initiating events of NAFLD are the development of obesity with insulin resistance and type 2 diabetes, increased hepatic free fatty acid flux, increased oxidative stress during fatty acid oxidation, activation of the innate immune system with cytokine release followed by hepatic fibrosis [126,132,136].



SAM could influence NAFLD pathogenesis because of its role in the synthesis of GSH and of phosphatidylcholine, by the Bremer pathway that is involved in VLDL assembly and hepatic triglyceride export. Apoptosis associated with p53 activation and TRAIL receptor expression occurs in experimental NASH [126]. Oxidative stress (CYP2E1 induction), lipid peroxidation, cytokines and principally TNF-alpha are involved in the progression of steatosis to steatohepatitis [132,135].



Prolonged consumption by rodents of a methionine and choline deficient diet, leads to a sharp decrease of liver SAM and VLDL and induces fibrosing steatohepatitis [136]. Similar alterations have been described in MATO-KO mice, a NASH-HCC animal model that in the absence of Mat1a cannot synthesize SAM and presents steatosis involving 25–50% of hepatocytes and mononuclear cell infiltration in periportal areas, at eight months, and HCC at 18 months of age [23,138,139,140]. In a human study [130] in which the rates of remethylation of homocysteine and transmethylation of methionine were evaluated in 15 patients with NASH, compared to 19 healthy controls, the inactivation of MATI/III and increased oxidative stress reduced significantly the synthesis of methionine by homocysteine remethylation [141].



NAFLD is the prevalent liver disease worldwide, and there is no approved pharmacotherapy. The first approach to the therapy of NAFLD targeted the hepatic fat accumulation, by modulating the peroxisome proliferator-activator receptors, the farnesoid X receptor axis and the de novo lipogenesis. A second therapeutic target was the control of oxidative stress, inflammation and apoptosis. A third target was the intestinal microbiomes and metabolic endotoxemia. The final target was hepatic fibrosis, which is strongly associated with all-causes of liver-related mortality in NASH. Some research reported promising results of the anti-oxidant vitamin E associated with pioglitazone in NASH therapy [142]. A study group on 119 children with NAFLD showed that in comparison with metformin, vitamin E is more influential in remission; however both are efficient in treatment of fatty liver [143]. Another study suggest that metformin treatment is more effective than dietary advice and vitamin E treatment in reducing insulin resistance, and also in ameliorating metabolic parameters such as fasting insulin and lipid levels, in obese adolescents having NAFLD [144].



A clinical benefit of SAM, as precursor of the antioxidant compound GSH, and of Betaine that provides methyl groups for the remethylation of homocysteine to methionine, precursor of SAM (Figure 2), was hypothesized. However, the positive results obtained in animal models and in a pilot study were not confirmed in a subsequent randomized placebo-control trial [145], which only demonstrated that betaine therapy increased the serum methionine and SAM contents but did not improve the histology that showed stabilization of steatosis compared to controls. Furthermore, it must be considered that the exit liver biopsy was not done in about 32% of the patients [146].



An interesting comparison between different treatments of NASH [147] showed that interventional clinical trials involving 18 different agents, alone and in combination, were identified. Pioglitazone was the only agent that showed consistent benefit and efficacy in clinical trials. Pentoxifylline, rosiglitazone, and ursodeoxycholic acid had both positive and negative results. There was also evidence for vitamin E that reduced steatosis, lobular inflammation, and aminotransferases and metformin.




6.3. SAM and Intra-Hepatic Cholestasis


Intra-hepatic cholestasis (IHC) develops as a consequence of a reduced sub-lobular bile flow caused by different conditions including hepatocellular damage induced by viral or alcoholic hepatitis, prolonged total parenteral nutrition, canalicular membrane alterations, produced by oral contraceptives, antibiotics, etc., genetic deficiencies of bile transporters, obstructions of canaliculi or ductules or/and ductopenia [148]. Some studies have shown that oxidative stress occurs in livers of humans with cholestasis [149]. In vitro studies demonstrated that bile acids kill hepatocytes [149], but this mechanism was of limited importance in a rat model in vivo. In this model the inflammatory response caused neutrophil accumulation and production of ROS, while the inhibition of ROS during cholestasis reduced the fibrosis [150]. Furthermore, in the experimental rat cholestasis [151], induced by bile duct ligation, there occurred an increase in plasma homocysteine, secondary to NO overproduction, and a decrease in liver SAM and SAH contents in precirrhotic stages and in secondary biliary cirrhosis. NO overproduction probably contributed to plasma increase of SAM and to liver SAM depletion after cholestasis [110].



Different multi-center, double-blind, placebo-controlled trials, showed that the oral SAM treatment (800–1600 mg/day) induced a significant decrease of the clinical biochemical indices of cholestasis and an improvement of symptoms of fatigue and pruritus [152,153,154,155]. In another study, a systematic review and meta-analysis of randomized controlled trials (RCTs) evaluated the effect and safety of ursodeoxycholic acid (UDCA), SAM and UDCA-SAM combination therapies for intrahepatic cholestasis of pregnancy (ICP). It was found that UDCA-SAM combination therapy is better than UDCA or SAM alone for improving the outcome of ICP without adverse effects [156].



In a comparison between SAM and Chinese Yinchenghao decoction (YCHD) for the treatment of ICP it was concluded that both treatments could be efficacious [157]. However, in a meta-analysis of all randomized controlled trials comparing UDCA, SAM, and their combination, using Pubmed, Embase, the Cochrane register of controlled trials, and the Science Citation Index of web of science, including 311 patients, it was found that UDCA decreased the pruritus score, the levels of total bile acids, and alanine aminotransferase levels more effectively than SAM and reduced the rate of preterm delivery for ICP. SAM and viral hepatitis [158].




6.4. SAM and Viral Hepatitis


Chronic infection with hepatitis C virus (HCV) affects 170 million people worldwide and is the leading cause of cirrhosis in North America. The recommended treatment consists in the administration of peginterferon-alpha-2b (PegIFN-alpha-2b) and/or peginterferon-alpha-2a plus ribavirin. Liver biopsies from patients with chronic hepatitis C virus (HCV) infection showed the impairment of the Interferon-alpha-induced DNA binding of STAT1 compared with controls [159]. This depended on the hypomethylation of STAT1 on arginine 31 that allowed its association with PIAS1, an inhibitor of STAT DNA binding. The overexpression of Protein Phosphatase 2A (PP2A) in liver extracts from HCV transgenic mice and in liver biopsies of patients with HCV leads to STAT1 hypomethylation, increase of its binding to PIAS1, and decrease of interferon-alpha-induced DNA binding of STAT1 [160]. However, many patients, especially if of African ancestry, are not cured by the treatment with PegIFN-alpha-2b or PegIFN-alpha-2a. In the attempt to identify the determinants of response to the treatment, it was found that the genetic polymorphism near the IL28B gene, encoding interferon-lambda-3 (IFN-lambda-3), is associated with about twofold change in response to treatment. The addition of SAM or of SAM and betaine [155,160,161] to pegIFNα/ribavirin improves the early viral kinetics and increases the interferon-stimulated gene expression in non-responders to previous therapy. Furthermore, in vitro experiments demonstrated that SAM and betaine inhibit interferon signaling and restore STAT1 methylation, thus improving the Interferon-alpha-induced DNA binding of STAT1 and enhancing the antiviral effect of IFNα in cell culture.



At present the mechanisms determining the response to the treatment with Pegylated IFNα/Ribavirin are not completely known. A possible mechanism could be the HCV-induced viral interference with IFNα and JAK-STAT signaling, determined by the hypomethylation of STAT1 that facilitates the contact of STAT1 with its inhibitor PIAS1 (protein inhibitor of activated STAT1) [153]. In addition, two SNPs near the gene IL28B on chromosome 19 were found to be strongly associated with non-viral response [154,155].



In a study on the molecular mechanism regulating HBV associated with liver tumorigenesis [156] it was found the presence of HBx and MAT2A overexpression in most HCCs. In vitro experiments revealed that HBx activates MAT2A expression in HCC cells and this regulation requires the cis-regulatory elements of NF-kB and CREB on MAT2A gene promoter. HBx or MAT2A overexpression inhibits cell apoptosis. Furthermore, HBx induces MAT1A:MAT2A switch through NF-KB and CREB signaling pathways thus decreasing SAM production, inhibiting HCC cell apoptosis and enhancing HCC growth. HBx reduces MAT1A expression and SAM production and enhances MAT2β expression. Furthermore, SAM may inhibit HCV expression by modulating antioxidant enzymes, restoring the biosynthesis of GSH and switching MAT1A/MAT2A ratio in HCV expressing cells [157]. The addition of SAM to peginterferon and ribavirin improves the early viral kinetics and increases interferon-stimulated gene induction in patients with chronic HCV infection non-responders to previous therapy [152,158]. HCV protein also alters JAK-STAT signaling by inhibiting STAT1 methylation that favors STAT1 binding to its inhibitor PIAS1 [159]. SAM and betaine restore STAT1 methylation and increase the IFNalpha antiviral effect in cell culture [159]. Furthermore, among 29 patients with chronic hepatitis C, treated with the SAM, betaine, pegIFNα2b, and ribavirin, an early virological response occurred in 17 patients but only three patients achieved a sustained virological response to therapy [160]. A genome-wide association study [161] of virological response to a PEG-IFN-alpha/Ribavirin (RBV) combination therapy, in 293 Australians with genotype 1 chronic hepatitis C, showed the association of sustained virological response with the expression of the genomic region encoding IL28B (interleukin 28B). IL28B contributes to viral resistance and is upregulated by interferons and the RNA virus infection. These observations suggest the importance of the investigation of IL28B in the treatment of HCV. Moreover, a genetic polymorphism near the IL28B gene, in a region encoding interferon-lambda-3 (IFN-lambda-3), is associated with an approximately twofold change in response to treatment among U.S. patients of European ancestry [161]. Finally, SAM was found to improve the early virological response in chronic hepatitis C patients [158,160].




6.5. SAM ant Tumor Therapy


The term Cholangiocarcinoma represents a group of epithelial cancers with poor outcomes and different anatomical locations (intrahepatic, perihilar, and distal). Mixed hepatocellular cholangiocarcinomas represent a distinct subtype of primary liver cancers. Intrahepatic cholangiocarcinomas arise in cirrhotic liver [162]. The expression of MAfG (MAF bZIP transcription factor G) increases in cells and tissues with cholestasis, as well as in human cholangiocarcinoma and HCC in which MAFG overexpression correlates with tumor progression and reduced survival time [163,164]. c-Myc induction drives cholestatic liver injury and cholangiocarcinoma (CCA) in mice, and the induction of Maf proteins (MafG and c-Maf) contributes to cholestatic liver injury, whereas SAM administration could be protective [163]. MAT1A expression falls while MAfG and c-MAF expression increases in hepatocytes and bile duct epithelial cells during chronic cholestasis and in murine and human clear cell acanthoma [163]. The expression of MAfG increases in cells and tissues with cholestasis, as well as in human cholangiocarcinoma and HCC, and correlates with tumor progression and decree (sed survival time. SAM and UDCA reduce MAG expression, by distinct mechanisms.



