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Abstract: Cells exposed to ionizing radiation undergo a series of complex responses, including DNA
damage, reproductive cell death, and altered proliferation states, which are all linked to cell cycle
dynamics. For many years, a great deal of research has been conducted on cell cycle checkpoints
and their regulators in mammalian cells in response to high-dose exposures to ionizing radiation.
However, it is unclear how low-dose ionizing radiation (LDIR) regulates the cell cycle progression.
A growing body of evidence demonstrates that LDIR may have profound effects on cellular functions.
In this review, we summarize the current understanding of how LDIR (of up to 200 mGy) regulates
the cell cycle and cell-cycle-associated proteins in various cellular settings. In light of current findings,
we also illustrate the conceptual function and possible dichotomous role of p21Waf1, a transcriptional
target of p53, in response to LDIR.
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1. Introduction

It is generally accepted that ionizing radiation is harmful to living organisms, including
humans, particularly at high doses [1]. Exposure to ionizing radiation can lead to two
broad categories of adverse health effects: Deterministic effects that occur above a threshold
dose and whose severity is dose related (e.g., skin reaction), and stochastic effects that
have neither a threshold dose nor their severity is dose related (e.g., cancer). However, the
probability of incidence of either effect increases with dose [1].

The use of ionizing radiation in the treatment of cancer began shortly after the discov-
ery of X-rays in 1895. In 1896, Emil Grubbe used X-rays to treat a recurrent carcinoma of the
breast [2]. Currently, controlled utilization of HDIR is a standard option in treating 20–60%
of all new cancer cases [3,4]. However, in the process, normal tissue toxicity, followed by
the emergence of second cancers, may arise due to the genotoxic properties of HDIR. Per-
manent changes in the coding sequence of essential genes may lead to a cascade of events
associated with the neoplastic transformation of normal tissue that is unavoidably exposed.

HDIR has well-documented and evident impacts on biological processes, molecular
pathways, and cellular functions, but the effect of LDIR on human health remains unclear.
Human beings are inevitably exposed throughout their lives to low doses of radiation from
natural sources (such as cosmic rays and radon gas) as well as human-made sources. A
clear understanding of how LDIR impacts cellular processes and molecular mechanisms is
becoming increasingly important, as LDIR is frequently used in research, industrial prod-
ucts, security, and modern medicine. Particularly, per-capita medical radiation exposure
has been on the rise at an alarming rate over the last few decades, to the point where it is
now roughly equivalent to natural background radiation exposure [5,6].

A growing body of evidence supports that LDIR exposure results in distinct molecular-,
cellular-, and tissue-level responses when compared with those observed after HDIR ex-
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posure [7]. In contrast to HDIR, which causes numerous alterations to macromolecules,
including DNA/RNA damage, robust modulation of cell signaling pathways, and degener-
ative/carcinogenic effects, LDIR may promote hormesis. Radiation-induced homeostasis,
often termed hormesis, is a theoretical concept that suggests that exposure to LDIR stimu-
lates beneficial pathways. Several reports indicate that the hormetic process boosts cell sur-
vival and growth, improves immune functions, and enhances cytogenetic protection [8,9].
Most population-based epidemiological studies do not show a threshold for cancer inci-
dence; however, at LDIR doses below 100 mGy, there is uncertainty as to whether significant
increases in cancer incidence occur in humans. Intriguingly, accumulating experimental
evidence indicates that the linear no-threshold (LNT) hypothesis cannot be supported
by the biological findings following LDIR exposure, demonstrating that LDIR exposure
rather reduces the risk of spontaneous cancer [10–12]. Even though the phenomenon is not
universal, multiple cellular and molecular data support the notion that LDIR-mediated
adaptive responses induce hormesis and cell proliferation in normal cells, but not in cancer
cells [13–15]. A half-century-old study first described how normal cells respond differently
to LDIR exposure than cancerous cells of the same species; J.B. Little showed in 1968 that
normal cells exhibited a transient G1 arrest after 100 mGy, implying that delaying in the
cell cycle following LDIR exposure commences DNA synthesis machinery for subsequent
cell proliferation [16]. Another study demonstrated that the downregulation of several
cell-cycle-regulated genes occurs in normal human fibroblasts even at 100 mGy exposure
of X-rays and cesium-137 γ-rays, which occurs in a p53-dependent manner and requires its
effector p21Waf1 [17]. Coincidently, exposure of the same cells to doses ≤100 mGy of γ-rays
upregulates the level of a protein (TCTP) involved in DNA repair [18].

