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Abstract: The study describes a protocol for methylation analysis integrated with Machine Learning
(ML) algorithms developed to classify Facio-Scapulo-Humeral Dystrophy (FSHD) subjects. The DNA
methylation levels of two D4Z4 regions (DR1 and DUX4-PAS) were assessed by an in-house protocol
based on bisulfite sequencing and capillary electrophoresis, followed by statistical and ML analyses.
The study involved two independent cohorts, namely a training group of 133 patients with clinical
signs of FSHD and 150 healthy controls (CTRL) and a testing set of 27 FSHD patients and 25 CTRL.
As expected, FSHD patients showed significantly reduced methylation levels compared to CTRL. We
utilized single CpG sites to develop a ML pipeline able to discriminate FSHD subjects. The model
identified four CpGs sites as the most relevant for the discrimination of FSHD subjects and showed
high metrics values (accuracy: 0.94, sensitivity: 0.93, specificity: 0.96). Two additional models were
developed to differentiate patients with lower D4Z4 size and patients who might carry pathogenic
variants in FSHD genes, respectively. Overall, the present model enables an accurate classification of
FSHD patients, providing additional evidence for DNA methylation as a powerful disease biomarker
that could be employed for prioritizing subjects to be tested for FSHD.

Keywords: FSHD; epigenetics; DNA methylation; neuromuscular diseases; biomarker; machine
learning; D4Z4

1. Introduction

Facio-Scapulo-Humeral muscular Dystrophy (FSHD) is caused by an aberrant expres-
sion of DUX4 that results from a partial reduction of the Repeated Units (RU) located in the
subtelomeric D4Z4 macroarray (4q35). Generally, healthy individuals display D4Z4 size
ranging from 11 to 100 RU, in contrast to the 1 to 10 RU (namely, D4Z4 reduced allele or
DRA) observed in FSHD1 subjects. In addition, the presence of subtelomeric variants of the
4q (namely, 4qA or permissive allele) have been associated with FSHD [1]. Furthermore,
detrimental variants in SMCHD1, LRIF1 and DNMT3B have been described as causative
genes (i.e., FSHD2) or disease modifiers with or without the presence of DRA [1–9]. More-
over, the above-mentioned genetic alterations were associated with epigenetic changes
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at the D4Z4 locus, such as DNA hypomethylation that has been reported to contribute
to FSHD [1,10]. Despite the current knowledge concerning the molecular mechanisms of
disease, the variable expressivity and incomplete penetrance of FSHD complicate and delay
the time for a proper diagnosis, clinical care, and follow-up of affected patients. To date, the
molecular diagnosis is still based on the detection of DRAs by means of Linear- or Pulsed-
Field Gel Electrophoresis (PFGE) and Southern Blotting. Next Generation Sequencing
(NGS) and direct resequencing are usually performed to detect pathogenic variants within
FSHD-associated genes [11,12]. The detection of DRAs requires specialized equipment and
is labor-intensive, although more precise and automated approaches (such as molecular
combing and single-molecule optical mapping) have been recently proposed as alternative
methods. Overall, the availability of advanced workflows able to support the diagnosis
in a time and cost-effective manner is of paramount importance. Considering that the
DNA methylation status representative of D4Z4 locus has been recognized as a hallmark
of the disease, several research studies tested it as a possible diagnostic biomarker. In
particular, a number of protocols have been proposed to assess the methylation status,
although different CpG sites/regions, biological sources and variable sample sizes have
been used [13–21]. Given these premises, mathylation analysis and Machine Learning
(ML) pipelines were tested as possible methods to prioritize FSHD subjects for standard
molecular testing and supporting the clinical diagnosis. An in-house protocol based on
Bisulfite Sequencing (BSS) followed by Amplification Fragments Length Polymorphisms
(AFLP) was employed to obtain methylation levels of single CpG sites from patients’ whole
blood. Afterwards, statistical analyses and supervised ML methods were applied to assess
the presence of reduced methylation profile compatible with FSHD and evaluate the overall
method as a supporting tool in the diagnostic process of the disease.

2. Materials and Methods
2.1. Selection of the Cohort

The study involved two independent cohorts, namely a training group and a test
set. Firstly, 133 FSHD subjects and 150 CTRL were employed as a training group for the
development of the ML model. Furthermore, the test set including 52 subjects (namely,
27 FSHD and 25 CTRL) was subsequently analyzed for the testing of the ML model. The
details concerning both study cohorts have been summarized in Table 1 and Supplementary
Table S1A–C.