OCA (obeticholic acid) induces MAfG expression, cancer cell proliferation, and growth of xenograft tumors in mice [164]. Furthermore, in 80 cholangiocarcinoma samples of patients treated with surgery, the overexpression of COX-2 and VEGF-C correlated positively with the clinical TNM stage but not with the differentiation status of tumor cells. The inhibition of COX-2 reduced VEGF-C mRNA expression and secretion of cholangiocarcinoma cells as well as their migration capacity, but not their proliferation. OCA is a synergistic agent in breast, and head and neck squamous cancer [165]. SAM inhibits VEGF-C expression [166]. These findings suggest the possibility that SAM alone or in association with other medicaments could contribute to cure cholangiocarcinomas. However, it must be noted that a recent analysis by Morgan et al. [167] aimed to determine if the oral SAM administration for 24 weeks of 2.4 g/d of SAM to 44 patients with hepatitis C cirrhosis and elevated α-fetoprotein would decrease serum α-fetoprotein (AFP) level, a biomarker of HCC risk, no difference in the α-fetoprotein content was found with respect to 43 patients treated with placebo. Changes in markers of liver function, liver injury, and hepatitis C viral level were not different between the two groups. Similarly, SAM did not change the markers of oxidative stress or serum GSH level. It must be considered that although the number of patient used in this study is limited, the negative results suggest that SAM cannot prevent the evolution of precancerous lesions to HCC at least in the patients with advanced precancerous lesions.



SAM, an antiapoptotic compound for normal hepatocytes, is proapoptotic for HCC [74,80]. It also induces apoptosis in MCF-7 breast cancer cells through the modulation of specific microRNAs [168], and in combination with Decitabine represses breast cancer growth and lung metastasis [169]. A synergistic antitumor effect of SAM plus Doxorubicin was also demonstrated in the hormone-dependent breast cancer cell lines [170]. The combination of SAM with Doxorubicin and Cisplatin induces apoptosis and cell migration in head and neck cancer cells [171]. Furthermore, since autophagy can act as an escape mechanism from the apoptotic activity of SAM in MCF-7 cells, the combination of SAM with chloroquine was proposed to kill these cells [172] miR-34a or miR-34c strengthens the pro-apoptotic effect of SAM, and activates p53 acetylation by inhibiting SIRT1 and HDAC1 expression [173].



SAM or methyl DNA-binding domain protein 2 antisense oligonucleotide (MBD2-AS) were found to inhibit the growth of the highly invasive human prostate cancer cells PC-3 [174]. This is associated with the inhibition of the expression of key genes, such as urokinase-type plasminogen activator (uPA), and matrix metalloproteinase-2 (MMP-2). as well as of the vascular endothelial growth factor expression and tumor cell invasion in vitro and in vivo in BALB/c nu/nu mice. SAM and MBD2 significantly decrease the methylation of the 5′ regulatory region and the expression of tumoral uPA and MMP-2 [174].



A study on the effect of SAM treatment on HT-29 and SW480 colorectal cancer cell lines [175], with distinct genetic features, showed that SAM reduces cell number by causing S phase arrest, and downregulated multiple genes related to epithelial-mesenchymal transition (e.g., TGFB1) in both cell lines. Remarkable increase of genomic stability was only observed in SW480 cells. Thus, SAM induced senescence, DNA repair, genome stability and reduced colorectal cancer cell progression. Furthermore, SAM or MTA treatment of colon cancer, induced in Balb/c mice by azoxymethane and dextran sulfate sodium, decreased tumor load by 40% and the expression of NF-KB, IL-6 and IL-10, STAR3, and AKT [82]. MTA, but not SAM, inhibited the expression of TNF-a and inducible iNOS. In vivo, both treatments induced apoptosis and inhibited the proliferation, beta-catenin, NF-kB, and interleukin 6 signaling [82].



SAM oncosuppressive action was also tested against the human osteosarcoma cells LM-7 and MG-63 that were treated with SAM or its inactive analog SAH as control [176]. SAM induced a dose-dependent inhibition of tumor cell proliferation, invasion, migration, and cell cycle. The inoculation of cells treated with SAM for six days into the tibia or via intravenous route in SCID (severe combined immune deficient) mice was followed by the development of skeletal lesions smaller and with marked reduction in pulmonary metastasis with respect to control groups. Different genes involved in osteosarcoma progression and signaling pathways implicated in bone formation, wound healing, and tumor progression were methylated in SAM-treated LM-7 cells.




6.6. SAM and Genetic Predisposition to Hepatocarcinogenesis


The research on the genetic backdrop of HCC in rodents demonstrated the existence of a polygenic predisposition, where the cancer phenotype was determined by the contribution of highly penetrant cancer-related genes and a complex system of epistatic interactions of various modifier genes [177]. A similar model applies to human hepatocarcinogenesis. Comparative functional genetics analysis identified the best-fit mouse [178] and rat [52,177] models of hepatocarcinogenesis.



The induction of HCC in rats, according to the resistant hepatocyte protocol [2], is a multistep process in which cells initiated by chemical carcinogens form small aggregates of few cells that evolve to minifoci of 10–100 cells immunohistochemically positive to the placental isoform of glutathione-S-transferase (GST) (Figure 5). The proliferation of these cells leads to the formation of foci of altered hepatocytes (FAH), dysplastic nodules (DN), and HCCs (Figure 5). During this process, some cells re-differentiate (remodeling) [2]. Remodeling progressively decreases from foci to early nodules and to dysplastic nodules.



Previous work in our laboratory showed the rapid evolution of initiated cells to HCC in rats genetically susceptible to hepatocarcinogenesis, whereas in some resistant strains, the initiated cells evolve slowly, most preneoplastic lesions re-differentiate and only few HCCs appeared [52]. We found by a supervised hierarchical analysis of 6132 genes—common to rat and human liver—that DNs and HCCs of the resistant BN rats clustered with human HCC with better prognosis (HCCB), and most DNs and all HCCs of the susceptible F344 rats clustered with human HCC with poorer prognosis (HCCP) [52]. The differences between HCCB and HCCP were based on a higher size, Edmondson/Steiner grade, alpha-fetoprotein secretion, proliferation index, Midkine expression (as index of invasivity), and shorter patients’ survival in HCCP than in HCCB. These observations underlay the role of genetic predisposition on hepatocarcinogenesis, on HCC prognosis in mouse and rat models. Our supervised hierarchical analysis [52] indicates that genes implicated in hepatocarcinogenesis, such as Anxa5, c-Myc, Ctgf, and the IGF family, and genes igfbp1 and Igfbp3 are significantly more expressed in Nodules and HCCs of F344 susceptible rats and human HCCP, whereas Bhmt, implicated in the maintenance of a high SAM pool, Dmbt1, implicated in the malignant transformation of hepatic progenitor cells, and the ERK inhibitor 11 are more expressed in Nodules and HCCs of BN rats and human HCCP [52].





7. Conclusions


Two crucial discoveries motivated the research on SAM’s therapeutic role against liver preneoplastic and neoplastic lesions: the Mat1A/Mat2A switch with consequent decrease in SAM synthesis in HCC [15] and the decrease of SAM, associated with steatosis, in liver of ethanol-intoxicated rats [20] and in preneoplastic and neoplastic rat liver [17]. A strong evidence proved the beneficial effects of SAM in these conditions [20,21]. Some discrepancy, however, exists between the evidence of positive results of SAM treatment of experimental tumors and the more modest effects of SAM in the treatment of human disease. It must be considered, however, that the experimental curative effect of SAM is generally tested on relatively early stages of the development of experimental tumors, whereas for the therapy of human disease SAM is administered to more advanced and aggressive lesions. Indeed, SAM was found to be much more effectual when tested on HCCs less aggressive of BN rats and in human HCCBs.



Researches on the genetic background of liver cancer, in rodent models, proved the role of a polygenic predisposition to liver cancer, where highly penetrant cancer-related genes and a complex network of epistatic interactions of different modifier genes contribute to determine the cancer phenotype. Population research has shown that a similar model applies to human hepatocarcinogenesis [178]. Therefore, the detailed knowledge of the liver tumor epigenetics is fundamental for the diagnosis, prognosis, and therapy of this tumor. Comparative functional genetics studies identified the best-fit mouse and rat models of hepatocarcinogenesis and allowed the supervised hierarchical analysis of genes, common to mice, rat and human liver, involved in genetic predisposition to HCC. The identification of genes involved in the tumorigenesis of different tissues could be of capital importance for the prevention, early diagnosis, and therapy of tumors.







Author Contributions


R.M.P., D.F.C., F.F. and M.M.S. contributed to data collection; C.F.F. collected and commented clinical results. All authors have read and agreed to the published version of the manuscript.




Funding


Fondazione Banco di Sardegna-Simile 2015; Fondazione di Sardegna-Pascale 2017.




Informed Consent Statement


Informed consent was obtained from all subjects.




Conflicts of Interest


The authors declare no conflict of interest.




Abbreviations


AFL: alcoholic fatty liver; AKT, serine/threonine kinase 1; ALD, alcoholic liver disease; LP, placental alkaline phosphatase; ALT, Alanine aminotransferase; AMPK, Akt-mediated adenosine monophosphate protein-activated kinase; AP-1, serine/threonine kinase 1; APEX1, apyrimidinic endodeoxyribonuclease 1; ASH, alcoholic steatohepatitis; AST, aspartate aminotransferase; ATP, adenosinetriphosphate; AUF1, AU-rich element RNA-binding factor 1; BHMT, betaine homocysteine methyltransferase; CYP2E1, cytochrome P4502E1; DN, dysplastic nodules; dSAM, decarboxylated SAM; ERK, extracellular signal-regulated kinase; ETOH. ethanol; FAH, foci of altered hepatocytes; FOXM1, forkhead box protein M1; GIT1, G-protein-coupled receptor interacting protein 1; GNMT, glycine N-methyltransferase; GSH, reduced glutathione; GST, glutathione-S-transferase; HCC, hepatocellular carcinoma; HCCB, hepatocellular carcinoma with better prognosis; HCCP, hepatocellular carcinoma with poorer prognosis; HCY, homocysteine; HGF, hepatocyte growth factor; HIF-, Hypoxia-inducible factor 1; Hur, human antigen R; HAUSP, herpesvirus-associated ubiquitin-specific protein; IHC, intrahepatic cholestasis; iNOS, inducible nitric oxide synthase; LKB1, Liver Kinase B1; MBD2-AS, methyl DNA-binding domain protein 2 antisense oligonucleotide; MAFG, MAF bZIP transcription factor G; MAT, methionine adenosyltransferase; MeTHF, 10-methylenetetrahydrofolate;mMeTHFR, 5-10,methyltetrahydrofolate reductase; MTA, 5′-methylthioadenosine; MTHF, 5-methyltetrahydrofolate; MeTHFR, 5-10,methyltetrahydrofolate reductase; mTORC2, mammalian target of rapamycin complex; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; NF-kB, nuclear factor kappa B; ODC, ornithine decarboxylase; PEMT, phosphatidylethanolamine methyltransferase; PP2A, Protein phosphatase 2A;ROS, reactive oxygen species; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine;mSFRT-1; sirtuin-1; THF, 5-tetrahydrofolate; TNF, Tumor Necrosis Factor; UDCA, ursodeoxycholic acid; uPA, urokinase-type plasminogen activator; VEFG-C, vascular endothelial growth factor-C.




