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Abstract: A previous study assessing the efficiency of the genome editing technology CRISPR-Cas9
for knock-in gene targeting in common marmoset (marmoset; Callithrix jacchus) embryonic stem cells
(ESCs) unexpectedly identified innately enhanced homologous recombination activity in marmoset
ESCs. Here, we compared gene expression in marmoset and human pluripotent stem cells using
transcriptomic and quantitative PCR analyses and found that five HR-related genes (BRCA1, BRCA2,
RAD51C, RAD51D, and RAD51) were upregulated in marmoset cells. A total of four of these
upregulated genes enhanced HR efficiency with CRISPR-Cas9 in human pluripotent stem cells. Thus,
the present study provides a novel insight into species-specific mechanisms for the choice of DNA
repair pathways.

Keywords: common marmoset; pluripotent stem cells; homologous recombination

1. Introduction

Repairing DNA double strand breaks (DSBs) is indispensable for maintaining genomic
stability [1]. From prokaryotes to eukaryotes, conserved repair pathways for DSBs have
been identified: nonhomologous end-joining (NHEJ); homology-directed repair (HDR),
including homologous recombination (HR); and microhomology-mediated end-joining
(MMEJ), also known as alternative nonhomologous end-joining. The choice of which repair
pathways are employed relies on a variety of factors, including DSB complexity, cell type,
cell cycle, and species [1–4].

The genome editing CRISPR-Cas9 technology [5] relies on endogenous pathways for
repairing DSBs in cells [6]. Although the combination of CRISPR-Cas9 and double-stranded
DNA (dsDNA) donor enables precisely targeted integration or deletion of long sequences
by HDR, the efficiency of this process is limited by competing DSB repair pathways, mainly
NHEJ. Previous studies have demonstrated that the efficiency of Cas9-meditated HDR
can be modified through use of small molecules that stimulate the HDR-related factor
RAD51 [7,8] or that inhibit the NHEJ-related factor LIG4 [9,10]. Additionally, modification
of Cas9 by fusion with DSB repair-related factors such as RAD52, CtIP, MRE11A [11–13], or
a dominant negative mutant of P53BP1 [14] can improve HDR efficiency. Moreover, overex-
pression of several DSB-related genes, including RAD52 [12] and RAD18 [15], reportedly
contributed to enhancement of Cas9-mediated HDR efficiency.

Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs)
and induced pluripotent stem cells (hiPSCs), hold considerable promise for a wide range of
applications in the fields of regenerative medicine and stem cell biology [16–19]. Moreover,
knock-in gene targeting (KI) mediated by HR in PSCs offers a powerful approach to the di-
rected differentiation of PSCs [20–24], disease modeling [25–27], and gene therapy [28–30].
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However, although the application of CRISPR-Cas9 greatly facilitates HR-mediated KI in
hPSCs, there is still room for further improvement, such as enhancing the ratio of homolo-
gous recombinants to total drug-resistant clones, including non-recombinants (genomic
integration of a drug resistance cassette by NHEJ-mediated random integration; hereinafter
HR ratio). In hPSCs, several studies have shown that even with use of site-specific nucleases,
such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TAL-
ENs), and CRISPR-Cas9, the HR ratio is less than 50% and generally closer to 30% [31–34].
Therefore, to achieve robust KI in various loci in hPSCs, there is an urgent need for augment-
ing the HR ratio; ultimately, complete KI without genotyping confirmation may transform
the current status of genome editing technologies.

In a previous study [35], we showed that common marmoset (marmoset; Callithrix
jacchus) ESCs (cmESCs) harbor an unusual facility for DSB repair, which is characterized
by a high HR ratio. In KI experiments using a PLP1-EGFP vector targeting the 1st exon
of the PLP1 gene, we found rates of homologous recombinants of 90% with the use of
CRISPR-Cas9 and 80% without its use [35]. Moreover, we observed high HR ratios in a
variety of other loci, including ACTB, PLP1 (targeting the 2nd, 5th, and 6th exons), FOXP2,
PRDM1, DPPA3 [20,35,36], and NANOS3 (Figure S1). Based on these results, we have now
explored possible mechanisms for the HR-biased DSB repair in cmESCs. Through use of
interspecies analyses of gene expression, we have identified factors that enhance the HR
ratio with CRISPR-Cas9 in hiPSCs by ectopic overexpression.

