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Abstract: 3D point clouds are gradually becoming more widely used in the medical field , however,
they are rarely used for 3D representation of intracranial vessels and aneurysms due to the time-
consuming data reconstruction. In this paper, we simulate the incomplete intracranial vessels
(including aneurysms) in the actual collection from different angles, then propose Multi-Scope Feature
Extraction Network (MSENet) for Intracranial Aneurysm 3D Point Cloud Completion. MSENet
adopts a multi-scope feature extraction encoder to extract the global features from the incomplete
point cloud. This encoder utilizes different scopes to fuse the neighborhood information for each
point fully. Then a folding-based decoder is applied to obtain the complete 3D shape. To enable
the decoder to intuitively match the original geometric structure, we engage the original points
coordinates input to perform residual linking. Finally, we merge and sample the complete but
coarse point cloud from the decoder to obtain the final refined complete 3D point cloud shape. We
conduct extensive experiments on both 3D intracranial aneurysm datasets and general 3D vision
PCN datasets. The results demonstrate the effectiveness of the proposed method on three evaluation
metrics compared to baseline: our model increases the F-score to 0.379 (+21.1%)/0.320 (+7.7%),
reduces Chamfer Distance score to 0.998 (−33.8%)/0.974 (−6.4%), and reduces the Earth Mover’s
Distance to 2.750 (17.8%)/2.858 (−0.8%).

Keywords: point cloud completion; 3D intracranial aneurysm model repair; multi-scope feature;
folding-based decoder; coarse-to-fine

1. Introduction

The intracranial aneurysm can be a life-threatening disease requiring a complicated
and costly diagnosis and treatment process. The design of a surgical plan to prevent an
aneurysm from rupturing and endangering life is of paramount importance. This kind of
surgery requires physicians to operate with pinpoint accuracy since they need clip the neck
of aneurysms to prevent rupture. Compared with 2D magnetic resonance angiography
(MRA) images, 3D models can provide physicians with more detailed and intuitive infor-
mation for simulation, diagnosis, and treatment planning. Due to the sensitivity of medical
data, there are currently few datasets on intracranial vessels. To our knowledge, the IntrA
dataset [1] is the only existing public dataset for intracranial aneurysms neurosurgery simu-
lation, published in 2020, it contains 3D surface models for segmentation and classification
in both 3D mesh and point cloud formats. However, the manual preprocessing of raw 3D
data is a challenge for experts; the 3D models should be reconstructed to be smooth on
their surface (Figure 1), which is a very time-consuming task. For example, the experts
spent 50 days to complete this IntrA dataset.
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(a) (b)

(c)

Figure 1. Examples of reconstructing ideal mesh from raw data in IntrA dataset. (a) Original raw
data built from 2D images. (b) Smooth and complete part of aneurysms. (c) Smooth and complete
part of the healthy vessel.

Three-dimensional point clouds have been widely used to represent 3D objects in
non-medical fields, because they require less memory than mesh and voxel representations
and contain a more comprehensive perspective than multiview images. However, owing to
limitations of acquisition devices or occlusions by other objects in the area being imaged [2],
3D point clouds scanned from the real world also suffer from incomplete and uneven
shapes, affecting the implementation of downstream tasks, such as segmentation and
classification. This problem also occurs in medical fields since CT and MRI are limited
by inherent physical limitations [3], noise and ambient light will appear in scanned 2D
images, resulting in the rough of 3D models constructed from 2D images. In order to
provide more efficient 3D point cloud models for other tasks, point cloud completion
has recently attracted significant attention. There are two main challenges in point cloud
completion, i.e., feature extraction from the partial shape and completion based on the
extracted feature. Based on scholars’ exploration of 3D point clouds, two pioneering
works, PointNet [4] and PointNet++ [5], are usually taken as point cloud feature extraction
techniques. Specifically, PointNet proposes to extract global features for the three properties
of point cloud data format, including unordered points, interaction among points, and
invariance under transformations, while PointNet++ partitions the position of each point
and aggregates the information of its neighbors to obtain local geometric information.
Starting from PointNet, PF-Net [6,7] were proposed based on multi-resolution convolution,
which offers richer information for the decoder by aggregating multi-resolution point cloud
features. Following feature extraction, the the challenge arises on how to use the decoder
to restore the geometric features of the point cloud. Recent attempts [6,8–10] have made
significant progress in 3D point cloud completion. For example, FoldingNet [11] regards a
3D object as a folding deformation of a 2D grid, which assigns the features extracted by the
encoder to each point on the 2D grid, and transforms the 2D grid into a 3D shape through
a multilayer perceptron (MLP). Another work AtlasNet [12] splits a 3D object into more 2D
planes and obtains the geometry of the 3D object by deforming each plane. However, these
works focus mainly on objects with obvious geometric or symmetric structural information,
such as airplanes, boats, and lamps (see Figure 2 for illustration).
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Figure 2. Airplanes, cars, and lamps examples in PCN dataset.

