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Abstract: Cellular senescence, a hallmark of aging, is defined as irreversible cell cycle arrest in
response to various stimuli. It plays both beneficial and detrimental roles in cellular homeostasis and
diseases. Quality control (QC) is important for the proper maintenance of cellular homeostasis. The
QC machineries regulate the integrity of RNA and protein by repairing or degrading them, and are
dysregulated during cellular senescence. QC dysfunction also contributes to multiple age-related
diseases, including cancers and neurodegenerative, muscle, and cardiovascular diseases. In this
review, we describe the characters of cellular senescence, discuss the major mechanisms of RNA and
protein QC in cellular senescence and aging, and comprehensively describe the involvement of these
QC machineries in age-related diseases. There are many open questions regarding RNA and protein
QC in cellular senescence and aging. We believe that a better understanding of these topics could
propel the development of new strategies for addressing age-related diseases.
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1. Cellular Senescence: Types and Characteristics

Cellular senescence is a hallmark of aging that is characterized by stable cell cycle
arrest in response to various cellular damages and stresses [1]. Cellular senescence was first
described in 1961 by Hayflick and Moorhead, who observed that a human diploid fibrob-
last cell line ceased to proliferate after an extended number of population doublings [2].
This process, termed replicative senescence, was later related to telomere shortening [3].
Cellular senescence can also be induced by various intrinsic and extrinsic stressors, such
as DNA damage, epigenetic alterations, oxidative stress, oncogene- and therapy-induced
stress, inactivation of tumor suppression, and viral infections [4–8]. Senescent cells have
morphological and molecular features that differ from those of normal cells, including
increased SA-β-gal activity at pH 6 (the intra-lysosomal pH), the presence of lysosomal
granules in the cytoplasm, and flattened and enlarged morphologies [9]. Cellular senes-
cence is mainly initiated by two tumor suppressor pathways: the p53-p21 and p16 Ink4A

-RB pathways. Upon p53 activation, the up-regulation of p21 (also known as CDKN1A)
blocks the formation of cyclin-cyclin-dependent kinase (CDK) complexes. p16Ink4A (also
known as CDKN2A) directly binds to and inhibits the interaction between CDK4/6 and
cyclin D. When CDKs are inhibited by p21 and p16Ink4A, RB remains hypophosphorylated
and interacts with the transcription factor, E2F, leading to irreversible cell cycle arrest [1,10].
Although senescent cells are characterized by growth arrest, they remain metabolically
active. They secrete not only extracellular vesicles, but also various bioactive proteins,
termed senescence-associated secretory phenotypes (SASPs), which include inflammatory
cytokines, chemokines, matrix metalloproteinases (MMPs), growth factors [11]. SASPs
reinforce senescence themselves as autocrine messengers. In paracrine manner, SASPs
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regulate the proliferation, angiogenesis, invasion, and metastasis of tumors, local im-
mune responses, and the cellular reprogramming of surrounding cells [12,13]. Cellular
senescence plays beneficial roles in tumor suppression, immune cell recruitment, wound
healing, fibrosis reduction, and embryo development. However, senescent cells also play
detrimental roles in the proliferation, angiogenesis, tumor metastasis, tumor invasiveness,
chronic inflammation, fibrosis, and tissue regeneration. Cellular senescence is closely asso-
ciated with multiple chronic diseases, such as cancers and neurodegenerative, muscle, and
cardiovascular diseases [14].

2. QC of RNA

In eukaryotic cells, RNA biogenesis comprises multiple processes involving tran-
scription, capping, splicing, 3′ end cleavage, polyadenylation, nucleus-cytoplasm export,
and translation. During these processes, abnormal or nonfunctional RNAs are degraded
by RNA QC mechanisms to avoid the production of dysfunctional or toxic proteins [15].
Below, we describe the mechanisms of RNA QC in the nucleus and cytoplasm and their
implications during cellular senescence and aging (Figure 1).
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Figure 1. Molecular mechanisms of RNA QC. In eukaryotic cells, RNA biogenesis has multiple series
of processes, involving transcription, 5′ capping, splicing, polyadenylation, and export to cytoplasm,
and translation. During these processes, defective RNAs are subjected to RNA QC in the nucleus
and cytoplasm. In nucleus, mRNAs with ‘detained’ introns are degraded by nuclear exosomes in the
nuclear basket. mRNAs, which interacts with retention factors or lacks export factors, are retained in
the nucleus and finally degraded by nuclear exosomes. ‘Poison-cassette” exon-contained mRNAs,
which have PTC in their exon, are exported to the cytoplasm and degraded by NMD pathway. In
cytoplasm, abnormal RNAs can be distinguished from normal RNAs by RNA structure and binding
proteins, and are directly degraded by several degradation pathways. mRNAs with PTC or long
3′UTR are degraded by NMD. In a process of NGD, mRNAs with translation elongation stalled
structure are degraded by recruiting Dom34–Hbs1 complex. NSD degrades mRNAs having no stop
codon, and REMD destabilized mRNA in a poly(A)-dependent manner. In a process of RTD, tRNAs
lacking several body modifications are degraded by 5′-3′ exonuclease, Rat1 and Xrn1.
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2.1. QC of RNA in the Nucleus