2. Materials and Methods
2.1. Ethical Statement

Recombinant DNA experiments were approved by the Recombinant DNA Experiment
Safety Committee of Keio University (approval number: 27-023 and 27-034).

2.2. Vector Construction

The human hypoxanthine-guanine phosphoribosyltransferase (HPRT) targeting vector
HPRT-TV was constructed using the GKI-2.0 system [20]. In brief, based on information
from the NCBI genome browser (GRCh38.p13, Chromosome X—NC_000023.11: 134460165...
134500668), the 5’ homology arm (3.0 kb) and 3’ homology arm (12.8 kb), which are around
the 2nd intron of the gene, were subcloned into pDONR-P3P1r (Addgene #141014) and
pDONR-P2rP4 (Addgene #141015), respectively, using the Gateway cloning system (BP
reaction). The targeting vector containing a PGK-Neo drug-resistance cassette flanked by
the HPRT homology arms was constructed by Gateway LR reaction using pENTR-L1-
PGK-Neo-L2 (Addgene #141007), pUC-DEST-R3R4® (Addgene #141010), and the Gateway
LR Clonase II Enzyme Mix (Thermo Fisher Scientific, Waltham, MA, USA). In addition, a
human PROX1-Venus targeting vector (PROX1-TV) was modified from the PROX1-tdTomato
vector described in a previous study [20]. The Cas9/sgRNA vector for human PROX1 locus
was also described in the previous study.

A marmoset NANOS3-Venus targeting vector was constructed using the GKI-3.0
system [20], which contained the monomeric Venus (an improved version of yellow fluores-
cent protein) [37,38] encoding gene and a puromycin/thymidine kinase positive/negative
selection cassette flanked by homology arms of the marmoset NANOS3 gene. In brief,
based on information from the NCBI genome browser (GCF_000004665.1, Chromosome
22—NC_013917.1: 13114410 . . . 13117680), the 5’ homology arm (540 bp) and 3’ homol-
ogy arm (542 bp) were cloned into pENTR2-L3-SfoI-Venus-PBL-R1 (Addgene #141019)
and pDONR-P2rP4 (Addgene #141015), respectively, using the Seamless Cloning method
(Thermo Fisher Scientific). The targeting vector containing a PGK-PuroTK cassette flanked
by the corresponding homology arms was constructed by Gateway LR reaction using
pENTR-L1-PGK-PuroTK-L2 (Addgene #141005) and pUC-DEST-R3R4(R) (Addgene #141010),
the Gateway LR Clonase II Enzyme Mix.
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PX459 was used as a Cas9/gRNA vector [39]; the vector contained either the human
HPRT sgRNA sequence TGTTTCAATGAGAGCATTAC or the marmoset NANOS3 sgRNA
sequence TCCTTCCATGTCCACCTAGG.

RAD51, RAD51C, and RAD51D overexpression vectors were constructed using a
pDONR-R4-CAG-pA-L2 backbone (kindly provided by Takefumi Sone at Keio University).
BRCA1 and BRCA2 overexpression vectors were constructed using pcBRCA1-385 (a gift
from Lawrence Brody, Addgene plasmid #61586) and pcDNA3 236HSC WT (BRCA2) (a gift
from Mien-Chie Hung, Addgene plasmid #16246) [40], respectively, as backbones. SV40
promoter-driven neomycin-resistance cassettes in pcBRCA1-385 and pcDNA3 236HSC WT
(BRCA2) were truncated and destroyed by SmaI and SfoI digestion and subsequent ligation.