Despite its importance, there have been few completion tasks in the medical field.
In the previous medical-related completion tasks, the objects processed merely miss a
small part in their complete shape. For instance, missing teeth completion [13] and skull
completion [14]. These instances differ from what is required by our motivation, i.e.,
generating ideal and smooth 3D models from raw datasets. Different from other common
objects, the intracranial vessel and aneurysm fragments are typically asymmetric, with
varying geometry and topology. Additionally, the number of data points is limited because
of their size. Therefore, the completion model mentioned for ordinary objects may not be
suitable for completing intracranial blood vessels and aneurysms.

In this paper, we propose an encoder–decoder-framed deep learning model called
the Multi-Scope Feature Extraction Network, which takes one partial intracranial vessel
or aneurysm point cloud as its input . we then predicts its complete 3D structure. Con-
cretely, we develop a Multi-Scope feature Extraction encoder to obtain different scope
neighborhoods for one point, then extract and fuse the multi-scope features together. For
the decoder, we adopt style-based folding using SpareNet [15] , but add original partial
points coordinates to guide it to recover more structural information from the input. Fur-
thermore, we take the advantage of the pioneer 3D point cloud completion work PCN [2] by
utilizing a coarse-to-fine framework to calculate both coarse point cloud and refined point
cloud loss between the ground truth with shape completion during the training process.

2. Materials and Methods
2.1. Data Sources

In this paper, we adopt the IntrA dataset [1] for the experiments to evaluate the
proposed method, which was published in 2020 as a point-based and a mesh-based 3D
aneurysm model collection. It contains three data types, including 103 complete models,
1909 generated segments, and 116 annotated segments. The 103 complete brain vessels
were reconstructed by scanned 2D MRA images from patients using life sciences software,
Amira 2019 (Thermo Fisher Scientific, Waltham, MA, USA), and can take 50 workdays to
process [1]. The generated segments are split from the complete models after manually
cleaning the data and re-meshing, resulting in 1694 healthy vessels and 215 aneurysms.
Each segment has approximately 500 to 1700 points at Geodesic Distance 30. According
to IntrA, their dataset is provided to support classification, segmentation, reconstruction.
During the IntrA dataset generating process, we found that the authors face the challenge
that the restored 3D data model from 2D scanned images were not complete, and could
only be restored manually by experts . After carefully studying 103 complete models, we
were able to identify incomplete regions as shown in Figures 3 and 4. We can see that even
after a long time of reconstruction processing period, the reconstructed 3D models still
have noise and their surfaces are not smooth [1].
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Figure 3. Visualization of incomplete IntrA raw dataset. Incomplete parts are circled.

(a) (b)

Figure 4. Comparison of IntrA data before and after manually refined: (a) The coarse surface before
manually refined, (b) The smooth surface after manually refined.

2.2. Experimental Dataset

Some previous works [7,9] set the partial point cloud number equal to the complete
point number which transfers the point completion task to a point rearrangement task. This
setting is, however, limited by the choice of datasets. The model needs duplicate points or
add zero points when the input points are insufficient. The number of output points is also
limited to a fixed number. The point cloud completion task can also be seen as a missing
part prediction from the existing part [6,16,17] where the final shape isformed by merging
the existing partial part and the predicted missing part. These methods need filling the gap
between the two parts, where the missing part should shape the same distribution as the
input. Since the input shape is incomplete already, its distribution is not guaranteed to be
consistent with the complete shape of the ground truth.
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Another typical setting that follows PCN [2] is to assume that the input incomplete
point cloud and the output complete point cloud are independently distributed. They
both represent the same object but are separately sampled from the ground truth. The
purpose of this setting is that the incomplete point cloud only provides the model with a
clue to predict the complete point cloud, which has structural characteristics similar to the
predicted part of the point cloud, but it is not part of the complete point cloud. This setting
is more flexible for the number of input and output points set by the network. Since the
output point cloud is a complete shape, its distribution is consistent.