The cell cycle pathway is one of the pivotal pathways that has been intricately con-
nected with the cellular responses to radiation for many years. HDIR negatively impacts
the progression of the cell cycle, and irreparable DNA damage caused by radiation causes
the cycle to stall [19–22]. Even though there have been recent breakthroughs in under-
standing the molecular mechanisms of the cellular responses to LDIR, its role in the cell
cycle arrests/enhanced progression remains unclear in different cellular contexts. There
is increasing evidence that LDIR activates multiple signaling pathways to promote cell
proliferation (e.g., activation of the Raf, AKT pathways) [23,24]. Through an intricate
communication between DNA damage and cell cycle checkpoints, LDIR can confer radio-
protection to normal cells as part of the adaptive response [25]. Several cell cycle regulators
have been implicated in adaptive response following LDIR exposure via distinct mech-
anisms; for instance, in human keratinocytes, LDIR triggers cyclin D1 accumulation in
the cytoplasm and regulates apoptosis [26]. The cell cycle arrest caused by LDR exposure
was observed in human lymphoblast cells as an adaptive response that requires wild-type
p53 [27]. The expression of p21Waf1, a cyclin-dependent kinase inhibitor that is regulated by
p53, has also been reported to increase in human U397 cells and normal breast fibroblasts
following LDIR exposure [28,29]. Another study confirmed transient and permanent G1
cell cycle arrest in human fibroblast populations after LDIR exposure (alpha particles) at a
dose of 10 mGy, which was accompanied by increased p53 and p21Waf1 expression [30].

Increasing numbers of studies have been conducted to understand how LDIR in-
duces hormesis, adaptive responses to subsequent challenge exposures, radioresistance,
bystander effects, and genomic instability in various cellular and radiation exposure con-
texts. Our goal is to summarize recent advances related to the role of LDIR in cell cycle
regulation. This review will also discuss how different cell cycle regulators are modulated
by LDIR exposure in normal, cancerous, and stem cells. One of the major problems in LDIR
research is that arbitrary exposure ranges are used on different cells and in different stud-
ies, making it challenging to extrapolate consistent outcomes. Therefore, this review has
considered exposure of up to 200 mGy as LDIR to analyze cell cycle effects. Furthermore, a
new conceptual mechanism is proposed to explain how LDIR differentially regulates the
nucleocytoplasmic shuttling of p21, a key cell cycle regulator, when compared with HDIR.
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2. Molecular Mechanisms of Low-Dose Ionizing Radiation
2.1. Controversy over the Linear No-Threshold Model

The linear no-threshold (LNT) model is commonly used to estimate the cancer risk
assessment caused by ionizing radiation exposure and is based on extensive studies of
the Japanese atomic bomb survivors. According to the LNT model, the radiation-induced
radiological risk for cancer follows a linear relationship with no threshold between absorbed
radiation dose and the incidence of cancer [31]. Several, mostly epidemiological, studies
using HDIR and LDIR (below 100 mGy) have endorsed the LNT model to predict the risk
of cancer or other radiological diseases [32–34]. An increasing number of experimental and
epidemiological studies highlight inherent uncertainty in the LNT model, particularly at
lower dose points, which raises controversy regarding the validity of this model [11,35,36].
In fact, nonlinear patterns are evident at low levels of radiation, demonstrating deterministic
beneficial effects via activation of protective mechanisms that defend against disease, also
known as hormesis [37–40].

2.2. Radiation Hormesis

Despite extensive studies on the chemical hormesis model, a specific radiation horme-
sis dose–response model is necessary for a better understanding of the cellular response
to LDIR. Growing scientific evidence suggests that radiation hormesis caused by LDIR
confers beneficial effects that outweigh any harmful, thereby reducing the risk of can-
cer [10,41,42]. Experimental evidence suggests that hormesis induced by LDIR provides
a protective effect by increasing the proliferation of normal cells and stem cells, subse-
quent to a transient cell cycle arrest [10,36–38]. Many signaling pathways are activated in
LDIR-induced hormesis, including Raf, AKT, ERK MAPK, and Wnt, which promote cell
proliferation [14,23,43,44]. LDIR induces hormesis by triggering the DNA-damage repair
mechanism and an augmented antioxidant response against reactive oxygen species (ROS),
which protects chromosomes from mutations, potentially preventing neoplastic trans-
formation [9,12,45,46]. Experimental evidence demonstrates that LDIR induced hormesis
enhances innate immunity (through an increased abundance of dendritic cells, natural killer
cells, and macrophage cells) and adaptive immunity (through CD4+ T cells, CD8+ T cells,
and regulatory T cells), which helps to combat cancer [47–50]. Furthermore, LDIR-induced
hormesis was also associated with significant modulations of cytokines or chemokines
production; for example, an increase in stimulatory cytokines and a decrease in immuno-
suppressive cytokines promote the proliferation of immune cells and confers anticancer
immunity [49]. Figure 1 summarizes our current knowledge of LDIR-induced hormesis.
Even so, how the cell cycle modulation in the context of LDIR confers hormesis remains
unclear and, therefore, needs to be further investigated.