Table 1. Descriptive statistics of cohorts’ demographics.

Condition Cohort n Mean Age (±SD) F:M Ratio

FSHD Training group 133 51.4 (±17.6) 45:55
CTRL Training group 150 55.7 (±15.8) 36:64
FSHD Test set 27 56.0 (±16.7) 45:55
CTRL Test set 25 50.0 (±14.7) 52:48

The FSHD subjects were recruited by expert neurologists from Fondazione Policlinico
Gemelli IRCCS in collaboration with the Italian Union Foundation for the fight against
muscular dystrophies (UILDM). Patients were evaluated on the basis of clinical and instru-
mental examinations [22–25].

The presence of DRA and likely pathogenic/pathogenic variants in FSHD genes was
evaluated during the diagnostic workflow at the Genomic Medicine Laboratory-UILDM at
the Santa Lucia Foundation IRCCS, with the purpose of considering either FSHD1, FSHD2
or FSHD1 + FSHD2 forms in the study. In particular, the molecular assessment of DRA
was performed using PFGE and southern blotting followed by hybridization with specific
probes P13-E11. The investigation of FSHD-associated variants has been performed by NGS
analysis on an Illumina® Next-Seq550 system and related kit. The FSHD patients (n = 133)
of the training cohort displayed a number of RUs ranging from 1 RU to >10 RUs (16 patients
with 1–3 RUs, 95 patients with 4–7 RUs, 10 patients with 8–10 RUs and 12 patients with
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>10 RUs). This cohort also included 15 patients with likely pathogenic/pathogenic variants
within SMCHD1 and LRIF1, of whom 11 FSHD1 + FSHD2 (5 ranging 4–7 RUs and 6 with
8–10 RUs) and 4 FSHD2 (>10 RUs). Concerning the test set (n = 27), 7 patients displayed
1–3 RUs, 18 had 4–7 RUs whereas 2 showed >10 RUs and likely pathogenic/pathogenic
variants within SMCHD1. The selection of control subjects was based on the absence of
any clinical sign suggestive of FSHD and were negative to DRA testing and to pathogenic
variants in disease-associated genes.

2.2. Analysis of DNA Methylation and 4q Subtelomeric Variant Typing

The methylation profiles of two regions of the D4Z4 locus were assessed. In particular,
the DR1 is located 1 Kb upstream of the DUX4 ORF and harbors 29 CpG sites, whereas the
DUX4-PAS is located within the most distal part of the array (including the PolyAdenilation
Signal, PAS) and contains 10 CpG sites (Figure 1). Importantly, while the DUX4-PAS assay
is specific for the 4q distal region (encompassing the more distal repeated unit), the DR1
region is located within each D4Z4 RU on both chromosome 4 and 10.
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Figure 1. Schematic representation of the analyzed D4Z4 regions together with their sequence within
the D4Z4 locus. The figure illustrates the locations of DR1 and DUX4-PAS target regions into the
D4Z4. Moreover, the most distal D4Z4 unit, encompassing the whole DUX4 ORF is shown. For
each target region, the corresponding sequence is reported. The upper line shows the non-converted
genomic sequence, whereas the lower line displays the bisulfite converted sequence (as predicted by
MethPrimer.com, accessed on 3 September 2022). Herein, the harbored specific CpG sites (29 CpGs for
DR1 and 10 CpG for DUX4-PAS, respectively) are highlighted in red. The sequence of the employed
primers is shown in bold and underlined. In particular, the modified nucleotides (R) in the primer
sequences are shown. PAS: Polyadenylation Signal; Tel.: Telomere.

The DNA from each patient has been subjected to methylation analysis according to
an in-house protocol based on BSS and AFLP. DNA was extracted from whole blood by
automated extraction using Blood kit Magpurix (Zinexts, Taipei, Taiwan). Successively,
500 ng of the extracted DNA was subjected to bisulfite conversion through EpiTect Bisulfite

MethPrimer.com
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Kit (Qiagen, Germantown, MD, USA) according to the manufacturer’s instructions. The
converted DNA was quantified by DS-11 FX Spectrophotometer (DeNovix, Wilmington,
DE, USA) and 200 ng were amplified for the DR1 and DUX4-PAS regions using HotStarTaq
Master Mix (Qiagen, Germantown, MD, USA) together with specific primers retrieved
from Hartweck et al., 2013 and Calandra et al., 2016 [15,21], respectively. Of note, these
primers were modified to improve the sequencing quality and the reliability of the obtained
methylation levels. In particular, both primers were optimized by adding M13-Forward
and -Reverse tails (Applied Biosystems) to improve the resolution of peaks during the
sequencing. In addition, considering that the reverse primer specific for DR1 region (DR1-R)
covers a single CpG site, it was modified in order to prevent the preferential amplification
of unmethylated strand thus avoiding a possible underestimation of methylation levels. To
this purpose, a mixture of DR1-R primers (Figure 1) that differ for one nucleotide (A or G)
in the position corresponding to the CpG site was employed.