References


	



Cantoni, G.L. Activation of methionine for transmethylation. J. Biol. Chem. 1951, 189, 745–750. [Google Scholar] [CrossRef]

	



Feo, F.; Garcea, R.; Pascale, R.M.; Pirisi, L.; Daino, L.; Donaera, A. The variations of S-adenosyl-L-methionine content modu-late hepatocyte growth during phenobarbital promotion of diethylnitrosamine-induced rat liver carcinogenesis. Toxicol. Pathol. 1987, 5, 109–114. [Google Scholar] [CrossRef] [PubMed]

	



Garcea, R.; Pascale, R.M.; Daino, L.; Frassetto, S.; Cozzolino, P.; Ruggiu, M.E.; Vannini, M.G.; Gaspa, L.; Feo, F. Variations of ornithine decarboxylase activity and S-adenosyl-L-methionine and 5′-methylthioadenosine contents during the development of diethylnitrosamine-induced liver hyperplastic nodules and hepatocellular carcinomas. Carcinogenesis 1987, 8, 653–658. [Google Scholar] [CrossRef] [PubMed]

	



Finkelstein, J.D. Methionine metabolism in mammals. J. Nutr. Biochem. 1990, 1, 228–237. [Google Scholar] [CrossRef]

	



Ramani, K.; Mato, J.M.; Lu, S.C. Role of methionine adenosyltransferase genes in hepatocarcinogenesis. Cancers 2011, 3, 1480–1497. [Google Scholar] [CrossRef]

	



Mato, J.M.; Lu, S.C. Role of S-adenosyl-l-methionine in liver health and injury. Hepatology 2007, 45, 1306–1312. [Google Scholar] [CrossRef]

	



Miyazaki, J.H.; Yang, S.F. Metabolism of 5-methylthioribose to methionine. Plant. Physiol. 1987, 84, 277–281. [Google Scholar] [CrossRef]

	



Bremer, J.; Greenberg, D.M. Methyl-transferring enzyme system of microsomes in the biosynthesis of lecithin (phosphatidyl-choline). Biochim. Biophys. Acta 1961, 46, 205–216. [Google Scholar] [CrossRef]

	



Feo, F.; Pririsi, L.; Garcea, R.; Daino, L.; Pascale, R.M. The role of phosphatidylethanolamine methylation in the synthesis of phosphatidylcholine in acute ethanol intoxication. Res. Commun. Subst. Abuse 1982, 3, 499–502. [Google Scholar]

	



Froese, D.S.; Fowler, B.; Baumgartner, M.R. Vitamin B12, folate, and the methionine remethylation cycle-biochemistry, path-ways, and regulation. J. Inherit. Metab. Dis. 2019, 42, 673–685. [Google Scholar] [CrossRef]

	



Finkelstein, J.D.; Martin, J.J. Homocysteine. Int. J. Biochem. Cell Biol. 2000, 32, 385–389. [Google Scholar] [CrossRef]

	



Ebara, S. Nutritional role of folate. Congenit. Anom. 2017, 57, 138–141. [Google Scholar] [CrossRef] [PubMed]

	



Zhang, N. Role of methionine on epigenetic in animals. Anim. Nutr. 2018, 4, 11–16. [Google Scholar] [CrossRef] [PubMed]

	



Mladenović, D.; Radosavljević, T.; Hrnčić, D.; Rasic-Markovic, A.; Stanojlović, O. The effects of dietary methionine restriction on the function and metabolic reprogramming in the liver and brain—Implications for longevity. Rev. Neurosci. 2019, 30, 581–593. [Google Scholar] [CrossRef] [PubMed]

	



Mato, J.M.; Corrales, F.J.; Lu, S.C.; Avila, M.A. S-adenosylmethionine: A control switch that regulates liver function. FASEB J. 2002, 16, 15–26. [Google Scholar] [CrossRef] [PubMed]

	



Avila, A.; Berasain, C.; Torres, L.; Martín-Duce, A.; Corrales, F.J.; Yang, H.; Prieto, J.; Lu, S.C.; Caballería, J.; Rodés, J.; et al. Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepato-cellular carcinoma. J. Hepatol. 2000, 33, 907–914. [Google Scholar] [CrossRef]

	



Frau, M.; Feo, F.; Pascale, R.M. Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis. J. Hepatol. 2013, 59, 830–841. [Google Scholar] [CrossRef]

	



Feo, F.; Pascale, R.M.; Garcea, R.; Daino, L.; Pirisi, L.; Frassetto, S.; Ruggiu, M.E.; Di Padova, C.; Stramentinoli, G. Effect of the variations of S-adenosyl-L-methionine liver content on fat accumulation and ethanol metabolism in ethanol-intoxicated rats. Toxicol. Appl. Pharmacol. 1986, 83, 331–341. [Google Scholar] [CrossRef]

	



Zhang, F.; Gu, J.X.; Zou, X.P.; Zhuge, Y.Z. Protective effects of S-adenosylmethionine against CCl4− and ethanol-induced ex-perimental hepatic fibrosis. Mol. Biol. 2016, 5, 284–290. [Google Scholar]

	



Pascale, R.M.; Daino, L.; Garcea, R.; Frassetto, S.; Ruggiu, M.E.; Vannini, M.G.; Cozzolino, P.; Feo, F. Inhibition by ethanol of rat liver plasma membrane (Na+, K+)ATPase: Protective effect of S-adenosyl-L-methionine, L-methionine, and N-acetylcysteine. Toxicol. Appl. Pharmacol. 1989, 97, 216–229. [Google Scholar] [CrossRef]

	



Feo, F.; Garcea, R.; Daino, L.; Pascale, R.M.; Pirisi, L.; Frassetto, S.; Ruggiu, M.E. Early stimulation of polyamine biosynthesis during promotion by phenobarbital of diethylnitrosamine-induced rat liver Carcinogenesis. The effects of variations of the S-adenosyl-L-methionine cellular pool. Carcinogenesis 1985, 6, 1713–1720. [Google Scholar] [CrossRef] [PubMed]

	



Finkelstein, J.D.; Martin, J. Inactivation of betaine-homocysteine methyltransferase by adenosylmethionine and adenosyle-thionine. Biochem. Biophys. Res. Commun. 1984, 118, 14–19. [Google Scholar] [CrossRef]

	



Lu, S.C.; Alvarez, L.; Huang, Z.Z.; Chen, L.; An, W.; Corrales, F.J.; Avila, M.A.; Kanel, G.; Mato, J.M. Methionineadenosyl-transferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in prolifera-tion. Proc. Natl. Acad. Sci. USA 2001, 98, 5560–5565. [Google Scholar] [CrossRef] [PubMed]

	



Wagner, C.; Decha-Umphai, W.; Corbin, J. Phosphorylation modulates the activity of glycine N-methyltransferase, a folate binding protein. In vitro phosphorylation is inhibited by the natural folate ligand. J. Biol. Chem. 1989, 264, 9638–9642. [Google Scholar] [CrossRef]

	



Reed, M.C.; Gamble, M.V.; Hall, M.N.; Nijhout, H.F. Mathematical analysis of the regulation of competing methyltransferas-es. BMC Syst. Biol. 2015, 9, 69. [Google Scholar] [CrossRef] [PubMed]

	



Wang, Y.C.; Lin, W.L.; Lin, Y.J.; Tang, F.Y.; Chen, Y.M. A novel role of the tumor suppressor GNMT in cellular defense against DNA damage. Int. J. Cancer 2014, 134, 799–810. [Google Scholar] [CrossRef]

	



Wagner, C.; Briggs, W.T.; Cook, R.J. Inhibition of glycine N-methyltransferase activity by folate derivatives: Implications for regulation of methyl group metabolism. Biochem. Biophys. Res. Commun. 1985, 127, 746–752. [Google Scholar] [CrossRef]

	



Murray, B.; Barbier-Torres, L.; Fan, W.; Mato, J.M.; Lu, S.C. Methionine adenosyltransferases in liver cancer. World J. Gastroenterol. 2019, 25, 4300–4319. [Google Scholar] [CrossRef]

	



Pascale, R.M.; Peitta, G.; Simile, M.M.; Feo, F. Alterations of Methionine Metabolism as Potential Targets for the Prevention and Therapy of Hepatocellular Carcinoma. Medicina 2019, 55, 296. [Google Scholar] [CrossRef]

	



Lozano-Rosas, M.G.; Chávez, E.; Velasco-Loyden, G.; Domínguez-López, M.; Martínez-Pérez, L.; Chagoya De Sánchez, V. Diminished S-adenosylmethionine biosynthesis and its metabolism in a model of hepatocellular carcinoma is recuperated by an adenosine derivative. Cancer Biol. Ther. 2020, 21, 81–94. [Google Scholar] [CrossRef]

	



Lu, S.C.; Mato, J.M. S-adenosylmethionine in liver health, injury, and cancer. Physiol. Rev. 2012, 92, 1515–1542. [Google Scholar] [CrossRef] [PubMed]

	



Vázquez-Chantada, M.; Fernandez, D.; Embade, N.; Martínez-Lopez, N.; Varela-Rey, M.; Woodhoo, A.; Luka, Z.; Wagner, C.; Anglim, P.P.; Finnel, L.; et al. Hur/methylated-Hur and AUF1 regulate the expression of methionine adenosyltransferase during liver proliferation, differentiation and carcinogenesis. Gastroenterology 2012, 38, 1943–1953. [Google Scholar]

	



Frau, M.; Tomasi, M.L.; Simile, M.M.; Demartis, M.I.; Salis, F.; Latte, G.; Calvisi, D.F.; Seddaiu, M.A.; Daino, L.; Feo, C.F.; et al. Role of transcriptional and posttranscriptional regulation of methionine adenosyltransferases in liver cancer progression. Hepatology 2012, 56, 165–175. [Google Scholar] [CrossRef] [PubMed]

	