2.3. Biological Responses Associated with Low-Dose Ionizing Radiation

To better comprehend the potential beneficial or harmful impacts of LDIR on hu-
man health, radiation researchers have been increasingly focusing on several radiation
responses such as adaptive responses, bystander effects, hypersensitivity, radioresistance,
and genomic instability [51].

In adaptive response, a low priming radiation dose can stimulate intrinsic stress
response mechanisms that allow cells to protect themselves from subsequent higher doses
of radiation. In adaptive response, various cellular events occur, including activation of
multiple signaling pathways, augmented DNA-damage response, increased antioxidant
function, enhanced antiapoptotic function, modulation of mitochondrial function, and
cell cycle regulation [52,53]. Experimental evidence confirmed that a number of cell cycle
regulators, including CDK2, cyclin E, and p53, play a crucial role in mediating the radio-
adaptive response [54].

Nonirradiated or nontargeted cells may develop biological effects due to the signal
transmitted from adjacent radiation-exposed cells, which is called a bystander response.
Multiple signaling pathways (NF-κB/NADPH oxidase/TGFβ pathways), gap junctional



Cells 2022, 11, 356 4 of 14

intercellular communication, cytokine release, ROS/RNS or nitric oxide (NO) production,
and oxidized cell-free DNA play significant roles in the bystander responses [52,55]. Differ-
ent cellular contexts (e.g., state of the cellular redox environment), radiation type (sparsely
or densely ionizing), and levels of absorbed radiation determine the consequences of a
bystander response—namely, whether it is beneficial or detrimental [51]. While most by-
stander effects resulting in adverse outcomes have been studied mainly with low fluences of
densely ionizing radiations (α particles, high atomic number (Z) and high energy (E) HZE
particles, as well as exposure to high doses of sparsely ionizing radiations (X-rays, γ-rays),
beneficial bystander effects have been observed in several studies with low-dose exposures
to sparsely ionizing radiations, with to the use of LDIR in anticancer treatments [55–57].
LDIR-mediated bystander effects on the regulation of cell cycle in nontargeted cells would
be an engaging research topic in the future. Preliminary evidence shows the relevance of
this topic to both radiotherapy and radiation risk assessment [58].
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Low-dose hyper-radiosensitivity (HRS) and increased radioresistance (IRR) are two
phenomena that are associated with LDIR-induced biological responses. The in vitro ex-
periments show that even very small doses of radiation (<100 mGy) can trigger HRS, but
as the dose increases (>300 mGy), most cells will begin to display radioresistance until
the dose reaches 1 Gy [59]; this phenomenon inherent to the T-N-PR model of radiation
response described by John Calkins in 1973 to help understand how high resistance of living
organisms is achieved in an environment where they are erratically or chronically exposed
to injurious levels of irradiation [60]. Low-dose HRS is often linked to the impairment of
DNA repair mechanisms, NO-mediated cell death, and premitotic cell cycle checkpoints; in
particular, cells in the G2 phase of the cell cycle exhibit a stronger HRS effect [51,61,62]. Ra-
diation exposure can activate multiple signaling pathways (JAK2/STAT3/AKT/ERK/JNK)
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and transcription factors (i.e., p53), which can modulate the radiosensitivity of cancer
cells [63,64]. Since the description of the HRS phenomenon, there has been a growing
interest in fractionated exposure to multiple LDIR and in low-dose-rate radiation due to
its stimulation of system responses that lead to the more effective killing of radioresistant
cancer cells [65–67]. The association between the radiation-induced arrest of G2 phase
cells entering mitotic phase prematurely and low-dose HRS has been confirmed by experi-
mental evidence [61]; however, the regulation of cell cycle in the context of HRS, IRR, and
low-dose-rate radiation is poorly understood and requires further investigation at different
cellular settings.