The resulting PCR products have been purified using Exonuclease I and Antartic
Alkaline Phosphatase (Biolabs). Following quantification by means of Qubit 3.0 Fluorome-
ter, purified amplicons have been subjected to SDS 2.2% pre-treatment at 98 ◦C for 5 min
and then subjected to post-sequencing clean-up by means of Performa DTR Gel Filtra-
tion Cartridges according to manufacturer’s protocol. Afterward, the samples underwent
Sanger sequencing using BigDye Terminator v3.1 Cycle Sequencing Kit (ThermoFisher
Scientific, Waltham, MA, USA) followed by capillary electrophoresis on ABI Prism 3130×
L Genetic Analyzer (Applied Biosystems). Then, samples have been run again using the
AFLP protocol on the same instrument upon the addition of 0.5 µL of GeneScan-120 LIZ
Dye Size Standard (Applied Biosystems). This step enabled the quantitative evaluation
of methylation levels of all CpGs in both regions by analyzing the resulting data with
the AFLP-specific analysis module in Gene Mapper software 5.0 (Applied Biosystems).
Cytosines and Thymines peak heights have been compared to determine the percentage of
methylated cytosine for each CpG site. By this method, the methylation patterns have been
obtained and then employed for extensive biostatistical and computational analyses.

The presence of 4qA subtelomeric allele was assessed for each converted DNA, since
the successful amplification of DUX4-PAS was indicative of the presence of 4qA allele,
whereas specific primers for the 4qB allele were retrieved from Calandra et al., 2016 [15] and
used to set-up a specific PCR on converted DNA. The 4qB-positive samples were subjected
to Sanger sequencing using BigDye Terminator v3.1 Cycle Sequencing Kit (ThermoFisher
Scientific) for confirmation. Samples homozygous 4qB/4qB (i.e., negative to DUX4-PAS
amplification) were not included among the samples’ cohorts.

2.3. Statistical Analysis

All of the statistical analysis was performed in R (v 4.1). Methylation levels in DR1
and DUX4-PAS regions were compared between groups using multiple one-way ANOVA
for each comparison, namely: FSHD vs. CTRL; FSHDlow-RU vs. FSHDhigh-RU, FSHDvar+
vs. FSHDvar−. The obtained p-values (p) were corrected by False Discovery Rate (FDR)
and deemed as statistically significant when FDR p < 0.05 (Supplementary Tables S2–S4).

2.4. Machine Learning Pipeline for Classification

In order to test the discriminative power of the methylation levels related to the CpG sites
of both DUX4-PAS and DR1, a supervised ML pipeline was implemented in R (v. 4.1.1) using
the Caret package [26]. The ML pipeline follows IBM’s CRoss Industry Standard Process for
Data Mining (CRISP-DM) to ensure the stability of results and replicability. The data frame
used in our pipeline included all CpG sites and subjects’ year of birth. Missing values (~1%)
were imputed using the bagged tree imputation method, where a bagged tree model is fitted
for each predictor (as a function of all the others) to predict missing values [27].

From here on, a separated ML pipeline was implemented for each binary classifi-
cation task: FSHD vs. CTRL, FSHDlow-RU vs. FSHDhigh-RU, FSHDvar+ vs. FSHDvar−
(Supplementary Tables S5–S7).
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2.4.1. FSHD vs. CTRL

The training pipeline was implemented nesting several ML models and data prepro-
cessing methods (Supplementary Table S5) on the training set. Importantly, the Leave-
One-Out Cross-Validation (LOOCV) strategy was utilized for hyperparameters tuning.
Only models known for their ability to manage intercorrelated predictors were included.
Successively, the trained ML models were tested on an independent cohort used as a test
set in order to select the final model achieving the highest accuracy metrics. The formula
for the calculation of accuracy is reported in the File S1.