Our data setting follows PCN to make a different distribution that is more accurate for
intracranial vessel situations. Since we do not have a paired complete model and incomplete
model of 103 brain vessels, we choose the IntrA dataset’s 1909 generated segments subset
as our dataset. We follow PCN and deal with pure point cloud dataset completion tasks, to
generate an extended point cloud completion dataset, called IntrACompletion dataset.

To generate the IntrACompletion dataset from the original IntrA dataset, we take all
1909 segments models, including two categories: 1694 vessels and 215 aneurysms. The
complete point clouds are sampled from these 3D meshes uniformly. Similar to PCN,
we use back-projected depth images to generate partial point clouds. This operation can
separate the distribution of the partial point cloud and its complete shape. More specifically,
the partial point clouds are not subsets from their complete point cloud. In addition, we
use eight random angles to generate eight different viewpoints of partial point clouds to
enrich the dataset (Figure 5). To divide training, validation, and test groups, we use 8:1:1
ratio. That means we have 1356:169:169 for vessels and 173:21:21 for aneurysms (Figure 6)
in the following experiments.

Figure 5. One example of the IntrACompletion dataset. The complete point cloud is shown in the
middle, and its 8 different angles partial point clouds are shown to surround it.
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Figure 6. Vessels and aneurysms distribution in the train, validation, and test.

2.3. Proposed Methods

In this paper, we proposed a Multi-Scope Feature Extraction Network for intracranial
aneurysm vessel point cloud completion on the generated IntrACompletion dataset. This
model exploits an encoder–decoder framework and adopts a coarse-to-fine pipeline from
PCN [2]. It has a multi-scope aggregate-based encoder to extract global feature G from
partial input, and a style-based folding decoder predicts the corresponding coarse complete
shape. Last, a refinement network is considered to refine the coarse to fine output. The
overall architecture is shown in Figure 7a.

Figure 7. Overall architecture of the proposed Multi-Scope Feature Extraction Network (MSENet).
(a) Our MSENet contains three modules: a feature extractor built of several MSA modules to get the
global features G for partial point cloud input, a style-based folding decoder to generate a coarse
but complete point cloud, and a merge and sample module to refine the coarse point cloud; (b) the
detailed structure of the MSA module; and (c) the detailed structure of the style-based folding.
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2.3.1. Multi-Scope Aggregate Encoder

The characteristic of 3D point clouds is that they are represented by discrete coor-
dinates of points. This representation makes it lighter to store. However, point clouds
do not have vertices and surface structures like 3D meshes, therefore, we cannot directly
obtain one point’s local features from it. The popular feature extraction method for point
clouds is to find a point and its k neighbor points with the closest Euclidean Distance, or
neighbors within a spherical distance. Aggregating the coordinates and feature information
of surrounding points to ensure a point has not only its own features but also local features
provided by its neighbors [5,18]. These works usually use a single k only in information
extraction, resulting in weak performance in real-world datasets with an uneven point
distribution. To mitigate this issue, and inspired by VRCNet [19], we propose to apply
multi-scope feature extraction. Different from VRCNet, which uses the point self-attention
kernel module to select points, we follow [15,20], using EdgeConv [18] to extract features
and engage Squeeze-and-Extraction [21] to enhance the features.