Recent studies have brought considerable attention to the effects of LDIR on genomic
stability. In vitro LDIR exposure leads to chromosomal aberrations of lymphocytes in the
human peripheral blood [68]. Another recent study demonstrated an interesting connection
between the cell cycle and genomic instability caused by LDIR. The fractionated LDIR
exposure can lead to persistent ROS accumulation in mitochondria and can disrupt the
AKT/cyclin D1 signaling pathway. Subsequently, the nuclear accumulation of cyclin D1
can result in cell cycle retardation and genomic instability [69,70]. Based on experimental
and epidemiological evidence, a recent metanalytic study attempted to estimate the lowest
radiation dose that would lead to molecular changes; in this study, chromosomal aberration
in cells began in a range of 1 mGy to 500 mGy and in animal models between 50 mGy
and 100 mGy; chromosomal aberration has also been observed in children shortly after
computed tomography scans with LDIR exposures less than 200 mGy [71].

3. Cell Cycle and Radiation

The cell cycle is a controlled process involving a complex network of regulatory
mechanisms with appropriate checkpoints that contributes to cell growth, proliferation,
and reproduction. There are four primary phases of the cell cycle: G1 (preparatory phase for
division), S (chromosome replication), G2 (preparatory phase for mitosis), and M (mitosis,
when chromosomes are distributed to two progeny cells) [72]. The cell cycle process is
governed by a number of regulatory proteins, ensuring unidirectional and synchronized
progression, which includes cyclin family proteins, cyclin-dependent kinases (CDKs),
retinoblastoma protein, transcription factors (e.g., E2F), CDK inhibitors (e.g., p16INK4 and
p21Waf1), CDC25 isoforms, p53 family proteins, and MDM2 [73]. It has been well established
that radiation (regardless of type) disrupts the regular course of the cell cycle in normal
cells, causing affected cells to stop at a checkpoint during the cell cycle. Radiation-induced
DNA damage triggers the activation of G1/S, G2/M, and intra-S cell cycle checkpoints,
consequently slowing the progress of radiation-exposed cells in the cell cycle [74]. Radiation-
induced DNA damage is sensed by ATM/ATR kinases, whose downstream action initiates
the DNA damage response and cell cycle arrest by activating the p53 pathway and its target
proteins (i.e., p21Waf1) [75,76]. Contrary to what is observed in normal cells, extensive
in vitro work by Nagasawa et al. showed in various cancer cell types that exposure to
radiation exposure does not induce G1 arrests in tumor cells regardless of the presence
or absence of functional p53 [77]. In contrast, other studies showed that such arrests
exist and occur in a P53-dependent mechanism, particularly in myeloid malignancies
(e.g., lymphoma and myeloblastoma) in a p53-dependent mechanism [78–81]. Clearly,
additional research is required to elucidate the role of the microenvironment in which the
experiments are performed. Notably, research that addresses the role of cancer-associated
fibroblasts (CAFs) in the induction of G1 arrests in cancer cells will be of particular interest.
In this context, recent studies have shown that the presence of CAFs alongside cancer cells
greatly contributes to the radioresponse of cancer cells [82].

Exposure of normal cells to radiation results in interruption of the G1/S transition,
thereby halting further advancement into the S-phase progression, which allows more
time to repair DNA damage prior to DNA replication. The arrest is often transient but
can become permanent following exposure to HDIR. When double-stranded DNA breaks
occur, a G2/M arrest occurs, which prevents cells from entering the M (mitosis) phase,
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and this cell cycle arrest in G2 allows the coordinated repair of the damage [83]. In severe
cases of radiation, the recovery process can be delayed, and sometimes, irreparable DNA
damage can lead to mitotic catastrophes that cause cell death [84]. It has been extensively
discussed how HDIR modulates the cell cycle, but too little attention has been devoted to
how LDIR affects the cell cycle, as discussed in the next section.

4. Effect of Low-Dose Ionizing Radiation on the Cell Cycle

Exposure of normal tissue to HDIR (>0.5 Gy) can induce persistent perturbations in
molecular and cellular functions, which can lead to adverse effects on health. By contrast,
the effects of LDIR have not been thoroughly explored in the context of fundamental cellular
pathways/signaling, biological process, and molecular functions. Especially, the impact
of LDIR on the cell cycle remains ambiguous, and it needs to be examined thoroughly in
both cancer cells and noncancerous cells. Here, we summarize the evidence on how LDIR
(<0.2 Gy) can regulate the cell cycle in different cell types, ranging from cancerous cells to
normal cells and stem cells, and evaluate the clinical potential of these observations.