Tomasi, M.L.; Li, T.W.; Li, M.; Mato, J.M.; Lu, S.C. Inhibition of human methionine adenosyltransferase 1A transcription by coding region methylation. J. Cell. Physiol. 2012, 227, 1583–1591. [Google Scholar] [CrossRef] [PubMed]

	



Yang, H.; Huang, Z.Z.; Wang, J.; Lu, S.C. The role of c-Myb and Sp1 in the up-regulation of methionine-adenosyltransferase 2A gene expression in human hepatocellular carcinoma. FASEB J. 2001, 15, 1507–1516. [Google Scholar] [CrossRef] [PubMed]

	



Yang, H.; Sadda, M.R.; Yu, V.; Zeng, Y.; Lee, T.D.; Ou, X.; Chen, L.; Lu, S.C. Induction of human methionine adenosyltransferase 2A expression by tumor necrosis factor alpha. Role of NF-kappa B and AP-1. J. Biol. Chem. 2003, 278, 50887–50896. [Google Scholar] [CrossRef]

	



Tomasi, M.L.; Ryoo, M.; Ramani, K.; Tomasi, I.; Giordano, P.; Mato, J.M.; Lu, S.C. Methionine, adenosyltransferase 2 sumoy-lation positively regulate Bcl-2 expression in human colon and liver cancer cells. Oncotarget 2015, 6, 37706–37723. [Google Scholar] [CrossRef]

	



LeGros, L.; Halim, A.B.; Chamberlin, M.; Geller, A.; Kotb, M. Regulation of the human MAT2B gene encoding the regulatory beta subunit of methionine adenosyltransferase, MAT II. J. Biol. Chem. 2001, 276, 24918–24924. [Google Scholar] [CrossRef]

	



Xia, M.; Chen, Y.; Wang, L.C.; Zandi, E.; Yang, H.; Bemanian, S.; Martínez-Chantar, M.L.; Mato, J.M.; Lu, S.C. Novel function and intracellular localization of methionine adenosyltransferase 2beta splicing variants. J. Biol. Chem. 2010, 285, 20015–20021. [Google Scholar] [CrossRef]

	



Ramani, K.; Yang, H.P.; Kuhlenkamp, J.; Tomasi, L.; Tsukamoto, H.; Mato, J.M.; Lu, S.C. Changes in methionine adenosyl-transferase and S-adenosylmethionine during hepatic stellate cell activation. Hepatology 2010, 51, 986–995. [Google Scholar]

	



Yang, H.; Ara, A.I.; Magilnick, N.; Xia, M.; Ramani, K. Expression pattern, regulation and function of methionine adenosyl-transferase 2β alternative splicing variants in hepatoma cells. Gastroenterology 2008, 134, 281–291. [Google Scholar] [CrossRef] [PubMed]

	



Peng, H.; Li, T.W.; Yang, H.; Moyer, M.P.; Mato, J.M.; Lu, S.C. Methionine, adenosyltransferase 2B-GIT1 complex serves as scaffold to regulate Ras/Rafi/mek1/2 activity in human liver and colon cancer cells. Am. J. Pathol. 2015, 185, 1135–1144. [Google Scholar] [CrossRef] [PubMed]

	



Shah, B.H.; Neithardt, A.; Chu, D.B.; Shah, F.B.; Catt, K.J. Role of EGF receptor transactivation in phosphoinositide 3-kinase-dependent activation of MAP kinase by GPCRs. J. Cell. Physiol. 2006, 206, 47–57. [Google Scholar] [CrossRef] [PubMed]

	



Martínez-Chantar, M.L.; Vázquez-Chantada, M.; Garnacho, M.; Varela-Rey, M.; Dotor, J.; Santamaria, M.; Martínez-Cruz, L.A.; Parada, L.A.; Lu, S.C.; Mato, J.M. S-adenosylmethionine regulates cytoplasmic HuR via AMP-activated kinase. Gastroenterology 2006, 131, 223–232. [Google Scholar] [CrossRef] [PubMed]

	



Gomez-Santos, L.; Vazquez-Chantada, M.; Mato, J.M.; Martinez-Chantar, M.L. SAMe and HuR in liver physiology: Useful-ness of stem cells in hepatic differentiation research. Methods Mol. Biol. 2012, 826, 133–149. [Google Scholar]

	



Peng, H.; Dara, L.; Li, T.W.; Zheng, Y.; Yang, H.; Tomasi, M.L.; Tomasi, I.; Giordano, P.; Mato, J.M.; Lu, S.C. MAT2B-GIT1 interplay activates MEK1/ERK 1 and 2 to induce growth in human liver and colon cancer. Hepatology 2013, 57, 299–313. [Google Scholar] [CrossRef]

	



Brennan, C.M.; Steitz, J.A. HuR and mRNA stability. Cell. Mol. Life Sci. 2001, 58, 266–277. [Google Scholar] [CrossRef]

	



Wang, A.; Bao, Y.; Wu, Z.; Zhao, T.; Wang, D.; Shi, J.; Liu, B.; Sun, S.; Yang, F.; Wang, L.; et al. Long noncoding RNA EGFR-AS1 promotes cell growth and metastasis via affecting HuR mediated mRNA stability of EGFR in renal cancer. Cell Death Dis. 2019, 10, 154. [Google Scholar] [CrossRef] [PubMed]

	



Papatheofani, V.; Levidou, G.; Sarantis, P.; Koustas, E.; Karamouzis, M.V.; Pergaris, A.; Kouraklis, G.; Theocharis, S. HuR Protein in Hepatocellular Carcinoma: Implications in Development, Prognosis and Treatment. Biomedicines 2021, 9, 119. [Google Scholar] [CrossRef]

	



García-Román, R.; Salazar-González, D.; Rosas, S.; Arellanes-Robledo, J.; Beltrán-Ramírez, O.; Fattel-Fazenda, S.; Vil-la-Treviño, S. The differential NF-kB modulation by S-adenosyl-L-methionine, N-acetylcysteine and quercetin on the promo-tion stage of chemical hepatocarcinogenesis. Free Radic. Res. 2008, 42, 331–343. [Google Scholar] [CrossRef]

	



Calvisi, D.F.; Pinna, F.; Pellegrino, R.; Sanna, V.; Sini, M.; Daino, L.; Simile, M.M.; De Miglio, M.R.; Frau, M.; Tomasi, M.L.; et al. Ras-driven proliferation and apoptosis signaling during rat liver carcinogenesis is under genetic control. Int. J. Cancer 2008, 123, 2057–2064. [Google Scholar] [CrossRef] [PubMed]

	



Frau, M.; Simile, M.M.; Tomasi, M.L.; Demartis, M.I.; Daino, L.; Brozzetti, S.; Feo, C.F.; Massarelli, G.; Solinas, G.; Feo, F.; et al. An expression signature of phenotypic resistance to hepatocellular carcinoma identified by cross-species gene expression analysis. Cell. Oncol. 2012, 35, 163–173. [Google Scholar] [CrossRef] [PubMed]

	



Eichhorn, P.J.; Creyghton, M.P.; Bernards, R. Protein phosphatase 2A regulatory subunits and cancer. Biochim. Biophys. Acta 2009, 1795, 1–15. [Google Scholar] [CrossRef] [PubMed]

	



Martínez-López, N.; Varela-Rey, M.; Fernández-Ramos, D.; Woodhoo, A.; Vázquez-Chantada, M.; Embade, N.; Espi-nosa-Hevia, L.; Bustamante, F.J.; Parada, L.A.; Rodriguez, M.S.; et al. Activation of LKB1-Akt pathway independent of PI3 Kinase plays a critical role in the proliferation of hepatocellular carcinoma from NASH. Hepatology 2010, 52, 1621–1631. [Google Scholar] [CrossRef]

	



Yang, H.; Cho, M.E.; Li, T.W.; Peng, H.; Ko, K.S.; Mato, J.M.; Lu, S.C. MicroRNAs regulate methionine adenosyltransferase 1A expression in hepatocellular carcinoma. J. Clin. Investig. 2013, 123, 285–298. [Google Scholar] [CrossRef]

	



Ez-santodLo, T.; Tsai, W.C.; Chen, S.T. MicroRNA-21–3p, a berberine-induced miRNA, directly down-regulates human methionine adenosyltransferases 2A and 2B and inhibits hepatoma cell growth. PLoS ONE 2013, 8, e75628. [Google Scholar]

	



Simile, M.M.; Peitta, G.; Tomasi, K.L.; Brozzetti, S.; Feo, C.F.; Porcu, A.; Cigliano, A.; Calvisi, D.F.; Feo, F.; Pascale, R.M. Mi-croRNA-203 impacts on the growth, aggressiveness and prognosis of hepatocellular carcinoma by targeting MAT2A and MAT2B genes. Oncotarget 2019, 10, 2835–2854. [Google Scholar] [CrossRef]

	



Stramentinoli, G.; Gualano, M.; Ideo, G. Protective role of S-adenosyl-L-methionine in liver injury induced by D-galactosamine in rats. Biochem. Pharmacol. 1978, 27, 1431–1433. [Google Scholar] [CrossRef]

	



McMillan, J.M.; McMillan, D.C. S-adenosylmethionine but not glutathione protects against galactosamine-induced cytotoxi-city in rat hepatocyte cultures. Toxicology 2006, 222, 175–184. [Google Scholar] [CrossRef]

	



Stramentinoli, G.; Pezzoli, C.; Galli-Kienle, M. Protective role of S-adenosyl-L-methionine against acetominophen-induced mortality and hepato-toxicity in mice. Biochem. Pharmacol. 1979, 28, 1567–1571. [Google Scholar] [CrossRef]

	



Gong, Z.; Yan, S.; Zhang, P.; Huang, Y.; Wang, L. Effects of S-adenosylmethionine on liver methionine metabolism and steatosis with ethanol-induced liver injury in rats. Hepatol. Int. 2008, 2, 346–352. [Google Scholar] [CrossRef] [PubMed]

	



Garcia-Ruiz, C.; Morales, A.; Colell, A.; Ballesta, A.; Rodes, J.; Kaplowitz, N.; Fernández-Checa, J.C. Feeding S-adenosyl-L-methionine attenuates both ethanol-induced depletion of mitochondrial glutathione and mitochondrial dys-function in periportal and perivenous rat hepatocytes. Hepatology 1995, 21, 207–214. [Google Scholar] [CrossRef] [PubMed]

	



Colell, A.; García-Ruiz, C.; Morales, A.; Ballesta, A.; Ookhtens, M.; Rodés, J.; Kaplowitz, N.; Fernández-Checa, J.C. Transport of reduced glutathione in hepatic mitochondria and mitoplasts from ethanol-treated rats: Effect of membrane physical properties and S-adenosyl-L-methionine. Hepatology 1997, 26, 699–708. [Google Scholar] [CrossRef] [PubMed]