2.3. Cell Culture, Transfection, and Drug Selection

A total of three cmESC lines were used: No. 40 (CMES40) and No. 20 (CMES20) [41],
and DSY127 [36]; all three cell lines were cultured as described previously [35]. Vector trans-
fection into cmESCs and puromycin selection were performed as described previously [35].

A total of three human iPSC lines, 201B7 [42], WD39 [43] and etKA4 [44], and a human
ESC line KhES-1 [45] were used; the cell lines were cultured as described previously [44]. In
brief, PSCs were cultured on mitomycin-C-treated G418-resistant SNL76/7 feeder cells [46]
in ESM under 20% O2 and 5% CO2 at 37 ◦C. ESM consisted of 1× DMEM/F12 (Thermo
Fisher Scientific) supplemented with 20% Knockout Serum Replacement (Thermo Fisher
Scientific), 0.1 mM MEM Non-Essential Amino Acids Solution (Nacalai Tesque, Tokyo,
Japan), 1 mM L-glutamine (L-glu; Nacalai Tesque), 0.1 mM 2-mercaptoethanol (2-ME;
Sigma, St. Louis, MO, USA), 100 U/mL penicillin and 100 µg/mL streptomycin sulfate
(Nacalai Tesque), and 4 ng/mL basic fibroblast growth factor (Peprotech).

For passaging, cells were pre-treated with 10 µM Rho-associated coiled-coil-containing
protein kinase inhibitor Y-27632 (Wako, Tokyo, Japan) in ESM at 37 ◦C for an hour. The
cells were then incubated in CTK solution (Reprocell) at 37 ◦C for 30 s, mechanically
separated from feeder cells, and dissociated by gentle pipetting. The isolated cells were
plated onto new feeder cells in ESM supplemented with 10 µM Y-27632. After twenty-four
hours, Y-27632 was removed from the medium. Medium change was performed daily.
Prior to the seeding of hESCs and iPSCs, feeder cells were seeded onto a gelatin-coated
100 mm cell culture dish in Dulbecco’s modified Eagle’s medium (Thermo Fisher Scientific)
supplemented with 10% inactivated fetal bovine serum (Thermo Fisher Scientific).

For transfection (Day 0), we used the NEPA21 Super Electroporator (Nepagene) as
described previously [20]. A total of ten µg of HPRT-TV and 5 µg each of the Cas9/gRNA
and overexpression vectors were diluted in 100 µl of OPTI-MEM (Thermo Fisher Scien-
tific). The etKA4 hiPSCs (>1 × 107 cells) were suspended in the solution and subjected
to electroporation. Transfected cells were plated onto new mitomycin-C-treated G418-
resistant SNL76/7 feeder cells on a 100-mm cell culture dish in ESM supplemented with
10 µM Y-27632. On Day 2, selection was initiated by adding 100 ng/mL G418 (an analog
of neomycin; Sigma) to the ESM; selection was performed for six days. On Day 8, the
concentration of G418 was doubled, and selection was continued for an additional three
days. On Day 11, the number of G418-resistant colonies was counted. The cells were then
subjected to further selection in 10 µM 6-thioguanine (6TG) for five days. On Day 16, the
number of 6TG-resistant colonies was counted. Experimental data were only included
when at least 80 G418-resistant colonies survived.

For cell cycle analysis, we used the Fucci2.1 system [47] by lentiviral transfection of
CSII-EF-mCherry-hCdt1 and CSII-EF-AmCyan-hGem to the etKA4 iPSCs, and one double-
positive clone was chosen and used for further transfection of no-DNA (termed as “sham”)
or the BRCA2 vector as described above. We used a FACSVerse (BD Biosciences, New
Jersey, United States) for the cell cycle analysis, with 7-AAD (Thermo Fisher Scientific) for
removing dead cells.
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2.4. Genotyping

Southern blotting was performed as described previously [35] using the digoxigenin
(DIG) probe system. Genomic DNA samples were digested with BglII and EcoRV by
overnight 37 ◦C incubation. We used the PCR DIG Probe Synthesis Kit (Roche) for
DIG-labeled probe production. The human HPRT-specific probe (492 bp) was ampli-
fied from human genomic DNA using the primers TGCATATCTGGGATGAACTCTGG and
AAATGGGACATTTGTGTGTCACC. Molecular sizes were confirmed using DIG-labeled
DNA Molecular Weight Marker II (λDNA with Hind III digestion) (Sigma; #11218590910).
Genotyping PCR and DNA sequencing analysis (Figure S1, S5 and S6) were performed as
described previously [20].