4.1. Cancer Cells

One of the earliest studies that examined the cell cycle response) to LDIR exposure in
a human myeloid tumor cell line (ML-1 was published in 2002 and a microarray profile of
cDNA was used to analyze global transcriptional response in this study [85]. This study
revealed that LDIR exposure to 20 mGy and 50 mGy of γ-rays resulted in the overexpression
of CDKN1A (encoding p21Waf1) and GADD45A (encoding GADD45 alpha protein) genes
without any detectable increase in apoptosis and showed that such an LDIR dose range
is sufficient to induce a transient cell cycle arrest at the S phase. A study conducted
concurrently in the same ML-1 cells also noted that low doses of radiation also resulted in
rapid induction of CDKN1A and GADD45A mRNA [86]. It is noteworthy that cell cycle
inhibitor p21Waf1, a major transcriptional target of p53, commonly inhibits cyclin/CDK
complexes [87,88]. In addition, GADD45A, a stress response gene, is also known to be
involved in the regulation of the cell cycle [89].

The effect of LDIR on modulating the cell cycle in different cancer cells has been poorly
studied compared to the effect of high doses. In a papillary thyroid carcinoma model,
the effects of low-dose X-ray irradiation were examined with wild-type p53 (TPC-1) and
mutated p53 (BCPAP) cells [90]. TPC-1 cells treated with an LDIR dose of 62.5 mGy of X-ray
showed significant decreases in the fraction of cells in the S phase of the cell cycle, along
with a concomitant upregulation of p16; however, no changes in cell cycle distribution were
observed in BCPAP cells in response to LDIR.

Human prostate cells respond to LDIR via activation of the ATM/p53/p21 axis [91].
Prostate cancer cells PC-3 lacking functional p53 were observed to exhibit a significant S
and G2/M phase arrest following 75 mGy exposure, whereas normal prostate cells RWPE-1
did not show detectable changes in cell cycle distribution. In the absence of functioning
p53, the ATM/p21 pathway is activated in a p53-independent manner, providing an insight
into radiotherapy treatment of prostate cancer [91].

Contrary to the findings in prostate cancer, p53-mutated breast cancer cell MDA-MB-
231 responded differently upon LDIR exposure. A dose of 150 mGy significantly increased
the growth of MDA-MB-231 cells and accelerated their entry into the S phase of the cell cycle,
whereas the growth of Hs578Bst cells (harboring wild-type p53) remained unaltered [28].
Accordingly, LDIR exposure activates cyclin-dependent kinases with increased CDK4,
CDK6, and cyclin D1 expression, along with a decreased expression of p21Waf1 [28].

The role of p53 in DNA damage-induced arrest in G2 is unclear. In DT40 B-lymphoma
cells that lack functional p53, LDIR (100 mGy) induced a Chk2-dependent G2 cell cycle
arrest that prevented mitotic entry with damaged DNA [92]. Therefore, LDIR-induced
cell cycle regulation is strongly influenced by the status of the p53 gene in cancer cells.
Contrary to this notion, the capacity of p53 to mediate a radiation-induced G1 arrest in
several human tumor cell lines is disputed by several lines of evidence [77,93]. A previous
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study investigated the association between low-dose hyper-radiosensitivity and activation
of a novel arrest checkpoint in the G2 phase [94]. An asynchronous population of Chinese
hamster V79 lung fibroblasts and human T98G glioblastoma cells exhibited significant
low-dose hyper-radiosensitivity at doses <200 mGy and <300 mGy, respectively, and both
displayed delayed mitosis of damaged G2-phase cells in response to LDIR. However, this
study does not demonstrate the variability in LDIR thresholds for controlling progression
within the cell cycle in different cells, nor does it examine the modulation of cell cycle
regulators in the context of LDIR [94].

4.2. Normal Cells

LDIR was exploited in another microarray-based gene expression study to deter-
mine the biological effects of 100 mGy of X-rays on normal human lymphoblastoid cells
(AHH-1) [95]. The results of this study confirm that LDIR exposure substantially modulates
a range of signature genes, such as GADD45A and CDKN2A. Intriguingly, The CDKN2A
gene encodes two well-known tumor suppressor proteins p16(INK4a) and the p14(ARF)
proteins that are capable of controlling the cell cycle [96]. A recent review revealed that
p53 is crucial in LDIR-induced hormesis, adaptive response, radioresistance, and genomic
stability [52]. Nevertheless, it remains unclear how LDIR exposure modulates the dynamics
of p53 transcription in different cellular contexts. There is increasing evidence that LDIR
triggers the expression of CDKN1A [97], which is one of the major transcriptional targets
of the p53 gene. Furthermore, p21Waf1 can also be regulated independently of p53 through
other transcription factors as well as kinases [98].