	



Barak, A.J.; Beckenhauer, H.C.; Mailliard, M.E.; Kharbanda, K.K.; Tuma, D.J. Betaine lowers elevated s-adenosylhomocysteine levels in hepatocytes from ethanol-fed rats. J. Nutr. 2003, 133, 2845–2848. [Google Scholar] [CrossRef]

	



Casini, A.; Banchetti, E.; Milani, S.; Maggioni Moratti, E.; Surrenti, C. S-adenosylmethionine inhibits collagen synthesis by human fibroblasts in vitro. Methods Find. Exp. Clin. Pharmacol. 1989, 11, 331–334. [Google Scholar]

	



Kharbanda, K.K.; Rogers, D.D., 2nd; Mailliard, M.E.; Siford, G.L.; Barak, A.J.; Beckenhauer, H.C.; Sorrell, M.F.; Tuma, D.J. A comparison of the effects of betaine and S-adenosylmethionine on ethanol-induced changes in methionine metabolism and steatosis in rat hepatocytes. J. Nutr. 2005, 135, 519–524. [Google Scholar] [CrossRef]

	



Song, Z.; Zhou, Z.; Chen, T.; Hill, D.; Kang, J.; Barve, S.; McClain, C. S-adenosyl-methionine (SAMe) protects against acute alcohol induced hepatotoxicity in mice. J. Nutr. Biochem. 2003, 14, 591–597. [Google Scholar] [CrossRef]

	



Lieber, C.S.; Casini, A.; DeCarli, L.M.; Kim, C.I.; Lowe, N.; Sasaki, R.; Leo, M.A. S-adenosyl-L-methionine attenuates alco-hol-induced liver injury in the baboon. Hepatology 1990, 11, 165–172. [Google Scholar] [CrossRef]

	



Lieber, C.S.; Leo, M.A.; Cao, Q.; Mak, K.M.; Ren, C.; Ponomarenko, A.; Wang, X.; Decarli, L.M. The Combination of S-adenosylmethionine and dilinoleoylpho-sphatidylcholine attenuates non-alcoholic steatohepatitis produced in rats by a high-fat diet. Nutr. Res. 2007, 27, 565–573. [Google Scholar] [CrossRef]

	



Gao, B.; Bataller, R. Alcoholic liver disease: Pathogenesis and new therapeutic targets. Gastroenterology 2011, 141, 1572–1585. [Google Scholar] [CrossRef]

	



Hartz, C.S.; Schalinske, K.L. Phosphatidylethanolamine N-methyltransferase and regulation of homocysteine. Nutr. Rev. 2006, 64, 465–467. [Google Scholar] [CrossRef] [PubMed]

	



Gibellini, F.; Smith, T.K. The Kennedy pathway—De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 2010, 62, 414–428. [Google Scholar] [CrossRef]

	



Pascale, R.; Pirisi, L.; Daino, L.; Zanetti, S.; Satta, A.; Bartoli, E.; Feo, F. Role of phosphatidylethanolamine methylation in the synthesis of phosphatidylcholine by hepatocytes isolated from choline-deficient rats. FEBS Lett. 1982, 145, 293–297. [Google Scholar] [CrossRef]

	



Frau, M.; Feo, C.F.; Feo, F.; Pascale, R.M. New insights on the role of epigenetic alterations in hepatocellular carcinoma. J. Hepatocell. Carcinoma 2014, 1, 65–83. [Google Scholar] [PubMed]

	



Garcea, R.; Daino, L.; Pascale, R.M.; Simile, M.M.; Puddu, M.; Frassetto, S.; Frassetto, S.; Cozzolino, P.; Seddaiu, M.A.; Gaspa, L.; et al. Inhibition of promotion and persistent nodule growth by S-adenosyl-L-methionine in rat liver carcinogenesis: Role of remodeling and apoptosis. Cancer Res. 1989, 49, 1850–1856. [Google Scholar] [PubMed]

	



Calvisi, F.; Simile, M.M.; Ladu, S.; Pellegrino, R.; De Murtas, V.; Pinna, F.; Tomasi, M.L.; Frau, M.; Virdis, P.; De Miglio, M.R.; et al. Altered methionine metabolism and global DNA methylation in liver cancer: Relationship with genomic instability and prognosis. Int. J. Cancer 2007, 121, 2410–2420. [Google Scholar] [CrossRef] [PubMed]

	



Simile, M.M.; Saviozzi, M.; De Miglio, M.R.; Muroni, M.R.; Nufris, A.; Pascale, R.; Malvaldi, G.; Feo, F. Persistent chemopreventive effect of S-adenosyl-L-methionine on the development of liver putative preneoplastic lesions induced by thiobenzamide in diethylnitrosamine-initiated rats. Carcinogenesis 1996, 17, 1533–1537. [Google Scholar] [CrossRef]

	



Pascale, R.M.; Simile, M.M.; Satta, G.; Seddaiu, M.A.; Daino, L.; Pinna, G.; Vinci, M.A.; Gaspa, L.; Feo, F. Comparative effects of L-methionine, S-adenosyl-L-methionine and 5′-methylthioadenosine on the growth of preneoplastic lesions and DNA methylation in rat liver during the early stages of hepatocarcinogenesis. Anticancer Res. 1991, 11, 1617–1624. [Google Scholar]

	



Pascale, R.M.; Marras, V.; Simile, M.M.; Daino, L.; Pinna, G.; Bennati, S.; Carta, M.; Seddaiu, M.A.; Massarelli, G.; Feo, F. Chemoprevention of rat liver carcinogenesis by S-adenosyl-L-methionine: A long-term study. Cancer Res. 1992, 52, 4979–4986. [Google Scholar]

	



Gerbracht, U.; Eigenbrodt, E.; Simile, M.M.; Pascale, R.M.; Gaspa, L.; Daino, L.; Seddaiu, M.A.; De Miglio, M.R.; Nufris, A.; Feo, F. Effect of S-adenosyl-L-methionine on the development of preneoplastic foci and the activity of some carbohydrate metabolizing enzymes in the liver, during experimental hepatocarcinogenesis. Anticancer Res. 1993, 13, 1965–1972. [Google Scholar]

	



Lu, S.C.; Ramani, K.; Ou, X.; Lin, M.; Yu, V.; Ko, K.; Park, R.; Bottiglieri, T.; Tsukamoto, H.; Kanel, G.; et al. S-adenosylmethionine in the chemoprevention and treatment of hepatocellular carcinoma in a rat model. Hepatology 2009, 50, 462–471. [Google Scholar] [CrossRef] [PubMed]

	



Li, T.W.; Yang, H.; Peng, H.; Xia, M.; Mato, J.M.; Lu, S.C. Effects of S-adenosylmethionine and methylthioadenosine on in-flammation-induced colon cancer in mice. Carcinogenesis 2012, 33, 427–435. [Google Scholar] [CrossRef] [PubMed]

	



Chen, H.; Xia, M.; Lin, M.; Yang, H.; Kuhlenkamp, J.; Li, T.; Sodir, N.M.; Chen, Y.H.; Josef-Lenz, H.; Laird, P.W.; et al. Role of methionine adenosyltransferase 2A and S-adenosylmethionine in mitogen-induced growth of human colon cancer cells. Gastroenterology 2007, 133, 207–218. [Google Scholar] [CrossRef] [PubMed]

	



Garcea, R.; Daino, L.; Pascale, R.; Simile, M.M.; Puddu, M.; Ruggiu, M.E.; Seddaiu, M.A.; Satta, G.; Sequenza, M.J.; Feo, F. Pro-tooncogene methylation and expression in regenerating liver and preneoplastic liver nodules induced in the rat by diethyl-nitrosamine: Effect of variations of S-adenosylmethionine:S-adenosylhomocysteine ratio. Carcinogenesis 1989, 10, 1183–1192. [Google Scholar] [CrossRef]

	



Pascale, R.M.; Simile, M.M.; De Miglio, M.R.; Nufris, A.; Daino, L.; Seddaiu, M.A.; Rao, P.M.; Rajalakshmi, S.; Sarma, D.S.; Feo, F. Chemoprevention by S-adenosyl-L-methionine of rat liver carcinogenesis initiated by 1,2-dimethylhydrazine and promoted by orotic acid. Carcinogenesis 1995, 16, 427–430. [Google Scholar] [CrossRef]

	



Simile, M.M.; Banni, S.; Angioni, E.; Carta, G.; De Miglio, M.R.; Muroni, M.R.; Calvisi, D.F.; Carru, A.; Pascale, R.M.; Feo, F. 5′-Methylthioadenosine administration prevents lipid peroxidation and fibrogenesis induced in rat liver by car-bon-tetrachloride intoxication. J. Hepatol. 2001, 34, 386–394. [Google Scholar] [CrossRef]

	



Li, J.; Ramani, K.; Sun, Z.; Zee, C.; Grant, E.G.; Yang, H.; Xia, M.; Oh, P.; Ko, K.; Mato, J.M.; et al. Forced expression of methionine adenosyltransferase 1A in human hepatoma cells suppresses in vivo tumorigenicity in mice. Am. J. Pathol. 2010, 176, 2456–2466. [Google Scholar] [CrossRef]

	



Mato, J.M.; Alvarez, L.; Ortiz, P.; Mingorance, J.; Durán, C.; Pajares, M.A. S-adenosyl-L-methionine synthetase and methionine metabolism deficiencies in cirrhosis. Adv. Exp. Med. Biol. 1994, 368, 113–117. [Google Scholar]

	



Sekowska, A.; Ashida, H.; Danchin, A. Revisiting the methionine salvage pathway and its paralogues. Microb. Biotechnol. 2019, 12, 77–97. [Google Scholar] [CrossRef]

	



Pascale, R.M.; Simile, M.M.; Gaspa, L.; Daino, L.; Seddaiu, M.A.; Pinna, G.; Carta, M.; Zolo, P.; Feo, F. Alterations of ornithine decarboxylase gene during the progression of rat liver carcinogenesis. Carcinogenesis 1993, 14, 1077–1080. [Google Scholar] [CrossRef]

	



Tomasi, M.L.; Ramani, K.; Lopitz-Otsoa, F.; Rodriguez, M.S.; Li, T.W.; Ko, K.; Yang, H.; Bardag-Gorce, F.; Iglesias-Ara, A.; Feo, F.; et al. S-adenosylmethionine regulates dual-specificity mitogen-activated protein kinase phosphatase 1 expression in mouse and human hepatocytes. Hepatology 2010, 51, 2152–2161. [Google Scholar] [CrossRef] [PubMed]

	



Calvisi, D.F.; Pinna, F.; Meloni, F.; Ladu, S.; Pellegrino, R.; Sini, M.; Daino, L.; Simile, M.M.; De Miglio, M.R.; Virdis, P.; et al. Dual specificity phosphatase 1 ubiquitination in extracellular signal-regulated kinase mediated control of growth in human hepatocellular carcinoma. Cancer Res. 2008, 68, 4192–4200. [Google Scholar] [CrossRef] [PubMed]