In the cell nucleus, pre-mRNAs are synthesized from genes by RNA polymerase
II (RNA Pol II) and then processed into mRNAs via splicing, 5′ end capping, 3′ end
endonucleolytic cleavage, and polyadenylation. Each generated mRNA is then packed into
a messenger ribonucleoprotein particle (mRNP) by the binding of RNA-binding proteins
(RBPs), and exported to the cytoplasm [16]. During the various RNA processing events,
numerous RNA QC systems target abnormal nuclear RNAs, retaining and degrading them
within the nucleus or exporting them to the cytoplasm for degradation.

Incomplete mRNAs are retained within the nucleus by fail-safe mechanisms, as they
possess either retention features (retained and detained introns, or extended poly (A) tails)
or cis-acting elements (GUAUGUU, the pentamer AGCCC, or polypyrimidine tract) for
the interaction of retention factors [17]. Retained introns (RIs) have two types, such as
‘poison-cassette’ exon and ‘detained’ introns. ‘Poison-cassette’ exon-contained mRNAs
have premature termination codon (PTC) in their exon, are exported to the cytoplasm, and
are degraded by nonsense-mediated RNA decay (NMD). Second type of RI is ‘detained’
introns (DI). mRNAs may frequently have the detained introns (DIs), which have weaker
5′ and 3′ splice sites than spliced introns. DIs interact with inactive pre-spliceosome
(including U2AF, UAP56, and SF3B1) and SR proteins, and detained intron-containing
RNAs are thereby localized to nuclear speckles [18]. Pre-mRNA or mRNA, which interacts
with retention factors or lacks export factors, are retained in the nucleus and ultimately
degraded by nuclear exosomes [19]. A nuclear exosome embodies two different forms
of nuclear RNA degradation, namely those driven by an 11-subunit complex containing
EXOSC10/RRP6 and DIS3, and those driven by a nucleolar 10-subunit complex that
contains EXOSC10/RRP6 but lacks DIS3. Nuclear co-factors, such as MPP6 and C1D, bind
to the exosome to recruit MTR1, which is a helicase of the SKI2-like family. TRAMP is an
exosome accessory complex that consists of non-canonical poly(A) polymerase, hTRF4-2
(PAPD5), ZCCHC7, and MTR4 helicase. TRAMP prepares aberrant RNAs for degradation
by adding a poly(A) tail at the 3′ end of RNA substrates (including pre-rRNAs, abnormal
tRNAs, snRNAs, snoRNAs, and ncRNAs) [20–22].

2.2. QC of RNA in the Cytoplasm

QC mechanisms in the cytoplasm degrade aberrant mRNAs that could potentially
be translated into toxic proteins. Adaptor proteins bind to the aberrant mRNAs and
promote their degradation via various degradation pathways [23]. NMD is a highly
conserved mRNA-decay pathway that selectively degrades mRNAs containing PTC or
NMD-activating characters. NMD regulates both the QC and the quantity control of
mRNAs. In NMD, UPF1 serves as a central regulator that recruits degradation enzymes,
including SMG6 (or SMB5-SMG7), XRN1, CCR4-NOT, DCP2, and PNRC2 [24]. NMD can
target and degrade mRNAs through two mechanisms: 3′ untranslated region (3′ UTR)
EJC-dependent and EJC-independent NMD. The exon junction complex (EJC) is one of
protein complexes which plays a crucial role in post-transcriptional regulation for gene
expression. The EJCs serve to mark exon-exon junctions after the intron removal and are
displaced by ribosomes during translation [25]. In the 3′ UTR EJC-dependent mechanism,
the aberrant mRNAs have a PTC generated by biosynthesis defects or nonsense mutation.
The PTC is generally located ~50–55 nucleotides upstream of an exon-exon junction. During
the splicing process, an EJC composed of eIF4A3, RBM8A/Y14, and MAGOH, binds
~20–24 upstream nucleotides of upstream of the mRNA exon-exon junctions. RNPS1
and UPF3X/UPF3B join the EJC, and then UPF2 binds to UPF3X/UPF3B. UPF1 interacts
with UPF2 and UPF3X/UPF3B and undergoes a conformational change to stimulate its
ATPase and helicase activities. The SMG1-SMG8-SMG9 termination complex binds to
UPF1 and induces the SMG1-mediated phosphorylation of UPF1. Next, phosphorylated
UPF1 interacts with SMG5-SMG7 or SMG6 to mediate exonucleolytic or endonucleolytic
mRNA decay, respectively. Abnormal mRNAs with long unstructured 3′ UTRs can be
degraded by EJC-independent NMD. In this process, UPF1 binds to SMG1-SMG8-SMG9
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and is phosphorylated independent of EJC. Translation is repressed and decay factors are
recruited to target mRNAs, leading to their degradation [24,26].