Another study found that 100 mGy X-ray exposure stimulated cyclin D1 expression in
HK-18 human keratinocytes, which is another important regulator of the cell cycle upon
DNA damage [26]. However, that study found no detectable difference in cell cycle arrest
between cells exposed to LDIR and those subsequently exposed to high dose radiation.
Therefore, cyclin D1 does not affect cell cycle regulation in human keratinocytes following
LDIR exposure; however, it might play a role in LDIR-induced adaptive radioresistance. A
recent review discussed the roles of cyclin D1/CDK4 and cyclin B1/CDK1 in LDIR-induced
adaptive responses as well as in the modulation of the mitochondrial signaling network in
response to LDIR-induced DNA damage to coordinate cellular responses [70].

As conventional two-dimensional monolayer cell culture models do not replicate
the complexity of the human tissue, researchers have expanded their study to three-
dimensional (3D) tissue models to gain more insights into LDIR response. In a 3D skin
model exposed to 0.1 Gy of LDIR or 1 Gy of HDIR (X-rays) and with subsequent post-
radiation harvesting, RNA samples were analyzed for the global transcriptional response
using microarrays [99]. As expected HDIR modulates a larger number of genes compared
to LDIR over the course of the study (24 h). Intriguingly, global gene expression analysis
revealed that LDIR exposure triggered a greater number of differentially expressed genes
within the first 3 h. In response to LDIR, genes regulating cell cycle distribution displayed
a different dynamic when compared with high doses. After 3 h post-irradiation, LDIR-
exposed cells showed prolonged G1/S checkpoint arrest, supported by upregulation of
p21Waf1, Rb, and p130. At this point, LDIR significantly modulated eight cell-cycle-related
pathways, whereas HDIR modulated only two. The findings of this study suggested that
the initial response within 3 h of LDIR exposure was associated with tissue protection and
enhanced survival against stress [99].

A recent in vitro study indicates that LDIR exposure of 100 mGy to primary ker-
atinocytes and U937 (lymphoma) cell lines causes cell cycle arrest and impairs protein syn-
thesis; however, the phase of the cell cycle in which the arrest occurs is not discussed [29].

4.3. Stem Cells

Hormesis effects of LDIR on rat mesenchymal stem cells (MSCs) have also been
assessed in a recent study through the investigation of proliferation and signaling pathway
(MEK/ERK) activation [14]. Cell proliferation was significantly augmented in MSCs
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exposed to LDIR at doses of 50 mGy and 75 mGy, and there was a significant shift from the
G1 phase to the S phase in response to 75 mGy X-rays. A panel of human embryonic stem
cells (hESCs) was also studied to identify the radiobiological effects of LDIR on human
cells [97]. CDKN1A gene expression was elevated significantly in only one of the hESCs,
and it occurred only at 2 h of LDIR exposure (50 mGy). However, the gene expression
profiles for the cell-cycle-related genes did not show any linear dose–response relationship,
even at the lowest doses of ionizing radiation exposure. Human MSCs also undergo a brief
cell cycle arrest at the G1 phase after LDIR exposure (100 mGy) as part of the adaptive
responses [100].

Another study examined the effect of LDIR on neural stem/progenitor cells (NSPCs),
which were isolated from the subventricular zone of newborn mouse pups and further
analyzed for proliferation, self-renewal, and differentiation [22]. There was no apparent
increase in the fraction of dying cells shortly after exposure to 100 mGy of cesium-137
γ-rays, and the number of single cells that formed neurospheres was not significantly
different from the control. Upon differentiation, irradiated neural precursors did not differ
from those that were not irradiated in their ability to generate neurons, astrocytes, and
oligodendrocytes. By contrast, the progression of NSPCs through the cell cycle decreased
dramatically after exposure to higher doses of radiation.