2.5. Quantitative Reverse-Transcription PCR (qPCR)

RNA extraction, reverse transcription, and PCR were performed as described previ-
ously [35]. A total of three biological and technical repetitions of the qPCR analyses were
performed. Quantification was performed using the relative standard curve method and
endogenous expression of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as an
internal control. Primers were newly or previously designed to amplify both human and
marmoset cDNA sequences; however, they did not amplify murine cDNA sequences
to avoid contamination due to the use of MEFs for PSC culture [35,48]. The follow-
ing primers were used: GAPDH-forward (GCACCGTCAAGGCTGAGAAC), GAPDH-
reverse (TGGTGAAGACGCCAGTGGA), RAD51-forward (GTCACCTGCCAGCTTCC-
CATT), RAD51-reverse (AGCAGCCGTTCTGGCCTAAAG), RAD51C-forward (CGCT-
GTCGTGACTACACAGAGT), RAD51C-reverse (AGGCTGATCATTTGCTGGGCT), RAD51
D-forward (GGTGCTGCTGGCTCAGTTCT), RAD51D-reverse (CGCTACCTGGGCCTCC-
TACA), BRCA1-forward (ACCCGAGAGTGGGTGTTGGA), BRCA1-reverse (GCTGTGGGG
GATCTGGGGTA), BRCA2-forward (TGGGCTCTCCTGATGCCTGTA), and BRCA2-reverse
(GTATACCAGCGAGCAGGCCG).

2.6. RNA-Seq Analysis

Transcriptome data were obtained from cmESCs as described previously (GSE138944) [49].
We used the deposited RNA-seq data from human ESCs and iPSCs (GSE53096) [50] as
a reference. Marmoset mRNA was sequenced on an Illumina HiSeq2500 and the ob-
tained nucleotide sequences were mapped against the Callithrix jacchus genome (Cal-
lithrix_jacchus_cj1700_1.1; https://www.ncbi.nlm.nih.gov/assembly/GCF_009663435.1/
(accessed on 1 December 2021)) by STAR (ver.2.5.3a). The number of mapped reads was
counted by featureCounts (1.5.2) and simultaneously normalized by the TMM method in the
edgeR package in R [51]. The normalized expression levels processed to log2 and z-scoring
were visualized using the pheatmap library. In the statistical analysis, Welch’s t-test was
performed between normalized gene expression levels of human samples and marmoset
samples, and the resulting p values were processed with Bonferroni correction to obtain
the adjusted p value. In the present study, adjusted p values less than 0.05 were defined as
significant; adjusted p values processed to −log10 were visualized on the vertical axis by
the ggplot2 library in R.

2.7. Western Blotting

Western blotting was performed using the Wes—Automated Western Blots with
Simple Western (ProteinSimple) according to the manufacturer’s introductions. As primary
antibodies, we used polyclonal Rad51 H-92 antibody (1:50 dilution; sc-8349; Santa Cruz)
and monoclonal α-tubulin antibody (1:25000 dilution; T9026; Sigma), which was used as
an internal control for RAD51 protein quantification. ImageJ software was used to quantify
the intensities of Rad51 (37 kDa) and α-tubulin (50 kDa) bands, and then RAD51 expression
was normalized against α-tubulin expression.

https://www.ncbi.nlm.nih.gov/assembly/GCF_009663435.1/
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2.8. Statistical Analysis

All data in this study are expressed as means ± S.D. Statistically significant differences
were determined using Welch’s t-test; p values < 0.05 are designated by *; p values <0.01
are designated by **, and are interpreted as statistically significant.