2.4.2. FSHDlow-RU vs. FSHDhigh-RU and FSHDvar+ vs. FSHDvar−
FSHD subjects in the FSHDlow-RU vs. FSHDhigh-RU classification task were divided into

“high-RU” subjects when RUs > 10 (n = 12) or “low-RU” when RUs≤ 10 (n = 121). The same
specifics from Section 2.4.1 were used in this training pipeline (Supplementary Table S6).
Due to strong class imbalance, the final model was selected by comparing the achieved F1-
Score from LOOCV. A training pipeline with the same specifics was used to classify FSHD
subject in the FSHDvar+ (namely, patients with pathogenic/likely pathogenic variants in
FSHD genes, n = 15) vs. FSHDvar− (patients negative to FSHD-related genetic variants,
n = 118) classification task (Supplementary Table S7), and the final model was selected
based on the F1-Score reported during LOOCV. The formula for the calculation of F1-Score
is reported in the File S1.

3. Results
3.1. Statistical Analysis

The study involved two cohorts (namely the training cohort and the test set) as
previously described (Table 1, Supplementary Table S1A–C). All the subjects analyzed in
the study were characterized by at least one 4qA subtelomeric allele. The training cohort
displayed the following 4q genotype distribution, FSHD: 52% AA, 48% AB; CTRL: 34% AA,
66% AB. The 4q genotype distribution in the test set was FSHD: 48% AA, 52% AB; CTRL:
24% AA, 76% AB.

DNA methylation levels for each CpG site within DR1 and DUX4-PAS regions were
obtained for each sample. The multiple FDR-corrected ANOVA revealed that all CpG sites
harbored by FSHD subjects showed significantly reduced methylation (i.e., hypomethy-
lation) compared to the controls (FDR p < 0.001, Figure 2A, Supplementary Table S2).
Accordingly, the average methylation levels of the whole regions were significantly lower
(DR1 FDR p = 2 × 10−8, DUX4-PAS FDR p = 6 × 10−29, Figure 2B) in patients compared to
the controls.

As reported in Supplementary Table S2, the analysis revealed that CpG sites showed
variable significance values, suggesting that single CpG sites differentially contribute to
the methylation pattern of the D4Z4.

The methylation levels related to DR1 and DUX4-PAS regions were compared between
FSHD subjects with a high (>10 RU, namely FSHDhigh-RU) and low (≤10 RU, namely
FSHDlow-RU) range of RU number. As a result, FSHDlow-RU patients displayed significant
(0.01 < FDR p < 0.05) hypomethylation levels at nine CpG sites within the DUX4-PAS region
(Figure 3, Supplementary Table S3).

Moreover, the methylation levels were also compared in patients harboring likely
pathogenic/pathogenic variants in FSHD genes (SMCHD1, LRIF1) with respect to the other
patients (namely, FSHDvar+ vs. FSHDvar− comparison). Of note, 11 out of the 15 patients
were characterized by a DRA ≤ 10 RUs. As a result, all the CpG sites within the DR1 dis-
played significantly lower methylation levels (Figure 4) in these subjects (5.29 × 10−6 < FDR
p < 3.11 × 10−4, Supplementary Table S4), whereas only one site within DUX4-PAS (namely,
CpG4) appeared to show statistically significant differences (FDR p = 0.008).
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Figure 2. Descriptive plots of the analyses performed on the study cohorts. (A) A boxplot showing the
methylation levels of each CpG site within DR1 and DUX4-PAS regions related to the training group
(FSHD n = 133, CTRL n = 150). The lower and upper hinges correspond to the 25th and 75th percentiles
of the distribution. The whiskers extend from the hinge to the largest value no further than ±1.5 × IQR
upper whisker extends from the hinge to the largest value no further than 1.5 × IQR from the hinge
(where IQR is the inter-quartile range, or distance between the first and third quartiles). The lower
whisker extends from the hinge to the smallest value at most 1.5 × IQR of the hinge. Data beyond
the end of the whiskers are called “outlying” points and are plotted individually. (B) The average
methylation levels are different between groups for both DR1 and DUX4-PAS regions. * p < 0.05.
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(n = 121), FSHDhigh-RU (n = 12) and CTRL subjects. The lower and upper hinges correspond to the
25th and 75th percentiles of the distribution. The whiskers extend from the hinge to the largest value
no further than ±1.5 × IQR (where IQR is the inter-quartile range, namely distance between the first
and third quartiles). Data points beyond the whiskers are plotted individually.
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Figure 4. A boxplot showing the methylation levels related to the DR1 CpG sites of FSHDvar+
(n = 15) and FSHDvar− (n = 118). The lower and upper hinges correspond to the 25th and 75th
percentiles of the distribution. The whiskers extend from the hinge to the largest value no further
than ±1.5 × IQR (where IQR is the inter-quartile range, namely distance between the first and third
quartiles). Data points beyond the whiskers are plotted individually.