Our proposed Multi-Scope Aggregate Module (MSA) is shown in Figure 7b. It is
combined with several Single-Scope Modules (SSM) (Figure 8). Each SSM module takes
an N × Cin unordered partial point cloud as its input, denoted as Pin. For each point
pi ∈ Pin, we find its k-nearest neighbors (k-NN) pj

i ∈ Pin and their corresponding features

{ej
i ∈ RC |j = 1, 2, 3, ..., k}. Then we use EdgeConv [18] to make a directed graph between

pi and pj
i . It combines the local neighborhood information (ej

i − ei) with global information

ei on each edge as (ei, ej
i − ei). The merged features are sent to a shared MLP to learn

each edge’s feature. Accordingly, the learned new features ej′
i of the point pi are assigned

as follows:
ej′

i = max
j:(i,j)∈ε

MLP(ei, ej
i − ei), (1)

where ej′
i ∈ RC , i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , k}. All new assigned features e′i as graph

information are squeezed into a channel descriptor through N × k dimensions followed
by a squeeze operation in the SE block [21]. We obtain a gating vector s with a Sigmoid
activation called excitation as follows:

s = σ(MLP(
1

N × k

N

∑
i=1

k

∑
j=1

ej′
i )). (2)

Figure 8. This is the Singe-Scope Module (SSM) which is the main module in our MSA module. Each
SSM module is assigned a different k value ki in one MSA module.
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After obtaining new features ej′
i from EdgeConv [18] and the gating vector s from

the SE block, the MSA layer multiplies the new features by the gating vector. It uses
max-pooling to reduce the edges of each graph to find the most representative edge and its
features as the final features N × Cout for Pin points.

Use of a fixed k for the neighborhood may cause unbalanced information. Even if
we can rebalance by using multi-resolution processes, such as PFNet [6] and Multires-
olution tree networks [7], using one k value in different downsampled point sets, the
uneven density distribution problem cannot be avoided. To this end, we borrow the R-PSK
module provided by VRCNet [19]. The R-PSK module is designed to fuse different scope
neighborhood relationships for each point in the point cloud. Our MSA module assigns
multiple k values for SSM layers. After getting a Cin dimensional feature, the MSA module
will take one MLP to enhance the feature’s expression ability to Cout and send the new
higher dimensional feature to multiple SSM layers. Then average-pooling can be applied
to merge the features from different scopes. These merged features are used for weights
through Softmax and MLP. The weights will guild the feature before SSM modules to
realize self-attention.

Our encoder contains four MSA modules which aim to extract different features from
low to high-dimension feature space. In the end, the features from the last MSA module
will be expanded by both max-pooling and average-pooling to filter important information
as global features G.

2.3.2. Style-Based Folding Decoder

Folding-based point cloud deformation [2,11,12,22–25] usually concatenates the global
shape, 2D grid, or point cloud coordinates together and learns a mapping between 2D
grid and 3D form. This mapping is learned from multiple MLP layers. Since the global
shape remains at the first layer, its effect on the overall shape generation is diminished in
later layers. To overcome this shortcoming, SpareNet [15] proposes the style-based folding
decoder inspired by StyleGAN [26]. It injects the style into each folding internal layer,
which is from the global features generated by the encoder. Style-based folding improves
the quality of the generated point cloud. Our folding-based decoder borrows SpareNet’s
style-based folding decoder that injects style information from global features into MLP
layers. Furthermore, we directly add coordinate information of the input point cloud to
assist the MLP in capturing more primitive input details.

In summary, Figure 7c shows that our style-based folding decoder takes three different
representations for the object: the global features G generated from the MSA encoder,
initial 2D grids Pn, and partial input point cloud Pin as inputs. In the style-based module
(Figure 9), we learn two modulation parameters γg and βg from the global features G
through MLP, and then utilize an Adaptive Instance Normalization (AdaIN) proposed by
StyleGAN [26] to transfer feature xi to new features:

x′i = AdaIN(xi), (3)

where

AdaIN(xi) = γg
xi − µ(xi)

σ(xi)
+ βg. (4)

In the above, µ and σ denote the mean and variance, respectively. After AdaIN, the
feature will be transferred through the SE layer and ReLU to a new feature. As with
AtlasNet [12], we assume that each 3D object is combined with K patches to K decoders
(K = 32 in our experiments). Each patch is deformed from an initial 2D grid, and each
grid is evenly divided into small grids. The vertex coordinates of each small grid are taken
as inputs for each decoder. After the style-based folding decoder, each 2D grid learns a
mapping to generate a 3D surface. All surfaces are combined directly as a complete coarse
shape.
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Figure 9. Style-based module with AdaIN (Adaptive Instance Normalization [26]).