5. LDIR Might Regulate Nucleocytoplasmic Localization of p21Waf1

Carcinogenesis or neoplasia is characterized by a break in the control of the cell
cycle [101]. Recently, p21Waf1 has gained attention for its crucial role in many fundamental
biological processes beyond cell cycle regulation including DNA replication and repair,
gene transcription, apoptosis, and cell motility [98,102–104]. In contrast to its role as an
inhibitor of the cell cycle, p21Waf1 expression is found to be correlated positively with
tumor aggressiveness in a variety of cancers [98]. Moreover, p53-independent regulation of
p21Waf1 and its ability to nucleo-cytoplasmic shuttling are other aspects of its dichotomous
oncogenic nature. The nuclear p21Waf1 favors its cell cycle inhibitory function, whereas
the cytoplasmic p21Waf1 expression is oncogenic [105,106]. When aberrant signaling is
triggered by extrinsic factors (including radiation), p21Waf1 might be phosphorylated and
phosphorylation causes its localization to the cytoplasm, where it exerts its antiapoptotic or
oncogenic properties [98].

The radiation level might have a major impact on the nucleocytoplasmic localiza-
tion of p21Waf1, although it is unclear how this occurs. It is likely that in normal cells
HDIR might induce several kinases that phosphorylate p21Waf1 and cause its localiza-
tion to the cytoplasm, where it might promote oncogenesis through various mechanisms
(e.g., regulation of the nuclear assembly of the cyclin D1.CDK4 complex or conferring
protection against apoptosis) [107,108]. Conversely, LDIR might inhibit phosphorylation
of p21Waf1 (or promote dephosphorylation of p21Waf1), thereby exhibiting its nuclear cell
cycle inhibitory or tumor suppressor action, which is beneficial in controlling oncogenesis
(Figure 2). To confirm this hypothetical concept, a more systematic and extensive investiga-
tion must be conducted to ascertain the LDIR-mediated regulation of p21Waf1 in different
cellular contexts.



Cells 2022, 11, 356 9 of 14

Cells 2022, 11, x FOR PEER REVIEW 9 of 15 
 

 

nuclear assembly of the cyclin D1.CDK4 complex or conferring protection against apopto-
sis) [107,108]. Conversely, LDIR might inhibit phosphorylation of p21Waf1 (or promote 
dephosphorylation of p21Waf1), thereby exhibiting its nuclear cell cycle inhibitory or tumor 
suppressor action, which is beneficial in controlling oncogenesis (Figure 2). To confirm this 
hypothetical concept, a more systematic and extensive investigation must be conducted to 
ascertain the LDIR-mediated regulation of p21Waf1 in different cellular contexts. 

 
Figure 2. Conceptual diagram showing that radiation dose might differentially regulate the nucle-
ocytoplasmic shuttling of p21Waf1. The nuclear function of p21Waf1 is predominantly cell cycle inhib-
itory and tumor suppressive, whereas cytoplasmic p21Waf1 can exert antiapoptotic functions. Aber-
rant cell signaling induced by HDIR might cause phosphorylation of p21Waf1 leading to its cytoplas-
mic localization. Similar to LDIR, HDIR also induces p53-dependent transcription of p21Waf1 and 
p21Waf1 nuclear functions. 

6. Future Directions 
To assess the risk and benefits of LDIR in humans, ongoing studies are investigating 

molecular, cellular, and tissue responses in different genetic and environmental back-
grounds. It is known that LDIR can modulate many cell cycle regulators in normal, tumor, 
and stem cells, which might have different implications in a particular context. The coor-
dination of cell cycle activities in response to low doses of radiation must be extensively 
studied to learn how cells cope with genotoxic stress; such studies could lead to the de-
velopment of cell-cycle-targeted therapies for many diseases, including cancer. It would 
also be interesting to compare the transition through cell cycle phases after LDIR exposure 
with the determination of genes associated with early cell cycle response. 

LDIR can induce a number of cell cycle regulators, including p53/p21Waf1, which are 
known to be involved in several cell-intrinsic functions (such as apoptosis and senescence) 
besides cell cycle inhibition. LDIR-exposed nontransformed cells should also be examined 
in terms of cell cycle regulation and the key players involved. This would be a promising 
innovative solution for eliminating precancerous cells from the population through the 
LDIR-stimulated bystander effects. A recent study demonstrated that LDIR exposure on 
HPKs propagates effects that induce cell cycle arrest and protein synthesis repression in 
U937 cells; this bystander effect induced by LDIR in U937 cells is associated with increased 

Figure 2. Conceptual diagram showing that radiation dose might differentially regulate the nucleocy-
toplasmic shuttling of p21Waf1. The nuclear function of p21Waf1 is predominantly cell cycle inhibitory
and tumor suppressive, whereas cytoplasmic p21Waf1 can exert antiapoptotic functions. Aberrant
cell signaling induced by HDIR might cause phosphorylation of p21Waf1 leading to its cytoplasmic
localization. Similar to LDIR, HDIR also induces p53-dependent transcription of p21Waf1 and p21Waf1

nuclear functions.