3.2. Development of a ML-Based Classifier for the Discrimination of FSHD Subjects

A ML pipeline was employed to build a classification model able to discriminate
FSHD subjects from CTRL. The most accurate classifier fitted on raw data (retrieved
from the training set of subjects) resulted to be the conditional inference tree (Figure 5,
Supplementary Table S5).
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Figure 5. Illustration of the decision tree showing the hierarchical order of decisions to discriminate
between groups. The considered CpG sites are highlighted with relative decision thresholds based
on methylation levels. The boxes report predicted class, relative proportion of subjects belonging to
the group (CTRL and FSHD, respectively) and number of classified subjects per node. The p-values
refers to permutation test of the model.
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On the test cohort, the model achieved 0.94 accuracy, 0.93 AU-ROC, 0.93 sensitivity,
and 0.96 specificity, correctly identifying 25/27 FSHD subjects and 24/25 CTRL (Figure 6).
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Figure 6. Confusion matrix indicating the correct and incorrect predictions performed by the ML
classifier (Conditional Inference tree) for the FSHD vs. CTRL comparison.

In particular, the methylation levels related to four CpG sites, namely DUX4-PAS_CpG6,
DUX4-PAS_CpG3, DR1_CpG1 and DR1_CpG22, were identified as the most relevant for
the discrimination of FSHD subjects and were used in the decision tree (Figure 5).

The conditional inference tree model was also tested on average methylation levels
of DR1 and DUX4-PAS, although the obtained metrics (accuracy: 0.87, AU-ROC: 0.79,
sensitivity: 0.85, specificity: 0.88) provided lower performance rates with respect to the
model fitted on single CpG sites. This result indicates that the methylation levels of single
CpG sites are more informative than region means.

In addition, the ML pipeline was used to test the ability of methylation data to discrim-
inate FSHDlow-RU and FSHDhigh-RU subjects. A random forest fitted on the PCA (Figure 7A)
of the data was selected as classification model (Supplementary Table S6). The model
obtained 0.81 accuracy, 0.82 AU-ROC, 0.86 sensitivity and 0.81 specificity. Variable impor-
tance confirmed the pivotal role of DUX4-PAS region in differentiating FSHDlow-RU vs.
FSHDhigh-RU (Figure 7B).
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Figure 7. Random forest model for the discrimination between FSHDlow-RU and FSHDhigh-RU subjects.
(A) A PCA plot highlighting slight separation between FSHDlow-RU and FSHDhigh-RU groups. In
particular, the largest separation appears on Dimension 2. (B) Suggestively, variable contributions to
Dimension 2 are mostly from DUX4-PAS CpG sites. The most important variable for the selected
Random Forest (fitted on the PCA dimensions) is indeed Dimension 2.
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Furthermore, the ML pipeline was used to classify FSHD individuals harboring
likely pathogenic/pathogenic variants with respect to negative subjects (FSHDvar+ vs.
FSHDvar−). In this case, a conditional inference tree model fitted on data with the ex-
ponential transformation was selected as the best classifier (Supplementary Table S7). In
particular, the model achieved 0.90 accuracy, 0.88 AU-ROC, 0.80 sensitivity and 0.92 speci-
ficity and identified the DR1_CpG3 as the most discriminating site, considering a threshold
of methylation levels of ≤0.37.

4. Discussion

FSHD is characterized by a strong epigenetic component marked by a D4Z4 hy-
pomethylation status that is a necessary condition for DUX4 toxic activation and, subse-
quently, for disease manifestation [28]. Therefore, the assessment of D4Z4 methylation
patterns can support the clinical and molecular diagnosis in the near future, especially if
performed on easily-accessible sources without the need of invasive procedures. Of note,
previous studies evaluated the absence of differences between DNA methylation profiles
of the D4Z4 locus related to muscular tissues, blood cells and saliva [29,30].