2.3.3. Refinement Module

The 32 surfaces are generated separately. To avoid overlapping between each surface,
our model follows MSN [24] by using an expansion penalty (5) and minimum density
sampling (MDS) (6) to merge and refine the coarse points from the 32 surfaces as follows:

Lexpansion =
1

KN ∑
1≤i≤K

∑
(u,v)∈Ti

1{dis(u, v) ≥ λli}dis(u, v), (5)

where 1 denotes the indicator function sharing the filtering distance that is shorter than λli.
Denoting Pi =

{
pj|1 ≤ j ≤ i

}
as the set of first i sampled points, pi is the ith sampled point.

MSD will return a point that has minimum density as follows:

Pi = arg min
x/∈Pi−1

∑
pj∈Pi−1

exp
(
−
∥∥x− pj

∥∥2/
(

2σ2
))

. (6)

In the expansion penalty, every point in each patch will be treated as a vertex set.
Moreover, a minimum spanning tree Ti [27] is built based on Euclidean distances. Distance
between vertex u and vertex v denotes dis(u, v). Each minimum spanning tree can express
the distribution of a patch, and longer distances are penalized until they converge.

2.3.4. Joint Loss Function

Earth Mover’s Distance (EMD) is widely used in the evaluation of point cloud [28],
which measures the similarity between the generated point cloud and ground truth (gt) as
defined by:

LEMD(P1, P2) = min
φ:P1−→P2

1
|P1| ∑

x∈S1

‖x− φ(x)‖2, (7)

where φ is a bijection. In our experiments, we use EMD loss (7) to train the model. To better
guide the model optimization, we set two gt points for the coarse point cloud and refined
point cloud, respectively. Both gt points are randomly sampled from the dataset. Finally,
we adopt a joint loss method to combine the loss between each point cloud and supervise
the network’s learning ability in segments, which is defined by

Ljoint = LEMD(Pcoarse, Pgt_coarse) + LEMD(Pre f ine, Pgt_re f ine) + αLexpansion, (8)

where we set α = 0.1 in our experiments.
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2.4. Experimental Setting

Our MSENet is implemented using Pytorch [29] and CUDA. The optimizer is impor-
tant and it can affect the training result [30], we use the Adam [31] optimizer with β1 = 0
and β2 = 0.9. The partial input number is 512 and randomly sampled from one of eight
angles. The corresponding complete points number is 2048 and randomly sampled from
the datasets. We set a batch size of 32, learning rate as 0.0001, and epoch as 150. We train all
the models using the joint loss (8) on a single Quadro RTX 8000. To evaluate our proposed
model, we use three metrics in the following experiments, including EMD (7), CD (9), and
F-score @1%. The CD measure function [28] is calculated by

LCD(P1, P2) =
1
2
(

1
|P1| ∑

x∈P1

min
y∈P2
‖x− y‖+ 1

|P2| ∑
y∈P2

min
x∈P1
‖x− y‖). (9)

Comparing the above-mentioned two similarity measure metrics EMD and CD, CD is
more computationally efficient while EMD can better capture the shape similarity between
two point clouds [32].

2.5. Evaluations

We compare our MSENet with other typical methods in this research. AtlasNet [12]
generates a point cloud from several patches, FolidingNet [11] reconstructs a point cloud
from a 2D grid, and PCN [2] adopts it to generate a complete point cloud. MSN [24] is
the baseline of point cloud completion, GRNet [33] proposed a 3DConv gridding method,
SpareNet [15] proposes a style-based folding decoder. All the methods are evaluated on
two datasets, including our generated IntrACompletion dataset in the medical field and
the PCN dataset provided by PCN [2] in the general 3D vision field, and the experimental
results are shown in the following section.