6. Future Directions

To assess the risk and benefits of LDIR in humans, ongoing studies are investigating
molecular, cellular, and tissue responses in different genetic and environmental back-
grounds. It is known that LDIR can modulate many cell cycle regulators in normal, tumor,
and stem cells, which might have different implications in a particular context. The coor-
dination of cell cycle activities in response to low doses of radiation must be extensively
studied to learn how cells cope with genotoxic stress; such studies could lead to the devel-
opment of cell-cycle-targeted therapies for many diseases, including cancer. It would also
be interesting to compare the transition through cell cycle phases after LDIR exposure with
the determination of genes associated with early cell cycle response.

LDIR can induce a number of cell cycle regulators, including p53/p21Waf1, which are
known to be involved in several cell-intrinsic functions (such as apoptosis and senescence)
besides cell cycle inhibition. LDIR-exposed nontransformed cells should also be examined
in terms of cell cycle regulation and the key players involved. This would be a promising
innovative solution for eliminating precancerous cells from the population through the
LDIR-stimulated bystander effects. A recent study demonstrated that LDIR exposure on
HPKs propagates effects that induce cell cycle arrest and protein synthesis repression in
U937 cells; this bystander effect induced by LDIR in U937 cells is associated with increased
expression of p21Waf1 via TGFβ signaling and activation of p38 MAPK activation [29]. It
is interesting to note that p53 plays an important role in communicating a stress response
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to neighboring cells, in addition to coordinating intrinsic and extrinsic cell signals [109].
Due to its key role in controlling the cell cycle, additional research on the role of the tumor
suppressor p53 in studies of bystander effects in normal and cancer cells is warranted.

Regulation of the cell cycle is connected to many important biological processes,
metabolic pathways, various stress responses, DNA damage responses, DNA repair, etc.
The differential regulation of cell cycle mechanisms in response to LDIR and HDIR might
help us determine LDIR’s beneficial or detrimental effects. LDIR-induced regulation of cell
cycle and radioresistance in stem cells are the next frontiers to be explored, which can lead
to advances in regenerative medicine and tissue engineering.

The cancer cell cycle study is a complex area to explore due to its heterogeneous
mutational nature and the multitude of deregulated signaling pathways behind it. Due to
the heterogeneous mutational landscape prevailing in cancers, LDIR may affect cell cycle
distribution and multiple cellular processes differently in different cancers. Nevertheless,
the advent of modern genomics, transcriptomics, and proteomics technology can provide
a deeper understanding of the global expression and modulation of genes and proteins
associated with the cell cycle in cancer cells maintained in vitro or in vivo response of
tumors to LDIR. Such research would provide us with a more comprehensive picture of
the regime of cell cycle regulation in cancer cells and would illustrate the effects of nearly
all mutations implicated in cancer following LDIR exposure.

Pulse low-dose-rate irradiation (PLDR) has gained increasing acceptance in recent years
as the treatment of choice for recurrent cancers and radiation-resistant cancers [110,111].
As PLDR takes advantage of the phenomenon of HRS, it is less toxic to normal cells.
The effects of PLDR on the cell cycle have not been well explored. In a recent study,
PLDR has been shown to be effective against radioresistant head and neck squamous
cell carcinoma (HNSCC), which showed more low-dose HRS than an isogenic population
of non-radioresistant parental HNSCC cells; as a result of PLDR-mediated G2/M arrest,
the cell cycle resumed 24 h after irradiation on parental cells but not on radioresistant
cells [112]. Therefore, it is vital to map out the landscape of cell cycle regulators in the
context of radioresistant and radiosensitive cells as well as normal cells.

Recently, several new tools for cell cycle analysis, such as the fluorescence ubiquiti-
nation cell-cycle indicator (FUCCI) system, chromobodies, and Cycletest reagent, have
been developed. For example, the FUCCI system is a technology that uses the cell cycle’s
phase-specific expression of proteins and their degradation by the ubiquitin–proteasome
degradation system to color-coded phases of the cell cycle in real time. The new tools,
combined with time-lapse imaging, will allow us to explore the spatiotemporal patterns of
cell cycle dynamics after exposure to LDIR.
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