Here, an optimized technical protocol combined with specific ML models is proposed
as a tool to discriminate FSHD patients from controls. In particular, the methylation levels
of the DR1 and DUX4-PAS regions (Figure 1) were measured in a first cohort (namely, the
training cohort) including a large number of patients (n = 133) and compared with CTRL
(n = 150). As expected, the methylation levels were found significantly reduced in FSHD
compared to CTRL subjects in each CpG site of both regions (Figure 2). Statistical analysis
revealed variable significant values for single CpG sites, suggesting that each of them shows
a differential discriminative value. Therefore, the obtained data were then used to train a
ML model (conditional inference tree) for the identification of FSHD subjects. In particular,
this model was evaluated on the test set of 52 subjects that were subsequently analyzed to
calculate the accuracy metrics and highlight the most relevant CpG sites for discriminating
FSHD subjects. This analysis pointed out four single CpG sites (namely, DUX4-PAS_CpG6,
DUX4-PAS_CpG3, DR1_CpG1 and DR1_CpG22) as the most relevant for FSHD subjects’
discrimination (Figures 5 and 6). Considering the high performance metrics (accuracy:
0.94, sensitivity: 0.93, specificity: 0.96, Figure 6) achieved by the developed classifier, this
approach appears as a powerful tool supporting clinical and molecular diagnosis.

As shown in Figure 6, the testing of the model on the test set showed three misclassi-
fied subjects. In fact, two samples (referred to as sample ID16 and ID27 in Supplementary
Table S1C) belonging to the FSHD group were classified as non-FSHD and consistently,
displayed higher methylation levels. It is important to point out that for a proper in-
terpretation of these cases we need to consider other information such as the 4qA/4qA
subtelomeric configuration.

Indeed, both samples referred to patients harboring a 4qA/4qA genotype, which
could overestimate the methylation levels due to the fact that the assay would detect the
methylation levels of both alleles, in contrast to subjects with a single copy of 4qA that
would provide a more precise measure. Of note, this similar issue has also been highlighted
in the recent study by Erdmann et al., 2022 [19].

This issue raises the need for performing a study including a larger cohort of 4qA/4qA
and 4qA/4qB samples, in order to account for this data in the classification of FSHD subjects.
Nevertheless, it is important to remark that the model was able to correctly identify the
other patients (n = 10) carrying a 4qA/4qA and all the patients (n = 15) with 4qA/4qB
genotype of the test set. The third misclassified patient (namely ID44 in Supplementary
Table S1C) belonged to CTRL group, although he showed lower methylation levels than
expected. Indeed, the subject was referred to our center as a non-affected subject, suggesting
thereby a possible asymptomatic condition. Considering his positive family history for
FSHD, this subject is currently under clinical monitoring and will be subjected to additional
genetic analyses. This result further suggests a potential application of methylation analysis
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for identifying asymptomatic subjects which could benefit of a specific follow-up over time.
However, a larger cohort of similar patients is needed to confirm this hypothesis.

Moreover, the application of ML approaches highlighted that the methylation levels of
single CpG sites are more informative than region means. Supporting this data, the testing
of the model on average methylation levels of DR1 and DUX4-PAS showed lower perfor-
mance rates (accuracy: 0.87, AU-ROC: 0.79, sensitivity: 0.85, specificity: 0.88) with respect
to the model fitted on single CpG sites. This result indicates that the methylation levels
referred to the single CpG sites should be preferred for the accurate classification of FSHD
subjects. Indeed, various studies investigated the association of reduced D4Z4 methylation
levels with the disease, though reporting variable results depending on different sample
sizes, employed methodologies (BSS, long read sequencing, antibody-based methods and
utilization of methylation-sensitive restriction enzymes) and analyzed region/CpG sites
(whole D4Z4 unit, 5′ DUX4-ORF, distal region of 4q35) [13–18,21,29]. On this subject, the
study by Erdmann et al., 2022 performed an evaluation of D4Z4 methylation in a diagnostic
workflow aimed at enhancing the interpretation of disease manifestations [19]. Importantly,
the study is based on a BSS-NGS approach, focusing their attention on the 4q distal region
and the entire repeated unit. By this way, they reported a reduced average methylation of
the detected CpG sites in FSHD subjects, which is in accordance with our data. Moreover,
they found the association of these methylation profiles with the disease severity, as also
reported by previous studies, and propose the application of DNA methylation into the
diagnostic workflow [19].