3. Results
3.1. Comparative Transcriptomic Analysis of Human and Marmoset PSCs

Previously, we reported that cmESCs have an innately high HR activity [35]. In
particular, extraordinarily high HR ratios for the 1st exon of PLP1 in a targeting experiment
(92.3% with CRISPR-Cas9 against 88.6% without its use) were observed. We also observed
high HR ratios using CRISPR-Cas9 in other loci, such as ACTB, PLP1 (targeting the 2nd,
5th, and 6th exons), FOXP2, PRDM1, DPPA3, and NANOS3 [20,35,36] (see Figure S1). Here,
we investigated possible factors that might underlie this phenomenon.

Initially, we investigated HR- and NHEJ-related gene expression in human and mar-
moset PSCs. In hPSCs, several studies have shown that the HR ratio is less than 50%,
generally around 30%, even with use of site-specific nucleases such as ZFN, TALEN, and
CRISPR-Cas9 [31–34]. We used RNA-seq data of hESCs iPSCs deposited in databases [50]
to compare gene expression with cmESCs as described previously [49]. We merged and
normalized PSC RNA-seq data derived from both species.

HR- and NHEJ-related genes that can be used for comparing fold changes between
hPSCs and cmESCs have been listed by hsa03440 and ko03450 in KEGG (https://www.
genome.jp/kegg/pathway.html (accessed on 1 December 2021)). Some related genes are
absent from the gene lists due to the incomplete gene assembly of the latest version of
the marmoset genome (Callithrix_jacchus_cj1700_1.1). Here, we analyzed 37 HR-related
and 12 NHEJ-related genes (Figure 1A–D, Figures S2 and S3). As summarized in Supple-
mentary Data S1, eleven genes (RAD51D, BRCA1, BRCA2, BABAM1, RAD51, RAD51C,
POLD2, RAD51B, MUS81, POLD1, and XRCC3) were significantly up-regulated in cmESCs
(Figure 1A), whereas eleven others (RPA2, ATM, XRCC2, SSBP1, RPA3, PALB2, BRIP1,
NBN, RAD54B, UMC1, and BRCC3) were down-regulated (Figure 1B). With regard to
NHEJ-related genes, six genes (XRCC6, PRKDC, POLM, XRCC5, RAD50, and DNTT) were
significantly up-regulated in cmESCs (Figure 1C), and five others (FEN1, DOLRE1C, NHEJ1,
XRCC4, and POLL) were down-regulated (Figure 1D). In light of the high HR activity
in cmESCs, we then focused on HR-related genes that showed increased expression in
cmESCs compared to hPSCs. To validate the results of the transcriptome analysis, we
performed an interspecies qPCR analysis using primer sets specifically designed for these
human and marmoset genes. We also designed primers specific for human and marmoset
GAPDH for normalization. Preliminary screens using the designed primers showed that an
interspecies comparison of expressions was not feasible for several genes (BABAM1 and
POLD1/2) owing to a lack of accuracy based on the post-qPCR melt curve analysis (data
not shown).

By qPCR using total RNAs from three cmESC lines (No. 40, No. 20, and DSY127)
and four hPSC lines (201B7, WD39, KhES-1, and etKA4), we confirmed the significantly
higher expression of RAD51D, BRCA1, BRCA2, RAD51C, and RAD51 in cmESCs compared
to hPSCs (Figure 2). In particular, RAD51C and RAD51D expression in cmESCs was
approximately 10 and 7 times higher, respectively, than those of hPSCs (Figure 2, top).
Quantitative Western blotting confirmed the high RAD51 expression in cmESCs at the
protein level (Figure S4A,B).