3. Results
3.1. Evaluation on IntrACompletion Dataset

The results are compared in Tables 1–3 for the evaluation metrics F-score @1%, CD,
and EMD, respectively. We can see that our proposed model offers the best performance
on all the metrics for both aneurysm and vessel data point cloud completion, which
demonstrates the effectiveness of the proposed method. Compared to point cloud baseline
work MSN [24], both our model and MSN exploit 32 surfaces to reconstruct the complete
point cloud based on the partial point cloud, but our MSA module takes the multi-scope
nearest neighbor range to learn richer features for the decoder. Our MESNet improves the
F-score from 0.313 to 0.379, reduces the EMD from 3.345 to 2.750, and 34% lower in CD.
Style-based folding then helps each layer of folding obtain global information. Compared
to SpareNet [15], which also uses a style-based folding decoder, our model reduces the CD
value by 15% and the EMD value by 6%. Our decoder makes this improvement through
partial point cooperation. We will discuss the effect of the MSA module and partial point
cooperation in Section 3.3 Ablation Study. Comparing the performance over the two types
of data for aneurysm and vessel, we can observe that all models have better performance
on vessel data because we have more vessel data resulting in model bias to the vessel data.

Note that GRNet [33] was proposed to complete the dense point cloud. It originally
uses 643 grids to generate and sample a 2048 point coarse cloud from 2048 partial input
points, and, finally, generate a 16,384 point dense point cloud. For fair comparison, we use
the same ratio to set its network: 323 grids to generate and sample a 512 point coarse cloud
from 512 partial input points, and finally generate a 2048 point point cloud.
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Table 1. Point completion results on IntrACompletion in F-score @1% (higher is better).

Methods Aneurysm Vessel Overall

AtlasNet [12] 0.168 0.196 0.193
FoldingNet [11] 0.132 0.161 0.158

PCN [2] 0.140 0.154 0.153
MSN [24] 0.278 0.318 0.313

GRNet [33] 0.224 0.247 0.245
SpareNet [15] 0.322 0.376 0.370

Ours 0.343 0.384 0.379

Table 2. Point completion results on IntrACompletion in CD × 103 (lower is better).

Methods Aneurysm Vessel Overall

AtlasNet [12] 2.156 2.049 2.061
FoldingNet [11] 5.124 3.781 3.929

PCN [2] 3.972 3.971 3.971
MSN [24] 1.623 1.493 1.508

GRNet [33] 2.068 2.006 2.013
SpareNet [15] 1.453 1.140 1.174

Ours 1.173 0.976 0.998

Table 3. Point completion results on IntrACompletion in EMD × 103 (lower is better).

Methods Aneurysm Vessel Overall

AtlasNet [12] 4.158 3.983 4.002
FoldingNet [11] 5.401 4.724 4.799

PCN [2] 5.466 5.381 5.391
MSN [24] 3.524 3.323 3.345

GRNet [33] 4.164 4.048 4.061
SpareNet [15] 3.379 2.885 2.940

Ours 3.000 2.719 2.750

As the purpose of completion is to offer a better 3D model for diagnoses and practices,
we make a visualization comparison here. We take six examples from blood vessels and
aneurysms for visual comparison. In Figure 10, the first row is the incomplete point cloud
input, the following rows are the performance of different models, and the last row is the
complete ground truth for comparison. Compared to the folding-based completion models
PCN [2], MSN [24], SpareNet [15], we can see that in Aneurysm (a), Vessel (a), and Vessel
(c), SpareNet and our model can capture the details of vessel bifurcations, but the others can
only recover rough outlines. This is because we apply the style-based folding to inject the
global feature in each folding layer. Vessel (b) shows that not every model can reconstruct
the tube-like shape. Aneurysm (b) and Aneurysm (c) give us more complex structures .
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Figure 10. Visual comparison of point cloud completion on the IntrACompletion dataset.

3.2. Evaluation on PCN Dataset

To demonstrate the effectiveness of the proposed method in the general point cloud
completion in 3D vision, we also conduct the experiments on the PCN dataset [2], which
contains airplanes, cabinets, cars, chairs, lamps, sofas, tables, and vessels (boats). For a fair
comparison, we use the same train/val/test splits with SpareNet [15] and GRNet [33]. For
the overall evaluation, our model is the best in F-score and EMD, as shown in Tables 4 and 5.
For each category, our performance is better in sofa, table, and vessels in Table 6 evaluated
by CD, and outperforms 7 out of 8 categories in F-score. The visualization comparison
is shown in Figure 11. We can see AtlasNet [12], PCN [2], MSN [24], SpareNet, and our
MSENet completing the point cloud using multiple surfaces are able to better represent
object surfaces. However, FoldingNet [11] uses a single surface to complete the point cloud,
making it hard to separate different parts of objects, such as the wheel section in the third
column. In the first column we displayed, due to the missing middle region of the plane
the head part of the input point cloud, the full plane head part recovered by MSN and
SpareNet is also missing, but our planes head part is complete. In the fifth column, only
SpareNet and our model using style-based folding can recover the details of the pole part
of the lamp. Compared to SpareNet, our completed point cloud has fewer holes, such as
the plane in the first column and the table in the seventh column.