Furthermore, a recent study by Hiramuki et al., 2022 tested a long-read sequencing-
based approach, which allowed the authors to simultaneously analyze the D4Z4 methy-
lation and size in FSHD patients. Additionally in this case, the authors found reduced
global D4Z4 methylation levels in FSHD samples and provide precise insights into the
pathological epigenetic status of D4Z4 locus [20]. Indeed, our results are consistent with
all the aforementioned data and further support the applicability of DNA methylation
assessment and 4q haplotyping to prioritize or exclude patients for FSHD diagnostic testing.
Remarkably, most of previous and recent studies focused on average methylation levels,
whereas the present study took advantage of a fine analysis and ML pipelines to highlight
the higher discriminative power of single CpG sites rather than region means. If these
results will be validated in larger studies, they will pave the way for more targeted, rapid
and less expensive assays for methylation assessment.

FSHD subjects with a DRA≤ 10 RUs displayed lower methylation levels within DUX4-
PAS-related CpG sites (Figure 3) with respect to subjects with >10 RUs. In particular, the
CpG sites located within DUX4-PAS were more informative for this comparison (Figure 7).
This evidence is in line with other literature data showing a correlation between the
methylation levels of DUX4-PAS_CpG6 and the RUs number [15]. In this case, the model
achieved an accuracy of 0.81 in identifying patients with a DRA. In particular, this accuracy
value may also reflect the variable penetrance of DRA [31] as well as the possible presence
of D4Z4 contraction (4–8 RUs) in ~3% of healthy individuals [32].

The ability of methylation patterns to suggest the presence of detrimental variants
within FSHD-associated genes was also evaluated. In line with other studies, the most
striking hypomethylation levels were found in DR1 (Figure 4) [7,21,33]. Although DR1
assay is not specific for the 4q copies and these regions are present also on chromosome 10,
our data showed that it did not affect the detectability of hypomethylation profiles, that
are heavily reduced in presence of pathogenic variants in FSHD genes. This finding is in
accordance with previous studies reporting similar observations [17,21]. In addition, the
application of long read sequencing found comparable reduced D4Z4 methylation levels
for both 4q and 10q in FSHD2 patients [20].

The conditional inference tree fitted on data with the exponential transformation
displayed the highest metrics (accuracy: 0.90, sensitivity: 0.80, specificity: 0.92) in dis-
criminating patients with likely pathogenic/pathogenic variants (namely, FSHDvar+ sub-
jects). In particular, the model utilizes the DR1_CpG3 as the most discriminating site
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and considers a methylation level threshold ≤0.37 for classifying FSHDvar+ subjects.
In our cohort, 11 FSHD patients out of a total of 15 displayed both a DRA and likely
pathogenic/pathogenic variants within FSHD genes (namely, SMCHD1 and LRIF1), con-
sistent with the presence of a compound form of disease (FSHD1 + FSHD2). The re-
maining four FSHD2 samples showed comparable methylation levels with those dis-
played by the other FSHD1 + FSHD2 patients. This finding further suggests that patients
with likely pathogenic/pathogenic variants may be correctly identified using methylation
data independently from the presence of DRA. Moreover, the presence of patients with
FSHD1 + FSHD2 forms of disease further confirms that FSHD1 and FSHD2 are not mutually
exclusive, because DRA and pathogenic variants may co-occur as a part of wider spectrum
of disease [1,34].

The present study took advantage of the optimization of the molecular protocol used
for measuring the levels of methylation and the application of ML for enhancing the
sensibility and specificity of the assay. Other advantages related to the presented method
include its rapidity (~72 h), accessibility (~15 €/sample), easiness and health-safety (no use
of toxic reagents) compared to other methylation assays.

Importantly, the application of methylation analysis to subjects with a clinical sus-
picion of FSHD could provide specialists with preliminary evidence to be confirmed by
traditional DRA assessment. Furthermore, the use of ML pipelines is expected to promote
the standardization of non-automated technical procedures such as methylation analysis.

In conclusion, the application of methylation analysis and ML was able to success-
fully distinguish FSHD patients from controls, providing additional evidence for DNA
methylation as a powerful disease biomarker to be exploited for a rapid and reliable pri-
oritization of FSHD subjects to be confirmed by standard testing (D4Z4 sizing, research
for FSHD-associated variants). Moreover, our study is in line with the recent application
of ML for enhancing the clinical diagnosis and decision-making performance in several
medical fields, including oncology, cardiology, ophthalmology and neurology [35–38]. In
addition, ML-based methods have also been tested for fostering the research of molec-
ular disease biomarkers in different diseases and phenotypes, including neuromuscular
disorders [25,39,40]. On this subject, ML models allowed identifying single CpG sites in
DUX4-PAS and DR1, enabling an accurate discrimination of FSHD subjects (either FSHD1,
FSHD2 or compound forms).