	



Calvisi, D.F.; Pinna, F.; Ladu, S.; Pellegrino, R.; Simile, M.M.; Frau, M.; De Miglio, M.R.; Tomasi, M.L.; Sanna, V.; Muroni, M.R.; et al. Forkhead box M1B is a determinant of rat susceptibility to hepatocarcinogenesis and sustains ERK activity in human HCC. Gut 2009, 58, 679–687. [Google Scholar] [CrossRef] [PubMed]

	



Xia, L.; Mo, P.; Huang, W.; Zhang, L.; Wang, Y.; Zhu, H.; Tian, D.; Liu, J.; Chen, Z.; Zhang, Y.; et al. The TNF-a/ROS/HIF-1-induced upregulation of FoxMI expression promotes HCC proliferation and resistance to apoptosis. Carcinogenesis 2012, 3, 2250–2259. [Google Scholar] [CrossRef]

	



Liu, Q.; Liu, L.; Zhao, Y.; Zhang, J.; Wang, D.; Chen, J.; He, Y.; Wu, J.; Zhang, Z.; Liu, Z. Hypoxia induces genomic DNA de-methylation through the activation of HIF-1α and transcriptional upregulation of MAT2A in hepatoma cells. Mol. Cancer Ther. 2011, 10, 1113–1123. [Google Scholar] [CrossRef]

	



Mazhar, S.; Taylor, S.E.; Sangodkar, J.; Narla, G. Different pathologic conditions leading to a decrease of the SAM cellular content are antagonized by the administration of exogenous SAM. Biochim. Biophys. Acta 2019, 1866, 51–63. [Google Scholar] [CrossRef]

	



Zubiete-Franco, I.; García-Rodríguez, J.L.; Martínez-Uña, M.; Martínez-Lopez, N.; Woodhoo, A.; Juan, V.G.; Beraza, N.; Lage-Medina, S.; Andrade, F.; Fernandez, M.L.; et al. Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis. J. Hepatol. 2016, 64, 409–418. [Google Scholar] [CrossRef]

	



Millward, T.A.; Zolnierowicz, S.; Hemmings, B.A. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem. Sci. 1999, 24, 186–191. [Google Scholar] [CrossRef]

	



Tomasi, M.L.; Iglesias-Ara, A.; Yang, H.; Ramani, K.; Feo, F.; Pascale, M.R.; Martínez-Chantar, M.L.; Mato, J.M.; Lu, S.C. S-adenosylmethionine regulates apurinic/apyrimidinic endonuclease 1 stability: Implication in hepatocarcinogenesis. Gastroenterology 2009, 136, 1025–1036. [Google Scholar] [CrossRef]

	



Cao, L.; Cheng, H.; Jiang, Q.; Li, H.; Wu, Z. APEX1 is a novel diagnostic and prognostic biomarker for hepatocellular carcinoma. Aging 2020, 12, 4573–4591. [Google Scholar] [CrossRef]

	



Sadek, K.M.; Lebda, M.A.; Nasr, N.E.; Nasr, S.M.; El-Sayed, Y. Role of lncRNAs as prognostic markers of hepatic cancer and potential therapeutic targeting by S-adenosylmethionine via inhibiting PI3K/Akt signaling pathways. Environ. Sci. Pollut. Res. Int. 2018, 25, 20057–20070. [Google Scholar] [CrossRef] [PubMed]

	



Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer. 2011, 11, 85–95. [Google Scholar] [CrossRef] [PubMed]

	



Ivanov, A.V.; Valuev-Elliston, V.T.; Tyurina, D.A.; Ivanova, O.N.; Kochetkov, S.N.; Bartosch, B.; Isaguliants, M.G. Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget 2017, 8, 3895–3932. [Google Scholar] [CrossRef] [PubMed]

	



Calvisi, D.F.; Pinna, F.; Ladu, S.; Pellegrino, R.; Muroni, M.R.; Simile, M.M.; Frau, M.; Tomasi, M.L.; De Miglio, M.R.; Seddaiu, M.A.; et al. Aberrant iNOS signalling is under genetic control in rodent liver cancer and potentially prognostic for human disease. Carcinogenesis 2008, 29, 1639–1647. [Google Scholar] [CrossRef]

	



Hezel, A.F.; Bardeesy, N. LKB1: Linking cell structure and tumor suppression. Oncogene 2008, 27, 6908–6919. [Google Scholar] [CrossRef] [PubMed]

	



Vázquez-Chantada, M.; Ariz, U.; Varela-Rey, M.; Embade, N.; Martínez-Lopez, N.; Fernández-Ramos, D.; Gómez-Santos, L.; Lamas, S.; Lu, S.C.; Martínez-Chantar, M.L.; et al. Evidence for LKB1/AMP-activated protein kinase/endothelial nitric oxide synthase cascade regulated by hepatocyte growth factor, S-adenosylmethionine, and nitric oxide in hepatocyte proliferation. Hepatology 2009, 49, 608–617. [Google Scholar] [CrossRef]

	



Corrales, F.; Giménez, A.; Alvarez, L.; Caballeria, J.; Pajares, M.A.; Andreu, H.; Parés, A.; Mato, J.M.; Rodés, J. S-adenosylmethionine treatment prevents carbon tetrachloride-induced S-adenosylmethionine synthetase inactivation and attenuates liver injury. Hepatology 1992, 16, 1022–1027. [Google Scholar] [CrossRef]

	



Majano, P.L.; García-Monzón, C.; García-Trevijano, E.R.; Corrales, F.J.; Cámara, J.; Ortiz, P.; Mato, J.M.; Avila, M.A.; Moreno-Otero, R. S-Adenosylmethionine modulates inducible nitric oxide synthase gene expression in rat liver and isolated hepatocytes. J. Hepatol. 2001, 35, 692–699. [Google Scholar] [CrossRef]

	



García-Trevijano, E.R.; Martínez-Chantar, M.L.; Latasa, M.U.; Mato, J.M.; Avila, M.A. NO sensitizes rat hepatocytes to proliferation by modifying S-adenosylmethionine levels. Gastroenterology 2002, 122, 1355–1363. [Google Scholar] [CrossRef]

	



Latasa, M.U.; Gil-Puig, C.; Fernández-Barrena, M.G.; Rodríguez-Ortigosa, C.M.; Banales, J.M.; Urtasun, R.; Goñi, S.; Méndez, M.; Arcelus, S.; Juanarena, N.; et al. Oral methylthioadenosine administration attenuates fibrosis and chronic liver disease progression in Mdr2−/− mice. PLoS ONE 2010, 5, e15690. [Google Scholar] [CrossRef]

	



Zhao, R.X.; Xu, Z.X. Targeting the LKB1 tumor suppressor. Curr. Drug Targets 2014, 15, 32–52. [Google Scholar] [CrossRef] [PubMed]

	



Lee, C.W.; Wong, L.L.; Tse, E.Y.; Liu, H.F.; Leong, V.Y.; Lee, J.M.; Hardie, D.G.; Ng, I.O.; Ching, Y.P. AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Cancer Res. 2012, 72, 4394–4404. [Google Scholar] [CrossRef] [PubMed]

	



Calvisi, D.F.; Frau, M.; Tomasi, M.L.; Feo, F.; Pascale, R.M. Deregulation of signaling pathways in prognostic subtypes of hepatocellular carcinoma: Novel insights from interspecies comparison. Biochim. Biophys. Acta 2012, 826, 215–237. [Google Scholar]

	



Hevia, H.; Varela-Rey, M.; Corrales, F.J.; Berasain, C.; Martínez-Chantar, M.L.; Latasa, M.U.; Lu, S.C.; Mato, J.M.; García-Trevijano, E.R.; Avila, M.A. 5′-methylthioadenosine modulates the inflammatory response to endotoxin in mice and in rat hepatocytes. Hepatology 2004, 39, 1088–10998. [Google Scholar] [CrossRef] [PubMed]

	



Andreu-Pérez, P.; Esteve-Puig, R.; de Torre-Minguela, C.; López-Fauqued, M.; Bech-Serra, J.J.; Tenbaum, S.; García-Trevijano, E.R.; Canals, F.; Merlino, G.; Avila, M.A.; et al. Protein arginine methyltransferase 5 regulates ERK1/2 signal transduction amplitude and cell fate through CRAF. Sci. Signal. 2011, 4, ra58. [Google Scholar] [CrossRef] [PubMed]

	



Cebrian, A.; Pharoah, P.D.; Ahmed, S.; Ropero, S.; Fraga, M.F.; Smith, P.L.; Conroy, D.; Luben, R.; Perkins, B.; Easton, D.F.; et al. Genetic variants in epigenetic genes and breast cancer risk. Carcinogenesis 2006, 27, 1661–1669. [Google Scholar] [CrossRef] [PubMed]

	



Wettergren, Y.; Odin, E.; Carlsson, G.; Gustavsson, B. MTHFR, MTR, and MTRR polymorphisms in relation to p16INK4A hypermethylation in mucosa of patients with colorectal cancer. Mol. Med. 2010, 16, 425–432. [Google Scholar] [CrossRef]

	



Seitz, H.K.; Bataller, R.; Cortez-Pinto, H.; Gao, B.; Gual, A.; Lackner, C.; Mathurin, P.; Mueller, S.; Szabo, G.; Tsukamoto, H. Alcoholic liver disease. Nat. Rev. Dis. Primers 2018, 4, 16. [Google Scholar] [CrossRef]

	



Mato, J.M.; Camara, J.; Fernandez de Paz, J.; Caballeria, L.; Coll, S.; Caballero, A.; García-Buey, L.; Beltrán, J.; Benita, V.; Caballería, J.; et al. S-adenosylmethionine in alcoholic liver cirrhosis: A randomized, placebo-controlled, double-blind, multi-center clinical trial. J. Hepatol. 1999, 30, 1081–1089. [Google Scholar] [CrossRef]

	



Diaz Belmont, A.; Dominguez Henkel, R.; Uribe Ancira, F. Parenteral S-adenosylmethionine compared to placebos in the treatment of alcoholic liver diseases. An. Med. Interna. 1996, 13, 9–15. [Google Scholar]

	



Stepuro, I.; Solodunov, A.A.; Solodunov, T.P.; Iaroshevich, N.A.; IuM, O. Distribution of pyridox-al-5-phosphate between proteins and low molecular weight components of plasma: Effect of ENG. Ukr. Biokhimicheskii Zhurnal 1988, 60, 34–41. [Google Scholar]

	