3.2. Enhancement of the HR and RI Ratio with CRISPR-Cas9 in hiPSCs by Overexpression of the
Defined Factors

To explore the effect of high expression of the five HR-related genes (RAD51D,
RAD51C, BRCA2, RAD51, and BRCA1) in cmESCs, we induced overexpression of the
genes in a gene targeting experiment with HPRT in the male hiPSC line etKA4 [44]. The
HPRT protein catalyzes the salvage pathway, synthesizing inosine monophosphate and

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
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guanosine monophosphate from hypoxanthine and guanine, respectively [52]. HPRT de-
ficiency results in the loss of susceptibility for 6TG, a toxic analog of guanine [53,54]. We
selected the HPRT targeting system as it has been frequently used to assess the HR ratio in
mammalian male PSCs [24,55,56].
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Figure 1. Differential expression of DSB repair genes in human and marmoset PSCs. (A,B) HR-related
genes that are significantly upregulated or downregulated in cmESCs compared to those in hESCs
and iPSCs. Gene groups are referenced to KEGG hsa03440. Y-axis shows adjusted p-values after
−log10 treatment. (C,D) NHEJ-related genes showing significantly higher or lower expression levels
in cmESCs compared to hESCs and iPSCs. Gene groups refer to KEGG ko03450. Y-axis shows the
adjusted p-value after −log10 treatment.

We constructed a knock-in/knock-out system for the human HPRT gene, which is
located on the X chromosome (Figure 3A,B). The targeting vector (HPRT-TV) harbored
a neomycin-resistance (PGK-Neo) cassette flanked by 3.0 kb 5’ homology and 12.8 kb 3’
homology arms (Figure 3A). Following KI, the 2nd exon of HPRT was completely replaced
with a PGK-Neo cassette, which resulted in the loss of functional mRNA expression from
the HPRTNeo allele (Figure 3A). Initial G418 selection (both homologous recombinants and
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non-recombinants survived) and subsequent 6TG selection (only homologous recombinants
survived) enabled robust quantification of the HR ratio without the necessity of genotyping
individual clones (Figure 3B). In addition, we constructed a PX459 (Addgene #62988)-based
Cas9/gRNA vector [39] containing the sgRNA sequence for the 2nd intron of HPRT, which
did not recognize HPRT-TV.
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Figure 2. Interspecies qPCR analysis for RAD51C, RAD51D, BRCA1, BRCA2, and RAD51. RQ values
of each human and marmoset sample (biological and technical triplicates) were used for the statistical
significance tests (**, p value < 0.01).

As it is possible that the genomic cleavage of the HPRT 2nd intron after transfection of
the Cas9/gRNA vector and subsequent NHEJ or MMEJ-mediated introduction of small and
large deletion could produce an undesired knock-out allele, we initially tested transfection
of only the Cas9/gRNA vector into the etKA4 hiPSCs. In this initial test, no 6TG-resistant
colonies were obtained from 1 × 107 transfected cells (n = 3), showing that the NHEJ or
MMEJ-mediated deletion in the intronic region has a negligible effect with regard to the
assessment of the HR ratio in the hiPSCs.

After co-transfection of the Cas9/gRNA vector and HPRT-TV, and serial G418 and
6TG selection, we confirmed that all analyzed G418 and 6TG-resistant (NeoR+6TGR) clones
were hemizygous HPRTNeo recombinants by Southern blotting (Figure 3C).

Because we wished to evaluate the effects of single and multiple overexpression of the
five genes on HR ratios (Figure 3B), we used a CAG-EGFP vector [49] as a mock control for
the overexpression vectors. Initially, we transfected HPRT-TV and each overexpression vec-
tor (or mock) and quantified HR ratios without CRISPR-Cas9. None of the attempts at single
and multiple overexpression of the five genes enhanced HR ratios significantly (Figure 3D;
mock, 0.0033 ± 0.0018; +RAD51, 0.0060 ± 0.0040; +BRCA1, 0.0060 ± 0.0030; +BRCA2,
0.0026 ± 0.0043; +RAD51C, 0.0052 ± 0.0052; +RAD51D, 0.0048 ± 0.0035; +RAD51C/D,
0.0045 ± 0.0029; +BRCA1/2&RAD51C/D, 0.023 ± 0.023; n = 4).