Aberrant mRNAs can be degraded by other RNA QC mechanisms, such as nonstop
decay (NSD), no-go decay (NGD), rapid tRNA decay (RTD), nonfunctional rRNA de-
cay (NRD), and ribosome extension-mediated decay (REMD) [27–32]. NSD is an RNA
surveillance pathway that acts to decay mRNAs lacking stop codons. NAD requires the
recruitment of Ski7 (eEF1A) and the Dom34–Hbs1 complex, and induces the 3′-5′ degra-
dation of a target mRNA [27–29]. NGD targets defective mRNAs that exhibit stalled
elongation, wherein the ribosome is stalled and the A site of ribosome is empty. The
Dom34/Hbs1 complex associates with the A site of ribosome and mediates the hydrolysis
of peptidyl-tRNA; this leads to release of the peptide or peptidyl-tRNA, which is then
degraded by ubiquitin-mediated proteasomal degradation. Defective mRNA is cleaved by
an endonuclease and the stalled ribosome is released from the mRNA. Next, the mRNA
fragments are exonucleolytically digested by Xrn1 and the exosome [30]. RTD degrades
tRNAs lacking several body modifications; here, the tRNA is processed by the 5′-3′ ex-
onucleases, Rat1 and Xrn1 [32]. REMD is a cell type-specific mRNA decay pathway that
induces a poly(A)-dependent destabilization of mRNAs [31].

3. QC of Proteins: Proteostasis

Proteostasis is enacted by a complex protein QC network that monitors protein trans-
lation, folding, aggregation, localization, and degradation. Proteostasis maintains protein
homeostasis through several main machineries, including chaperone proteins, the ubiquitin-
proteasome system, and autophagy (Figure 2).
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Figure 2. Various mechanisms of protein QC 

Figure 2. Various mechanisms of protein QC. Two representative protein QC systems, UPS and
autophagy, maintain the protein homeostasis. Misfolded or abnormal proteins are degraded through
UPS. Mono or polyubiquitinated proteins by the ubiquitin-activating enzymes, E1, E2 and E3, are
recruited to 26S proteasome for degradation. The other protein QC system, autophagy, has three
major forms of autophagy, macroautophagy, microautophagy, and chaperon-mediated autophagy
(CMA). Macroautophagy sequesters cytosolic cargos within double-membrane vesicles called au-
tophagosomes, and subsequently transfers them to lysosomes for degradation. Microautphagy
directly uptake cargos through membrane protrusion and either invagination of the lysosomal or late
endosomal membranes. CMA transports cargos with KFERQ-like motif to the lysosome membranes.
These three types of autophagy degrade cargos and maintain proper protein homeostasis in the cells.
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3.1. Ubiquitin-Proteasome System (UPS)

The proteasome is a macromolecular complex that is responsible for degrading abnor-
mal, damaged, and unnecessary proteins through ubiquitin-dependent or -independent
pathways. The major proteolytic mechanism of protein degradation is the ubiquitin-
proteasome system (UPS), which requires that the target protein be tagged with a 76 amino-
acid peptide called ubiquitin (Ub) [33]. The UPS maintains the proper concentrations of
regulatory proteins involved in various biological processes, including apoptosis, cell cycle
progression, proliferation, differentiation, angiogenesis, and cellular senescence [34,35].

The UPS specifically controls target proteins (substrates) via enzymatic procedures
that involve the E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme, and
E3 ubiquitin ligase [36]. Ub is first activated by E1 in an ATP-dependent manner: E1
hydrolyzes ATP and adenylates the glycine residue at the carboxyl-terminus of Ub. Then,
the activated Ub is transferred and linked to a cysteine site of E2. In the final step, E3
attaches Ub to the ε-amino group of lysine residues of the substrate protein [37,38]. E3
binds to the primary sequence motif of substrates, and thereby provides specificity to the
UPS [39]. Ub sequentially conjugates to the primary ubiquitin of substrates and forms a
polyubiquitin (Poly-Ub) chain acts as a signal for the substrate protein to be degraded by
the proteasome [38].