Loguercio, C.; Nardi, G.; Argenzio, F.; Aurilio, C.; Petrone, E.; Grella, A.; Del Vecchio Blanco, C.; Coltorti, M. Effect of S-adenosyl-L-methionine administration on red blood cell cysteine and glutathione levels. Alcohol 1994, 29, 597–604. [Google Scholar]

	



Vendemiale, G.; Altomare, E.; Trizio, T.; Le Grazie, C.; Di Padova, C.; Salerno, M.T.; Carrieri, V.; Albano, O. Effects of oral S-adenosyl-L-methionine on hepatic glutathione in patients with liver disease. Scand. J. Gastroenterol. 1989, 24, 407–415. [Google Scholar] [CrossRef] [PubMed]

	



Halsted, C.H.; Medici, V. Vitamin-dependent methionine metabolism and alcoholic liver disease. Adv. Nutr. 2011, 2, 421–427. [Google Scholar] [CrossRef]

	



Lumeng, L. The role of acetaldehyde in mediating the deleterious effect of ethanol on pyridoxal 5′-phosphate metabolism. J. Clin. Investig. 1978, 62, 86–293. [Google Scholar] [CrossRef]

	



Medici, V.; Virata, M.C.; Peerson, J.M.; Stabler, S.P.; French, S.W.; Gregory, J.F., 3rd; Albanese, A.; Bowlus, C.L.; Devaraj, S.; Panacek, E.A.; et al. S-adenosyl-L-methionine treatment for alcoholic liver disease: A double-blinded, randomized, placebo-controlled trial. Alcohol Clin. Exp. Res. 2011, 35, 1960–1965. [Google Scholar] [CrossRef]

	



Rambaldi, A.; Gluud, C. S-adenosyl-L-methionine for alcoholic liver diseases. Cochrane Database Syst. Rev. 2016, 2, CD002235. [Google Scholar]

	



Dietrich, P.; Hellerbrand, C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract. Res. Clin. Gastroenterol. 2014, 28, 637–653. [Google Scholar] [CrossRef]

	



Sanyal, A.J. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology 2002, 123, 705–1725. [Google Scholar] [CrossRef]

	



Marchesini, G.; Brizi, M.; Morselli-Labate, A.M.; Bianchi, G.; Bugianesi, E.; McCullough, A.J.; Forlani, G.; Melchionda, N. Association of nonalcoholic fatty liver disease with insulin resistance. Am. J. Med. 1999, 107, 450–455. [Google Scholar] [CrossRef]

	



Dorna, W.; Lagente, V. Intestinally derived bacterial products stimulate development of nonalcoholic steatohepatitis. Pharmacol. Res. 2019, 141, 418–428. [Google Scholar] [CrossRef] [PubMed]

	



Higarza, S.G.; Arboleya, S.; Gueimonde, M.; Gómez-Lázaro, E.; Arias, J.L.; Arias, N. Neurobehavioral dysfunction in non-alcoholic steatohepatitis is associated with hyperammonemia, gut dysbiosis, and metabolic and functional brain re-gional deficits. PLoS ONE 2019, 14, e0223019. [Google Scholar] [CrossRef] [PubMed]

	



Powell, E.E.; Cooksley, W.G.; Hanson, R.; Searle, J.; Halliday, J.W.; Powell, L.W. The natural history of nonalcoholic steato-hepatitis: A follow-up study of forty-two patients for up to 21 years. Hepatology 1990, 11, 74–80. [Google Scholar] [CrossRef] [PubMed]

	



Nagata, K.; Suzuki, H.; Sakaguchi, S. Common pathogenic mechanism in development progression of liver injury caused by non-alcoholic or alcoholic steatohepatitis. J. Toxicol. Sci. 2007, 32, 453–468. [Google Scholar] [CrossRef] [PubMed]

	



Yamaguchi, K.; Yang, L.; McCall, S.; Huang, J.; Yu, X.X.; Pandey, S.K.; Bhanot, S.; Monia, B.P.; Li, Y.; Diehl, A.M. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 2007, 45, 1366–1374. [Google Scholar] [CrossRef]

	



Anstee, Q.M.; Concas, D.; Kudo, H.; Levene, A.; Pollard, J.; Charlton, P.; Thomas, H.C.; Thursz, M.R.; Goldin, R.D. Impact of pan-caspase inhibition in animal models of established steatosis and non-alcoholic steatohepatitis. J. Hepatol. 2010, 53, 542–550. [Google Scholar] [CrossRef]

	



Lieber, C.S. Alcoholic fatty liver: Its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol 2004, 34, 9–19. [Google Scholar] [CrossRef] [PubMed]

	



Ye, J.Z.; Li, Y.T.; Wu, W.R.; Shi, D.; Fang, D.Q.; Yang, L.Y.; Bian, X.Y.; Wu, J.J.; Wang, Q.; Jiang, X.W.; et al. Dynamic alterations in the gut microbiota and metabolome during the development of methionine-choline-deficient diet-induced nonalcoholic steatohepatitis. World J. Gastroenterol. 2018, 24, 2468–2481. [Google Scholar] [CrossRef]

	



Farrell, G.C.; Larter, C.Z.; Hou, J.Y.; Zhang, R.H.; Yeh, M.M.; Williams, J.; dela Pena, A.; Francisco, R.; Osvath, S.R.; Brooling, J.; et al. Apoptosis in experimental NASH is associated with p53 activation and TRAIL receptor expression. J. Gastroenterol. Hepatol. 2009, 24, 443–452. [Google Scholar] [CrossRef]

	



Goldin, R.D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol. 2006, 87, 1–16. [Google Scholar]

	



Wortham, M.; He, L.; Gyamfi, M.; Copple, B.L.; Wan, Y.J. The transition from fatty liver to NASH associates with SAMe de-pletion in db/db mice fed a methionine choline-deficient diet. Dig. Dis. Sci. 2008, 53, 2761–2774. [Google Scholar] [CrossRef] [PubMed]

	



Sastre, J.; Serviddio, G.; Pereda, J.; Minana, J.B.; Arduini, A.; Vendemiale, G.; Poli, G.; Pallardo, F.V.; Vina, J. Mitochondrial function in liver disease. Front. Biosci. 2007, 12, 1200–1209. [Google Scholar] [CrossRef] [PubMed]

	



Kalhan, S.C.; Edmison, J.; Marczewski, S.; Dasarathy, S.; Gruca, L.L.; Bennett, C.; Duenas, C.; Lopez, R. Methionine and protein metabolism in non-alcoholic steatohepatitis: Evidence for lower rate of transmethylation of methionine. Clin. Sci. 2011, 121, 179–189. [Google Scholar] [CrossRef] [PubMed]

	



Sanyal, A.J.; Chalasani, N.; Kowdley, K.V.; McCullough, A.; Diehl, A.M.; Bass, N.M.; Neuschwander-Tetri, B.A.; Lavine, J.E.; Tonascia, J.; Unalp, A.; et al. NASH CRN. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010, 362, 16751685. [Google Scholar] [CrossRef]

	



Shiasi Arani, K.; Taghavi Ardakani, A.; Moazami Goudarzi, R.; Talari, H.R.; Hami, K.; Akbari, H.; Akbari, N. Effect of Vitamin E and Metformin on Fatty Liver Disease in Obese Children-Randomized Clinical Trial. Iran. J. Public Health 2014, 43, 1417–1423. [Google Scholar]

	



Akcam, M.; Boyaci, A.; Pirgon, O.; Kaya, S.; Uysal, S.; Dundar, B.N. Therapeutic effect of metformin and vitamin E versus prescriptive diet in obese adolescents with fatty liver. Int. J. Vitam. Nutr. Res. 2011, 1, 398–406. [Google Scholar] [CrossRef]

	



Bakir, M.B.; Salama, M.A.; Refaat, R.; Ali, M.A.; Khalifa, E.A.; Kamel, M.A. Evaluating the therapeutic potential of one-carbon donors in nonalcoholic fatty liver disease. Eur. J. Pharmacol. 2019, 847, 72–82. [Google Scholar] [CrossRef] [PubMed]

	



Cordero, P.; Gomez-Uriz, A.M.; Campion, J.; Milagro, F.I.; Martinez, J.A. Dietary supplementation with methyl donors re-duces fatty liver and modifies the fatty acid synthase DNA methylation profile in rats fed an obesogenic diet. Genes Nutr. 2013, 8, 105–113. [Google Scholar] [CrossRef]

	



Mahjoubin-Tehran, M.; De Vincentis, A.; Mikhailidis, D.P.; Atkin, S.L.; Mantzoros, C.S.; Jamialahmadi, T.; Sahebkar, A. Non-alcoholic fatty liver disease and steatohepatitis: State of the art on effective therapeutics based on the gold standard method for diagnosis. Mol. Metab. 2021, 50, 101049. [Google Scholar] [CrossRef]

	



Shneider, B.L. Progressive intrahepatic cholestasis: Mechanisms, diagnosis and therapy. Pediatr. Transplant. 2004, 8, 609–612. [Google Scholar] [CrossRef]

	



Copple, B.L.; Jaeschke, H.; Klaassen, C.D. Oxidative stress and the pathogenesis of cholestasis. Semin. Liver Dis. 2010, 30, 195–204. [Google Scholar] [CrossRef] [PubMed]

	



Gonzalez-Correa, J.A.; De La Cruz, J.P.; Martin-Aurioles, E.; Lopez-Egea, M.A.; Ortiz, P.; Sanchez de la Cuesta, F. Effects of S-adenosyl-L-methionine on hepatic and renal oxidative stress in an experimental model of acute biliary obstruction in rats. Hepatology 1997, 26, 121–127. [Google Scholar] [PubMed]

	



Datsko, V.A.; Fedoniuk, L.Y.; Ivankiv, Y.I.; Kurylo, K.I.; Volska, A.S.; Malanchuk, S.L.; Oleshchuk, O.M. Experimental cirrho-sis: Liver morphology and function. Wiad Lek 2020, 73, 947–952. [Google Scholar] [CrossRef]

	



Zhang, Y.; Lu, L.; Victor, D.W.; Xin, Y.; Xuan, S. Ursodeoxycholic Acid and S-adenosylmethionine for the Treatment of Intra-hepatic Cholestasis of Pregnancy: A Meta-analysis. Hepat. Mon. 2016, 16, e38558. [Google Scholar] [CrossRef]

	



Frezza, M.; Surrenti, C.; Manzillo, G.; Fiaccadori, F.; Bortolini, M.; Di Padova, C. Oral S-adenosylmethionine in the sympto-matic treatment of intrahepatic cholestasis. A double-blind, placebo-controlled study. Gastroenterology 1990, 99, 211–215. [Google Scholar] [CrossRef]

	



Coltorti, M.; Bortolini, M.; Di Padova, C. A review of the studies on the clinical use of S-adenosylmethionine (SAMe) for the symptomatic treatment of intrahepatic cholestasis. Methods Find. Exp. Clin. Pharmacol. 1990, 12, 69–78. [Google Scholar]