Table 4. Point completion results on PCN in F-score @1% (higher is better).

Methods Airplane Cabinet Car Chair Lamp Sofa Table Vessel Overall

AtlasNet [12] 0.590 0.096 0.160 0.149 0.211 0.106 0.199 0.263 0.222
FoldingNet [11] 0.509 0.134 0.159 0.161 0.247 0.117 0.229 0.279 0.229
PCN [2] 0.611 0.148 0.200 0.185 0.293 0.128 0.240 0.312 0.265
MSN [24] 0.670 0.117 0.202 0.229 0.380 0.148 0.276 0.357 0.297
GRNet [33] 0.554 0.133 0.176 0.197 0.365 0.132 0.233 0.315 0.263
SpareNet [15] 0.664 0.162 0.204 0.240 0.436 0.153 0.275 0.378 0.314
Ours 0.661 0.164 0.206 0.249 0.439 0.167 0.297 0.380 0.320
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Table 5. Point completion results on PCN in EMD × 103 (lower is better).

Methods Airplane Cabinet Car Chair Lamp Sofa Table Vessel Overall

AtlasNet [12] 1.926 3.809 3.090 3.581 3.920 4.001 3.244 2.879 3.307
FoldingNet [11] 2.090 3.458 3.229 3.711 3.609 3.940 3.188 2.913 3.267
PCN [2] 1.867 3.261 2.720 3.275 3.268 3.552 2.935 2.664 2.943
MSN [24] 1.704 3.668 2.844 3.049 2.968 3.600 2.727 2.486 2.881
GRNet [33] 2.013 3.474 2.954 3.188 2.836 3.705 2.977 2.583 2.966
SpareNet [15] 1.762 3.442 2.913 3.231 2.691 3.659 2.937 2.529 2.895
Ours 1.778 3.399 2.889 3.176 2.697 3.600 2.854 2.472 2.858

Table 6. Point completion results on PCN in CD × 103 (lower is better).

Methods Airplane Cabinet Car Chair Lamp Sofa Table Vessel Overall

AtlasNet [12] 0.431 1.836 0.977 1.470 1.952 2.014 1.405 0.948 1.379
FoldingNet [11] 0.582 1.746 1.208 1.946 2.203 2.151 1.689 1.182 1.589
PCN [2] 0.408 1.420 0.775 1.291 1.234 1.527 1.223 0.816 1.087
MSN [24] 0.315 1.691 0.828 1.153 1.094 1.607 0.959 0.684 1.041
GRNet [33] 0.441 1.360 0.874 1.189 0.994 1.826 1.101 0.691 1.059
SpareNet [15] 0.320 1.374 0.880 1.192 0.891 1.501 0.973 0.649 0.972
Ours 0.331 1.374 0.874 1.198 0.945 1.485 0.951 0.633 0.974

Figure 11. Visual comparison of point cloud completion on the PCN dataset.

3.3. Ablation Study

The proposed method contains two key components, which are MSA module and
partial point cooperation. We add them step by step to examine their effectiveness. The
ablation studies on IntrACompletion are presented in Table 7. The experimental setting
and evaluations are the same as those used in Sections 2.4 and 2.5. We first set our baseline
as using one SSM module assigned a k value equal to 5 in our MSA encoder, and remove
the partial input for the style-based folding decoder. The EMD score is 3.064× 103, CD
score is 1.267× 103, and F-score @1% is 0.354. Compared to the baseline, adding multiple
SSM modules in our encoder can reduce 0.091× 103 EMD score, and 0.086× 103 CD score.
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Partial input can reduce 0.133× 103 EMD score, and 0.149× 103 CD score. The partial
input can also increase 0.004 F-score @1% compared to the baseline. With all parts added,
the EMD score was reduced 0.314× 103, and 0.296× 103 was reduced in the CD score.
Additionally, the two parts increase 0.025 for F-score @1%.