The proteasome consists of two major assemblies: the 19S regulatory particle (RP)
and the 20S core particle (CP). The RP has two catalytic activities, ATP hydrolysis and
proteolytic cleavage, and consists of 19 different subunits that form two heteromeric
subcomplexes, called the lid and base complexes. The base consists of six different ATPases
called regulatory particle triple-A proteins 1 (RPT1)-RPT6, and three non-ATPase subunits
called regulatory particle non-ATPase1 (RPN1), RPN2, and RPN13. The ATPase subunits
are involved in substrate unfolding and α-ring channel opening. RPN1, RPN13, RPT5,
and RPN10 act as ubiquitin receptors, capturing ubiquitylated proteins. RPN10 forms a
link between the base and lid. The lid, which is composed of nine non-ATPase subunits
(RPN3, RPN5–RPN9, RPN11, RPN12, and RPN15), deubiquitinates the captured substrates
to facilitate their degradations. The other lid subunits have yet to be studied in detail. Thus,
RP recognizes ubiquitin tags, then deubiquitinates, unfolds, and translocates the substrate
into the 20S core particle, and finally degrades the substrate into peptides [40–42]. Substrate
degradation occurs inside the CP, which is a barrel-shaped cylinder composed of α- and
β-rings that form four heteroheptameric rings. The two outer α-rings (α1–α7) function
as a gate that associates with regulatory particles. The two inner rings are formed by β
subunits (β1–β7). β1 has caspase activity, β2 has trypsin-like activity, and β5 possesses
chymotrypsin-like activity. Other β subunits (β3, β4, β6, and β7) form an inner ring
structure [41–43].

3.2. Autophagy

Autophagy is enacted by a conserved lysosomal pathway that degrades cytoplasmic
components and organelles. This pathway can be induced by diverse stresses, including
the deprivation of nutrients or growth factors or the presence of reactive oxygen species,
defective organelles, misfolded proteins, DNA damage, or intracellular pathogens [44,45].
The UPS degrades short-lived, unfolded, and misfolded proteins, while autophagy tar-
gets long-lived proteins and organelles, such as the endoplasmic reticulum, mitochon-
dria, and peroxisomes. The UPS and autophagy can engage in cross-talk and affect one
other [46]. There are three major forms of autophagy: macroautophagy, microautophagy,
and chaperon-mediated autophagy (CMA).

Macroautophagy, which is hereafter referred to as autophagy, sequesters cytosolic
cargos within double-membrane vesicles called autophagosomes, and subsequently de-
livers them to lysosomes for degradation. This process can be nonselective (bulk) or
selective. Nonselective autophagy randomly targets subcellular organelles or macro-
molecules in bulk, whereas selective autophagy specifically recognizes and degrades cargos
through autophagy receptors. There are various forms of selective autophagy, includ-
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ing aggrephagy (acting on aggregated proteins), glycophagy (glycogen), lipophagy (lipid
droplets), mitophagy (mitochondria), nucleophagy (nuclear materials), and xenophagy
(pathogens) [47,48]. Under various stress conditions, autophagy is induced by a multistep
process that includes initiation, membrane nucleation, phagophore formation, phagophore
expansion, lysosome fusion, and degradation. Autophagy is tightly regulated by the
inhibitor, mTOR, and the activator, AMP-activated kinase (AMPK). UNC51-like kinase
1 (ULK1) is a key initiator of autophagy; it is phosphorylated and activated by disso-
ciation of mTOR or interaction with AMPK. Additional crucial autophagy proteins in
mammals include the light chain 3 (LC3)/γ-aminobutyric acid receptor-associated pro-
teins (GABARAPs). LC3 is first processed by a member of the autophagy-related protein
4 (ATG4) family to form cytosolic LC3-I. Next, LC3-I is translocated to a phagophore
through ATG7 and ATG3, and becomes conjugated to phosphatidylethanolamine (PE) to
form LC3-II (lipidated LC3). LC3-II interacts with specific autophagy receptors (SARs) or
cargo receptors harboring LC3-inteacting motifs (LIRs) [48,49]. Autophagy mediated via
the recognition of specific autophagy receptors is well established as selective autophagy,
although it was originally known as non-selective autophagy [50,51].

Microautophagy is the directly uptake of cytosolic cargos by membrane protrusion
and either invagination of the lysosomal or late endosomal membranes. This process
can be non-selective or selective. Non-selective microautophagy has two different types,
fission-type and fusion-type. Selective microautophgy takes specific cargos depending on
the cellular context, including micromitophagy, microreticulophagy, micronucleophagy,
microlysophagy, macrolipophagy, microproteophagy, and endosomal microautophagy
(eMI) [52].