	



Fiorelli, G. S-adenosylmethionine in the treatment of intrahepatic cholestasis of chronic liver disease: A field trial. Curr. Ther. Res. Clin. Exp. 1999, 60, 335–348. [Google Scholar] [CrossRef]

	



Duong, F.H.; Filipowicz, M.; Tripodi, M.; La Monica, N.; Heim, M.H. Hepatitis C virus inhibits interferon signaling through up-regulation of protein phosphatase 2A. Gastroenterology 2004, 126, 263–277. [Google Scholar] [CrossRef]

	



Bernsmeier, C.; Duong, F.H.; Christen, V.; Pugnale, P.; Negro, F.; Terracciano, L.; Heim, M.H. Virus-induced over-expression of protein phosphatase 2A inhibits insulin signalling in chronic hepatitis C. J. Hepatol. 2008, 49, 429–440. [Google Scholar] [CrossRef]

	



Filipowicz, M.; Bernsmeier, C.; Terracciano, L.; Duong, F.H.; Heim, M.H. S-adenosyl-methionine and betaine improve early virological response in chronic hepatitis C patients with previous nonresponse. PLoS ONE 2010, 5, e15492. [Google Scholar] [CrossRef]

	



Castelli, G.; Pelosi, E.; Testa, U. Liver Cancer: Molecular Characterization, Clonal Evolution and Cancer Stem Cells. Cancers 2017, 9, 127. [Google Scholar] [CrossRef] [PubMed]

	



Liu, T.; Yang, H.; Fan, W.; Tu, J.; Li, T.W.H.; Wang, J.; Shen, H.; Yang, J.; Xiong, T.; Steggerda, J.; et al. Mechanisms of MAFG Dysregulation in Cholestatic Liver Injury and Development of Liver Cancer. Gastroenterology 2018, 155, 557–571. [Google Scholar] [CrossRef] [PubMed]

	



Hu, Z.Q.; Li, H.C.; Teng, F.; Chang, Q.M.; Wu, X.B.; Feng, J.F.; Zhang, Z.P. Long noncoding RNA MAFG-AS1 facilitates the progression of hepatocellular carcinoma via targeting miR-3196/OTX1 axis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 12131–12143. [Google Scholar]

	



Invernizzi, P.; Floreani, A.; Carbone, M.; Marzioni, M.; Craxi, A.; Muratori, L.; Vespasiani Gentilucci, U.; Gardini, I.; Gasbar-rini, A.; Kruger, P.; et al. Primary Biliary Cholangitis: Advances in management and treatment of the disease. Dig. Liver Dis. 2017, 49, 841–846. [Google Scholar] [CrossRef]

	



Zhang, Y.B.; Da, M.X.; Yao, J.B.; Duan, Y.X. S-Adenosylmethionine Inhibits Expression of Vascular Endothelial Growth Fac-tor-C Protein and Cellular Proliferation in Gastric Cancer. Sichuan Da Xue Xue Bao Yi Xue Ban 2015, 46, 384–388. [Google Scholar] [PubMed]

	



Morgan, T.R.; Osann, K.; Bottiglieri, T.; Pimstone, N.; Hoefs, J.C.; Hu, K.Q.; Hassanein, T.; Boyer, T.D.; Kong, L.; Chen, W.P.; et al. Phase II randomized, controlled trial of S-Adenosylmethionine in reducing serum α-fetoprotein in patients with hepatitis C cirrhosis and elevated AFP. Cancer Prev. Res. 2015, 8, 864–872. [Google Scholar] [CrossRef]

	



Ilisso, C.P.; Delle Cave, D.; Mosca, L.; Pagano, M.; Coppola, A.; Mele, L.; Caraglia, M.; Cacciapuoti, G.; Porcelli, M. S-Adenosylmethionine regulates apoptosis and autophagy in MCF-7 breast cancer cells through the modulation of specific microRNAs. Cancer Cell Int. 2018, 18, 197. [Google Scholar] [CrossRef]

	



Mahmood, N.; Arakelian, A.; Cheishvili, D.; Szyf, M.; Rabbani, S.A. S-adenosylmethionine in combination with decitabine shows enhanced anti-cancer effects in repressing breast cancer growth and metastasis. J. Cell. Mol. Med. 2020, 24, 10322–10337. [Google Scholar] [CrossRef]

	



Ilisso, C.P.; Castellano, M.; Zappavigna, S.; Lombardi, A.; Vitale, G. The methyl donor S-adenosylmethionine potentiates doxorubicin effects on apoptosis of hormone-dependent breast cancer cell lines. Endocrine 2015, 50, 212–222. [Google Scholar] [CrossRef]

	



Mosca, L.; Vitiello, F.; Coppola, A.; Borzacchiello, L.; Ilisso, C.P.; Pagano, M.; Caraglia, M.; Cacciapuoti, G.; Porcelli, M. Ther-apeutic Potential of the Natural Compound S-Adenosylmethionine as a Chemoprotective Synergistic Agent in Breast, and Head and Neck Cancer Treatment: Current Status of Research. Int. J. Mol. Sci. 2020, 21, 8547. [Google Scholar] [CrossRef]

	



Cave, D.D.; Desiderio, V.; Mosca, L.; Ilisso, C.P.; Mele, L.; Caraglia, M.; Cacciapuoti, G.; Porcelli, M. S-Adenosylmethionine-mediated apoptosis is potentiated by autophagy inhibition induced by chloroquine in human breast cancer cells. J. Cell. Physiol. 2018, 233, 1370–1383. [Google Scholar] [CrossRef] [PubMed]

	



Li, X.; Zhao, J.; Tang, J. miR-34a may regulate sensitivity of breast cancer cells to adriamycin via targeting Notch1. Zhonghua Zhong Liu Za Zhi 2014, 36, 892–896. [Google Scholar] [PubMed]

	



Shukeir, N.; Pakneshan, P.; Chen, G.; Szyf, M.; Rabbani, S.A. Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Res. 2006, 166, 9202–9210. [Google Scholar] [CrossRef] [PubMed]

	



Zsigrai, S.; Kalmár, A.; Nagy, Z.B.; Barták, B.K.; Valcz, G.; Szigeti, K.A.; Galamb, O.; Dankó, T.; Sebestyén, A.; Barna, G.; et al. S-Adenosylmethionine Treatment of Colorectal Cancer Cell Lines Alters DNA Methylation, DNA Repair and Tumor Pro-gression-Related Gene Expression. Cells 2020, 9, 1864. [Google Scholar] [CrossRef]

	



Parashar, S.; Cheishvili, D.; Arakelian, A.; Hussain, Z.; Tanvir, I.; Khan, H.A.; Szyf, M.; Rabbani, S.A. S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion in vitro and tumor metastasis in vivo: Therapeutic and diagnostic clinical applications. Cancer Med. 2015, 4, 732–744. [Google Scholar] [CrossRef]

	



Pascale, R.M.; Simile, M.M.; Peitta, G.; Seddaiu, M.A.; Feo, F.; Calvisi, D.F. Experimental Models to Define the Genetic Pre-disposition to Liver Cancer. Cancers 2019, 11, 1450. [Google Scholar] [CrossRef]

	



Manenti, G.; Binelli, G.; Gariboldi, M.; Canzian, F.; De Gregorio, L.; Falvella, F.S.; Dragani, T.A.; Pierotti, M.A. Multiple loci affect genetic predisposition to hepatocarcinogenesis in mice. Genomics 1994, 23, 118–124. [Google Scholar] [CrossRef]

	



Lee, J.S.; Chu, I.S.; Mikaelyan, A.; Calvisi, D.F.; Heo, J.; Reddy, J.K.; Thorgeirsson, S.S. Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat. Genet. 2004, 36, 1306–1311. [Google Scholar] [CrossRef]








[image: Cells 11 00409 g001 550] 





Figure 1. Synthesis of S-adenosylmethionine. 
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Figure 2. Metabolic cycles involved in methionine metabolism. Substrates: BET, betaine; CHOL, choline; DMG, dimethylglycine; dSAM, decarboxylated S-adenosylmethionine; GN, glycine; GSH, reduced glutathione; HCY, homocysteine; MeTHF, 5,10-methylenetetrahydrofolate; MTA, 5-methylthioadenosine; MTHF, 5-methyltetrahydrofolate; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; SN, sarcosine; THF, tetrahydrofolate. Enzymes: BHMT, betaine homocysteine methyltransferase; DMGDH, dimethylglycine dehydrogenase; GNMT, glycine n-methyltransferase; MATI/III, methyladenosyltransferase I/III; MATII, methyladenosyltransferase II; MeTHFR 5,10-methyltetrahydrofolate reductase; MT, various methyltransferases; PEMT, phosphatidylethanolamine N–methyltransferase; SAHH, S-adenosylhomocysteine hydroxylase; SD, SAM decarboxylase. 
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Figure 3. SAM and SAH long-range interactions. BET: betaine; BHMT: betaine homocysteine methyltransferase; dMGN: dimethylglycine; HCY: homocysteine; MATI/III: methionine adenosyltransferase I/III; MATII: methionine adenosyltransferase II; GN: glycine; GNMT: glycine methyltransferase; GSH, reduced glutathione; Me-THF: 5,10-methylenetetrahydrofolate; MHMT: methyltetrahydrofolate homocysteine methyltransferase; PC: phosphatidylcholine; PE: phosphatidylethanolamine; SAH: S-adenosylhomocysteine; SAM: S-adenosylmethionine; SN: sarcosine. Arrows indicate activation; blunt arrows indicate inhibition. 
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Figure 4. Effects of SAM on signal transduction pathways. SAM inhibits ODC activity and H-RAS, K-RAS, c-MYC expression. Through the inhibition of LKB1/AMPK axis, SAM controls p53 phosphorylation and cell growth and survival by inducing PP2A expression that dephosphorylating inactivates AKT. Moreover, PP2A activation and DUSP1 stabilization inhibit the RAS/ERK pathway. DUSP1 phosphorylation at the ser296, induced by the ERK1/2 target FOXM1, allows its ubiquitination by the SKP2/CKS1 ubiquitin ligase. This is followed by the proteasomal degradation of DUSP1. SAM enhances the DUSP1 inhibitory action by increasing the transcription of DUSP1 mRNA and by inhibiting the DUSP1 proteasomal degradation. The inhibition of LKB1/AMPK decreases eNOS and iNOS activity and ROS and NO, and thus the genomic instability that is also reduced by the decrease of DNA hypomethylation. 
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Figure 5. Multiphasic hepatocarcinogenesis. Retro-reverse arrows indicate remodeling. Arrows thickness is proportional to the rate and intensity of the changes. Abbreviations: DN, dysplastic nodules; FAH, foci of altered hepatocytes; HCC, hepatocellular carcinomas. 
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