Finally, multicentric and multidisciplinary studies on larger cohorts are required to
confirm the results of the presented approach and to test its utility in a clinical routine use.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11244114/s1. Table S1: (A) features of the FSHD training
group. The demographic features and molecular data related to the 133 FSHD subjects of the training
group are reported for each patient; (B) features of the CTRL training group. The demographic
features and molecular data related to the 150 CTRL subjects of the training group are reported.
“D4Z4 size” and “Pathogenic/likely-pathogenic variant” columns are not reported since these subjects
were negative to DRA testing and pathogenic variants in disease-associated genes; (C) features of
the CTRL training group. The demographic features and molecular data related to the 150 CTRL
subjects of the training group are reported. “D4Z4 size” and “Pathogenic/likely-pathogenic variant”
columns are not reported since these subjects were negative to DRA testing and pathogenic variants
in disease-associated genes. Table S2: summary of the ANOVA tests for FSHD vs. CTRL. Column “y”
reports the tested variable; “df” reports the degrees of freedom of the ANOVA; “sumsq”, “meansq”,
“statistic” and “p.value” columns report ANOVA summary information; “sig.p” column indicates if
the corresponding p.value is significant (p < 0.05) or not; “fdr” reports the FDR-corrected p.value, and
“sig.fdr” indicates if the corresponding fdr is significant (fdr < 0.05) or not. Table S3: summary for the
ANOVA tests performed for FSHDlow-RU vs. FSHDhigh-RU. Column “y” reports the tested variable;
“df” reports the degrees of freedom of the ANOVA; “sumsq”, “meansq”, “statistic” and “p.value”
columns report ANOVA summary information; “sig.p” column indicates if the corresponding p.value
is significant (p < 0.05) or not; “fdr” reports the FDR-corrected p.value, and “sig.fdr” indicates if
the corresponding fdr is significant (fdr < 0.05) or not. Table S4: summary for the ANOVA tests
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performed for FSHDvar+ vs. FSHDvar-. Column “y” reports the tested variable; “df” reports
the degrees of freedom of the ANOVA; “sumsq”, “meansq”, “statistic” and “p.value” columns
report ANOVA summary information; “sig.p” column indicates if the corresponding p.value is
significant (p < 0.05) or not; “fdr” reports the FDR-corrected p.value, and “sig.fdr” indicates if
the corresponding fdr is significant (fdr < 0.05) or not. Table S5: ML model evaluation metrics
for FSHD vs. CTRL. Columns 1 reports the evaluated metric. The last two columns specify the
data preprocessing strategy used and the ML method trained, respectively. Prep legend: NTH =
no preprocessing (raw data); BOX = BoxCox transformation; YEO =YeoJohnson transformation;
PWR = exponential transformation; CTR = center and scale; PCA =Principal Component Analysis
(5 dimensions); SPA = Spatial Sign transformation. Method legend can be consulted at https://
topepo.github.io/caret/available-models.html (Accessed on 1 April 2022). Table S6: ML model
evaluation metrics for FSHDhigh-RU vs. FSHDlow-RU. Columns 1 reports the evaluated metric.
The last two columns specify the data preprocessing strategy used and the ML method trained,
respectively. Prep legend: NTH = no preprocessing (raw data); BOX = BoxCox transformation; YEO
=YeoJohnson transformation; PWR = exponential transformation; CTR = center and scale; PCA
=Principal Component Analysis (5 dimensions); SPA = Spatial Sign transformation. Method legend
can be consulted at https://topepo.github.io/caret/available-models.html (Accessed on 1 April
2022). Table S7: ML model evaluation metrics for FSHDvar+ vs. FSHDvar-Columns 1 reports the
evaluated metric. The last two columns specify the data preprocessing strategy used and the ML
method trained, respectively. Prep legend: NTH = no preprocessing (raw data); BOX = BoxCox
transformation; YEO = YeoJohnson transformation; PWR = exponential transformation; CTR = center
and scale; PCA = Principal Component Analysis (5 dimensions); SPA = Spatial Sign transformation.
Method legend can be consulted at https://topepo.github.io/caret/available-models.html (Accessed
on 1 April 2022). File S1: Supplementary Methods.
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