Chaperon-mediated autophagy (CMA) drives the selective uptake of KFERQ-like
motif-harboring proteins into lysosomes. A cytosolic cargo with a KFERQ-like motif is
recognized by Hsc70 and co-chaperons. The cargo-chaperon complex binds to lysosome-
associated membrane protein type 2A (LAMP2A), and the cargo is unfolded by the
chaperon complex and forms the CMA translocation complex. The cargo is translocated
by lysosomal Hsc70 (Lys-Hsc70) and undergoes degradation by lysosomal proteases,
such as cathepsin A and MMPs. Finally, LAMP2A is dissociated from the translocation
complex [47].

3.3. QC of RNAs and Proteins in Cellular Senescence and Aging

Several studies have reported that NMD activity is closely associated with aging: It
is reduced during aging processes, resulting in the accumulation of abnormal RNAs due
to failure of RNA QC. For example, NMD activity was shown to be decreased in various
tissues of aged C. elegans and required for the longevity of this model organism [53].
Several senescent cell models induced by various stimuli show accumulation of exosome
substrate RNAs with long promoters, which indicates reductions in NMD activity and the
expression of exosome subunits, including EXOSC2, EXOSC3, EXOSC6, EXOSC8, EXOSC9,
EXOSC10 and DIS3L [54].

Proteostasis provides a balanced cellular proteome, wherein the cycles of protein
synthesis and degradation are fine-tuned via UPS and autophagy. Loss of proteostasis
has been observed in various aged human tissues and organs, such as skin, muscle, lym-
phocytes, liver, lung, heart, kidney, and brain, and is considered a hallmark of cellular
senescence and aging [55–61]. The loss of proteostasis increases the levels of damaged
and dysfunctional proteins, which eventually form large toxic protein aggregates. The
accumulation of abnormal proteins is frequently found in age-related diseases, suggesting
that proteostasis loss is a strong contributor to age-related diseases [62,63].

An age-dependent decrease of UPS can occur at different levels, such as reduced
proteasomal activity, structural alterations and/or subunit replacement of proteasomes,
decreased expression of proteasomal subunits, and proteasomal modification [38,64]. The
activity levels of the 20S and 26S proteasomes are decreased in aged liver, brain, and muscle
when compared with their young counterparts [65–67]. The relative attachment of PA28 and
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PA700 to the 20S core proteasome is lower in aged muscle than in young muscle [68]. The
expression levels of proteasomal subunits are decreased in old human skin cells or mouse
liver tissues [69,70]. The expression levels of PSMA1 (α subunit), PSMB6, PSMB5, PSMB4
(β subunits), PSMC4, PSMD8 (19S regulator subunits), PSME1, and PSME2 (11S activators)
are lower in skin cells from elderly donors compared to young donors [69]. In liver tissues
from old mice, PSMD4 expression is reduced [70]. Moreover, stress-induced modification
of proteasomal subunits, such as 4-hydroxynonenal, carbonylation, S-glutathionylation,
poly ADP-ribosylation, S-nitrosylation, phosphorylation, or ubiquitination, can reduce
proteasomal activity during cellular senescence and aging [71–75].

Alterations of the UPS and/or dysfunction of autophagy and CMA are found during
cellular senescence and aging. The dysfunctions of autophagy are heterogeneous. At
the transcriptional level, key autophagy genes, such as ATG5, ATG7, and BECN1, are
downregulated in human aged brain tissues [76]. Histone modification also regulates the
expression of autophagy-related genes. For instance, autophagy is induced by a decrease in
H4K16 acetylation (H4K16Ac) and/or an increase in Acetyl-CoA or H3K9 demethylation
(H3K9me2) [77]. Reduction of the histone acetyltransferase, hMOF, decreases H4K16Ac
in the promoter regions of ULK1, ATG9, LC3, VMP1, and GABARAP, increasing their
transcription levels [78]. In contrast, SIRT5-mediated deacetylation of LDHB was found to
induce autophagy [79]. Increased acetylation by Acetyl-CoA represses the expression of the
autophagy gene, ATG7, and a high level of methylation by the methyltransferase, G9A, can
inhibit the transcription levels of ATG9, LC3, GABARAP, BNIP3, SQSTM1, and WIPI1 [77].
Epigenetic and transcriptional regulation of autophagy genes by histone modification
impairs the formations of autophagosomes and autolysosomes and reduces the LC3 flux in
cellular senescence and aging [64].