Table 7. Ablation study on partial input in decoder and multi-scope in the encoder using IntrACom-
pletion dataset.

Multi-Scope Partial Input
EMD × 103

(Lower Is
Better)

CD × 103

(Lower Is
Better)

F-Score @1%
(Higher Is

Better)

3.064 1.267 0.354
X 2.973 1.181 0.351

X 2.931 1.118 0.358
X X 2.750 0.998 0.379

We also performed the ablation study on the PCN dataset as shown in Table 8. Com-
pared to the baseline in the first row, our multiple SSM modules and partial input can
reduce the EMD score from 2.890× 103 to 2.858× 103, and enhance the F-score @1% from
0.313 to 0.320. We can note that any addition of MSA module or partial point cooperation
can improve the model performance, and MSENet performs better when the two modules
are combined.

Table 8. Ablation study on partial input in decoder and multi-scope in the encoder using PCN
dataset.

Multi-Scope Partial Input
EMD × 103

(Lower Is
Better)

CD × 103

(Lower Is
Better)

F-Score @1%
(Higher Is

Better)

2.890 0.955 0.313
X 2.878 0.977 0.312

X 2.862 1.011 0.314
X X 2.858 0.974 0.320

4. Discussion

The development of deep learning in the medical field has been applied to many areas,
such as anonymous detection, biological data mining, disease detection, education, etc. [34].
However, some of the open-access data sources listed in the article for disease diagnosis
and segmentation only contain hundreds of patient samples. Dataset amount can directly
affect the training efficiency, and more samples are helpful. Therefore, how to deal with the
original data to make it usable is also worth studying.

Three-dimensional representations are more expressive than two-dimensional data.
Furthermore, in medical diagnosis, 3D representations can provide physicians with a
clearer and more complete model. Three-dimensional data can help improve the accuracy
and efficiency of diagnosis. The full 3D model can also provide clearer objects to practice
on in experiments. Since intracranial aneurysm’s are life-threatening, 3D data can provide
doctors with better imaging results during diagnosis and aid in developing more accurate
surgical plans. The current 3D data are mainly composed of multiple 2D MRA images, and
the quality of the synthesis is usually incomplete and noisy, as shown in Figure 3. Such
rough data also need be manually refined by experts, which is very time-consuming. We
propose a 3D point cloud completion model called Multi-Scope Feature Extraction Network
(MSENet) that can complete point clouds of incomplete vessels and aneurysms.

To our knowledge, our model is the first to address the problem of missing data in
3D medical data acquisition. Different from other functional completion problems in the
medical field, such as tooth loss [13] or skull completion [14], our model mainly promotes



Cells 2022, 11, 4107 15 of 17

the integrity of the data from the source of data collection and provides more convenient
and fast data preprocessing for medical diagnosis and simulation exercises. Lack of data
problems are common in the medical field, e.g., in the IntrACompletion dataset which has
eight times more vessels than aneurysms as shown in Figure 6. Tables 1–3 show that all
of the methods show better performance in vessel completion. At present, there is little
research considering the differences between different categories when completing point
clouds, which we will explore for future research.

5. Conclusions

This paper aims to mitigate the incomplete data issue regarding the 3D image recon-
struction process for intracranial vessels and aneurysms. We propose a Multi-Scope Feature
Extraction Network to complete the partial 3D point cloud. This network engages a multi-
scope aggregate module to explore and merge different scopes of neighbors to enhance
feature extraction. Then we design a style-based folding decoder to concatenate the original
partial points coordinates directly, where the coordinates can offer more existing structure
to guide the decoder’s ability. We take the 3D intracranial vessels and aneurysms dataset
from IntrA [1] to evaluate our proposed model. We also use a general dataset PCN [2] to
confirm this model’s generalizability for other 3D objects. Extensive experimental results
demonstrate the effectiveness of the proposed method. Compared to the baseline work
MSN [24] on the two datasets, our model increases the F-score to 0.379 (+21.1%)/0.320
(+7.7%), reduces Chamfer Distance score to 0.998 (−33.8%)/0.974 (−6.4%), and reduces
the Earth Mover’s Distance to 2.750 (17.8%)/2.858 (−0.8%).
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