Next, we quantified HR ratios with use of CRISPR-Cas9. When the mock vector was
transfected with HRPT-TV and the Cas9/gRNA vector, an HR ratio of approximately 30%
was achieved (Figure 3D; 0.336 ± 0.026, n = 4); this HR ratio is comparable with previous
results using hPSCs [31]. Overexpression of only RAD51 did not result in a significant
enhancement of the HR ratio (0.256 ± 0.163, n = 3).
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Figure 3. HPRT targeting in hiPSCs. (A) Graphical schematics of the wild-type human HPRT locus
(HPRTWT; top), HPRT targeting vector (middle), and recombinant HPRT locus (HPRTNeo; bottom).
Black boxes indicate endogenous exons of the HPRT gene (upper numbers indicate each exon number).
PGK, mouse phosphoglycerate kinase 1 promoter; Neo, neomycin resistance gene; pA, polyadenylation signal
sequence; b, BglII recognition site; v, EcoRV recognition site; p, the probe site for Southern blotting
analysis. (B) Graphical schematic of the HPRT targeting experiment using hiPSCs. CAG, CAG
promoter; CMV, human cytomegalovirus immediate early enhancer and promoter. (C) Southern blotting
analysis of genomic DNA derived from G418/6TG-double-resistant five clones and wild-type (WT)
hiPSCs. M, DNA marker (λDNA with Hind III digestion). (D) Resultant HR and RI ratios in the
HPRT targeting experiments. Values were calculated as 6TG+NeoR colony number and NeoR colony
number. Asterisks indicate statistical significance in comparisons of Cas9/gRNA (+) samples of
control versus Cas9/gRNA (+) mock (+). Asterisks show the statistical significance of Cas9/gRNA(+)
samples compared to the mock; *, p value < 0.05; **, p value < 0.01.
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In comparison to use of the mock, single overexpression of BRCA1 or BRCA2
surprisingly resulted in a significant enhancement of the HR ratio (Figure 3D; +BRCA1,
0.590 ± 0.036; +BRCA2, 0.582 ± 0.034; n = 3). In addition, co-overexpression of BRCA1
and BRCA2 also enhanced the HR ratio (0.563 ± 0.049, n = 3), while co-overexpression of
BRCA1/2 and RAD51 did not produce an enhanced HR ratio (0.265 ± 0.049, n = 3).

Single overexpression of RAD51C or RAD51D did not result in a significant enhance-
ment of the HR ratio (Figure 3D; +RAD51C, 0.468 ± 0.051; +RAD51D, 0.414 ± 0.073; n = 4).
However, when the two genes were co-overexpressed, we observed an enhanced HR
ratio (0.560 ± 0.065, n = 3); however, this effect was not observed when RAD51 was also
co-overexpressed (0.185 ± 0.03, n = 3).

We tested multiple sets of overexpression of the five genes (Figure 3D). Except
when RAD51 was co-transfected with the other four genes (0.388 ± 0.032, n = 3), co-
overexpression of RAD51C/D and BRCA1/2 resulted in significant enhancement of HR
ratios: +RAD51C and BRCA1, 0.681 ± 0.062; +RAD51C and BRCA2, 0.706 ± 0.080;
+RAD51D and BRCA1, 0.607 ± 0.048; +RAD51D and BRCA2, 0.529 ± 0.006; +RAD51C
and BRCA1/2, 0.516 ± 0.021; +RAD51D and BRCA1/2, 0.540 ± 0.024; +RAD51C/D and
BRCA1, 0.498 ± 0.048; +RAD51C/D and BRCA2, 0.539 ± 0.044 (n = 3 for all combinations).
Finally, we demonstrated that co-overexpression of the factors BRCA1, BRCA2, RAD51C,
and RAD51D resulted in a significant enhancement of the HR ratio (0.686 ± 0.061, n = 3).