4. QC of RNAs and Proteins in Age-Related Diseases

Accumulating evidence indicates that the decline in RNA and protein QC contributes
to many age-related diseases, such as cancer, neurodegenerative diseases, muscle diseases,
and cardiovascular diseases. In this part of the review, we summarize what is known about
alterations of RNA and protein QC in cellular senescence and aging.

4.1. Cancer

NMD, which is a highly conserved RNA decay pathway, plays dual roles in cancer.
First, it can act as a tumor-promoting pathway by degrading suppressor genes. In a
tumor, the tumor suppressor genes have a higher ratio or insertion and deletion (indel)
and nonsense mutations relative to missense mutations [80]. Analysis of genome-wide
expression data reveals that tumor suppressor genes, such as EIF5B, LARP4B, and PTEN,
p53, have PTC-inducing mutations, which are also called NMD-eliciting mutations [81–84].
UPF1, a core component of NMD, also degrades the p21 mRNA by cooperating with other
factors, such as the Linc-ASEN lncRNA and the mRNA repressor, TRIM71 [85,86]. In
cancer cells, Linc-ASEN lncRNA interacts with UPF1 and DCP1A and induces p21 mRNA
decay. Depletion of Linc-ASEN lncRNA or UPF1 increases the p21 mRNA level to mediate
cellular senescence in cancer cells. Linc-ASEN has inverse correlation p21 expression in
tumors from patient tissues and patient-derived mouse xenograft. In addition, expression
of Linc-ASEN is significantly lower in tissues from aged mouse than young mouse, and
its expression shows negative correlation with p21 mRNA in mouse tissues [85]. TRIM71
is upregulated in various cancer types, such as hepatocellular carcinoma, acute myeloid
leukemia and ovarian cancer. In hepatocellular carcinoma cells, TRIM71 reduces p21
mRNA levels and promotes cancer cell proliferation. TRIM71 directly interacts with the
stem loop in the p21 3′ UTR and induces NMD-mediated p21 mRNA decay by cooperating
with NMD factors, UPF1 and SMG1 [86]. Wig1 (also referred to as ZMAT3) induces
p21 mRNA decay via the recruitment of Ago2, a major component of the RNA-induced
silencing complex (RISC). Depletion of Wig1 stabilizes the p21 mRNA, resulting in the
induction of growth arrest and cellular senescence in breast, colon and lung cancer cells.
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Moreover, in mouse xenograft model, Wig1 depletion repress tumor growth by increasing
p21 levels [87]. In cancer, oncogenes such as the pro-survival gene, BCL2, can escape NMD.
BCL2 has an immunoglobulin-specific sequence (NMD-escape mutation) in its 3′ UTR;
this prevents its NMD-mediated mRNA degradation, resulting in a high level of BCL2 in
cancer [88]. NMD can also suppress tumor progression via the degradation of mutated
tumor suppressor mRNAs (p53), oncogene mRNAs, noncoding RNAs (MALAT, SNHG5),
and an EMT-associated mRNA (TWIST). The mechanisms by which NMD suppresses
tumors still remain to be studied. HuD (also called ELAVL4), which is an RNA-binding
protein (RBP) belonging to the human antigen Hu/ELAVL family, regulates gene expression
at the post-transcriptional level by modulating alternative splicing, mRNA stability, mRNA
localization, and translation. In human neuroblastoma cells, HuD negatively regulates
the expression of senescence-associated secreted proteins (SASPs), including IL-6, CXCL2,
CCL20, and CCL2. Depletion of HuD increases the mRNA levels of SASPs. HuD has been
shown to directly bind to the 3′ UTR of the CCL2 mRNA, but the underlying mechanism
remains to be elucidated in detail [89].

The UPS plays crucial roles in regulating protein QC and homeostasis. Impairment of
UPS function is involved in cancer; in numerous cancers, dysregulation of ubiquitination is
caused by epigenetic alteration (hypermethylation), genetic mutation in coding regions,
post-transcriptional modification (aberrant splicing or destabilization of mRNA by miR-
NAs) or post-translational modification (phosphorylation or self-ubiquitination). E3 ligase
overexpression is also implicated in the growth and survival of cancer [90]. TRIM25 is
highly expressed in HCC tissues relative to adjacent normal tissues. In colon cancer cells,
TRIM25 expression is increased upon ER stress and upregulated TRIM25 reduces Keap1, an
inhibitor of Nrf2, by its ubiquitination and degradation. Decreased Keap1 by TRIM25 acti-
vates Nrf2 and leads to tumor cell proliferation. In HCC xenograft mouse models, depletion
of TRIM25 increases Keap1 and inactivates Nrf2, suppressing tumor growth [91]. TRIM32
excessively degrades ARID1A and induces proliferation of human esophageal squamous
carcinoma cells. Reduced ARID1A by TRIM32 increases tumor growth and chemoresis-
tance in squamous cell carcinoma xenograft mouse model [92]. Skp2 is a component of
the Skp2-Culin-2-F-box (SCF) E3 ligase complex. Skp2 is overexpressed in many types of
human cancers, such as breast cancer, non-small cell lung cancer (NSCLC), lymphoma,
melanoma, pancreatic cancer, and prostate cancer. Its overexpression is correlated with
poor survival, increased resistance to anti-cancer drugs, and adverse clinical outcomes of
patients [93]. Skp2 regulates the proliferation, apoptosis, migration, invasion, angiogenesis,
and metastasis of cancer cells [94–101]. It promotes the degradation of p21 and p27 through
K48-specific ubiquitination to increase cell proliferation, migration, and invasion [94–99].
Skp2 inhibits apoptosis by inducing the polyubiquitination and degradation of FOXO1 in
prostate cancer [100] and induces the phosphorylation and ubiquitin-mediated degrada-
tion of PDCD4 in breast cancer to suppress apoptosis and increase cell proliferation and
radiotherapy resistance [101]. MDM2 is a negative regulator of p53 and its overexpression
is frequently observed in cancers. MDM2 mediates the proteasomal degradation of p53,
leading to therapeutic resistance of tumors [102]. The E3 ligase NEDD4-1 plays dual roles
as an oncogene and tumor suppressor in cancers. Degradation of PTEN and CNrasGEF or
stabilization of MDM2 by NEDD4-1 promotes cell proliferation, migration, and invasion.
In contrast, degradation of N-Myc, Her3, and RAS by NEDD4-1 inhibits cell proliferation
and tumorigenesis. NEDD4-1 overexpression induces apoptosis through the degradation
of SAG in cancer cells [103]. FBXW7 is a member of the SCF E3 ligase complex and func-
tions as a tumor suppressor. FBXW7 is inactivated by genomic deletion, genetic mutation
and hypermethylated promoter in human colorectal, gastric, and breast cancers [104]. Its
loss is associated with increased invasion and metastasis of cancer and poor survival of
patients [105–107]. FBXW7 induces the ubiquitin-mediated degradation of oncoproteins,
including cyclin E, Aurora A, Notch1, mTOR, c-Myc, Mcl-1, and Jun [108].

Autophagy generally inhibits the neoplastic transformation from normal healthy cells.
Conversely, however, autophagy supports neoplastic transformation, cancer growth, tumor
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relapse, and therapeutic resistance depending on the cancer type and stage. In its tumor
suppression function, autophagy represses tumor initiation, growth, and development by
increasing antitumor immunity. However, in several cancers, autophagy promotes tumor
initiation, progression, metastasis, and therapeutic resistance [109]. TRIM59 E3 ligase is
overexpressed in metastatic breast cancer and its upregulation is closely associated with
cancer cell survival and metastasis. TRIM59 increases the stability of PDCP10 by preventing
RNFT1-mediated K63 ubiquitination and SQSTM1-mediated autophagic degradation. Sta-
bilized PDCD10 inhibits RHOA-ROCK downstream signaling and actomyosin-mediated
contractility, leading to tumor formation and metastasis [110].

4.2. Neurodegenerative Diseases
4.2.1. Alzheimer’s Disease (AD)

Alzheimer’s disease (AD) is the most prevalent form of dementia and is closely
correlated with cellular senescence and aging. It is characterized by the accumulation of
amyloid-β (Aβ) plaques and phosphorylated tau tangles, which causes memory loss and
amnestic cognitive impairment [111].

Aβ accumulation can be regulated by RNA QC of amyloid precursor protein (APP)
and β-site AβPP cleaving enzyme 1 (BACE1) [112–118]. β-secretase 1 encoded by BACE1
cleaves APP and induces the formation of abnormal Aβ proteins and aggregates [119].
The APP and BACE1 mRNAs are increased in the aged cerebral brain [112,113]. They
are regulated by the RBP, HuD, which is increased in the brain tissues of AD patients.
HuD stabilize the APP mRNA, BACE1 mRNA, and BACE1-AS lncRNA in neuroblastoma
cells, leading to Aβ accumulation [114]. BACE1 mRNA and its encoded protein levels
are regulated by BACE1-AS, which increases BACE1 mRNA stability by preventing its
miRNA-mediated degradation [115]. QC of the APP mRNA is regulated by FMRP and
hnRNPC via mRNA decay. FMRP, a fragile X mental retardation protein, recruits the APP
mRNA into processing-bodies (P-bodies) to inhibit its translation. Conversely, the increased
binding of hnRNPC enhances APP translation. In neuroblastoma cells, the FMRP level
is reduced and hnRNPC can bind to the APP mRNA, resulting in an increase of the APP
protein level [116–118].