Last, we performed additional KI experiments in another locus, PROX1. We used the
Cas9/gRNA vector and PROX1-Venus targeting vector (PROX1-TV), which was slightly
modified from a previous study [20]. By the construct, 2A-Venus and a puromycin-resistance
cassette are introduced into the termination codon (exon 5) of the PROX1 gene (Figure S5A).
We transfected the Cas9/gRNA and PROX1-TV with or without the overexpression vectors
of five (RAD51, RAD51C, RAD51D, BRCA1, and BRCA2) factors. Following puromycin se-
lection, hiPSC colonies, putative KI, or WT clones were genotyped by PCR (Figure S5B). The
results of the experiments are summarized in Figure S5C—3/12 for control (no overexpres-
sion), 5/12 for RAD51 overexpression, 6/12 for RAD51C overexpression, 7/12 for RAD51D
or BRCA2 overexpression, 8/12 for BRCA1, or four factor (RAD51C/D and BRCA1/2) over-
expression. Again, the overexpression of four factors enhanced KI efficiency in hiPSCs,
which shows the robust applicability of the technology for further applications. The precise
integration of 2A-Venus was confirmed by Sanger Sequencing (Figure S5D). The precise
knock-in at the HPRT locus (described in Figure 3) was also confirmed by genotyping PCR
and Sanger sequencing (Figures S6 and S7). We also note that the overexpression of BRCA2
may have directly or indirectly affected the perturbation of hiPSCs’ cell cycle (Figure S8).

4. Discussion

In this study, through comparative analyses of gene expression in human and mar-
moset PSCs, we have identified four genes (RAD51C, RAD51D, BRCA1, and BRCA2) whose
single and multiple overexpression increased HR ratios in hiPSCs. Intriguingly, we also
observed that overexpression of RAD51 did not enhance the HR ratio in hiPSCs; an alterna-
tive explanation is that RAD51 overexpression may cancel the effect of the enhancement of
the HR ratio by the other four genes. In the Supplementary Discussion, we further discuss
how these genes involve in the HR machinery, and the discrepancy of the effect of RAD51
overexpression from the part of previous studies. Results presented here also suggest the
possibility of a vice versa effect. In fact, we demonstrated the overexpression of four factors
(RAD51C, RAD51D, BRCA1, and BRCA2), which were highly expressed in cmESCs, and
which contributed to the enhancement of HR ratios in hPSCs. Thus, it is also possible that
overexpression of several NHEJ factors, which were lowly expressed in cmESCs (including
FEN1, DCLRE1C (Artemis), NHEJ1, and XRCC4), may contribute to decreased HR ratios in
hPSCs. Further analyses are required to evaluate the robust effects of the four HR factors,
such as effects on KI in other loci, and in different cell lines and species; nevertheless, our
investigation has demonstrated that overexpression of these factors may ameliorate the HR
ratio with CRISPR-Cas9 in hiPSCs. We also note that, in the present study, we could not
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scrutinize the risk of HR factor overexpression for the usage of iPSCs in other experimental
settings, including transplantation and drug-screening analysis.

In clinical settings, although knock-in technology in donor PSCs is beneficial due to
the highly customizability, constitutive overexpression of exogenous gene(s) may impose
potential risks, including tumorigenicity and genome instability. In this context, the critical
time window of HR-factor overexpression for increasing HR ratios should be assessed in
further studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11030360/s1, Figure S1: Gene targeting in the marmoset
NANOS3 gene locus; Figure S2: Normalized genes expression of HR-related genes in human and
marmoset PSCs; Figure S3: Normalized genes expression of NHEJ-related genes in human and
marmoset PSCs; Figure S4: Western blotting analysis of RAD51 protein in human and marmoset
PSCs; Figure S5: Gene targeting in the human PROX1 gene locus; Figure S6: Genotyping PCR analysis
of WT and G418/6-TG-resistant iPSCs in the HPRT locus; Figure S7: DNA sequencing analysis of the
PCR-amplified HPRTNeo allele in G418 and 6-TG resistant iPSCs; Figure S8: Cell cycle analysis using
FACS and Fucci2.1-transfected etKA iPSCs; Supplementary Discussion and References.
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