Impaired protein QC by the UPS and autophagy is also linked to AD. The UPS plays
an important role in preventing the accumulations of Aβ and tau. RNF182, a brain-enriched
E3 ligase, is upregulated in tissues from AD brains. RNF182 is increased in neurons and
astrocytes treated with oxygen and glucose deprivation (OGD). Upregulation of RNF182
promotes the degradation of ATP6V0C, which is a key integral protein of gap junctions
and neurotransmitter release, resulting in impaired function of gap junction and increased
neuronal cell death [120]. The deubiquitinase, USP11, accumulates in brain tissues from AD
and frontotemporal lobar degeneration with τ pathology (FTLD-tau). In HeLa cells stably
expressing wildtype tau, UPS11 overexpression increases stability and aggregation of tau
via its DUB catalytic activity. USP11 is involved in the process of tau acetylation (K281 and
K274) in cultured cells. In addition, the expression and accumulation levels of USP11 are
elevated in females’ mice and people than in males, exhibiting the high level of tauopathy
signatures and tau tangle density [121]. NRBP1, a substrate receptor of Cullin-RING
ubiquitin ligase (CRL), promotes the degradation of BRI2 and BRI3, which are negative
regulators of Aβ production. In neuronal cells, depletion of NRBP1 reduces Aβ production
by increasing the abundance of BRI2 and BRI3 [122]. FKBP51, which is a co-chaperone
with Hsp90, is highly expressed in the aged and AD brain. FKBP51 gene is demethylated
and its expression is increased with aging and AD progression. In mouse model, FKBP51
and Hsp90 blocks the clearance of tau and induces tau oligomerization, increasing tau
toxicity [123]. The E3 ligase, CHIP, is enriched in brain and its downregulation is associated
with the accumulations of Aβ and tau in AD patients [124,125]. In neuronal cells, CHIP
increases the degradation of Aβ42 peptide and phosphorylated tau to decrease neuronal
toxicity [126,127]. CHIP promotes the ubiquitin-mediated degradation of β-secretase 1 to
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reduce APP processing and Aβ levels. Moreover, the p53-mediated stabilization of CHIP
represses BACE1 transcription and APP processing in neurons and HEK-APP cells [124].

PINK1 functions to degrade dysfunctional mitochondria via mitophagy. It is decreased
in the brain of patients with AD and in a transgenic AD mouse model. Rescue of PINK1 in
neuronal cells decreases Aβ accumulation and its associated pathology [128]. Presenilin-1
is a catalytic subunit of the γ-secretase complex, which cleaves βCTF to produce Aβ. Muta-
tions of Presenilin-1, which are found in the familiar AD, increase the ratio of Aβ42 to Aβ40.
Increased generation of Aβ42 relative to Aβ40 is a major component of amyloid plaques
in the AD brains [129]. The autophagy-related protein, Beclin-1, is decreased in the brain
of AD patients. Beclin-1 mRNA and protein levels are also reduced in human aged brain,
independent of AD pathology. Decreased Beclin-1 expression impairs autophagosome
formation and leads to the accumulation of Aβ [130]. CCT (also known as TRiC) is a
member of the chaperonin family; it is required for autophagy processes, autophagosome
formation, and lysosomal fusion, and thereby prevents the aggregation of neuropathogenic
proteins [131]. CCT expression is reduced in aging and neurodegenerative diseases [132].
Decreased CCT promotes LC3 degradation, improper autophagosome formation, and tau
folding [131–133]. Finally, increased tau tangles repress the autophagic flux and disrupt
autophagosome maturation via HDAC6 inhibition [134,135].

4.2.2. Parkinson’s Disease (PD)

Parkinson’s disease (PD) is an age-related neurodegenerative disease caused by loss
of dopaminergic neurons. This degeneration is correlated with the increased aggregation
of α-synuclein and the formation of Lewy bodies [136].

ATP13A2 (also known as PARK9) is a key gene in PD; its mutation was first found
in a recessive form of PD. ATP13A2 mutations can be divided into nonsense or missense
mutations. The product of the nonsense-mutated ATG13A2 gene has PTC and activates
the NMD pathway. The nonsense ATP13A2 mRNA is degraded and the corresponding
protein level is reduced in PD. Missense-mutated ATG13A produce the misfolded ATP13A2
protein. Misfolded proteins are mislocalized to endoplasmic reticulum (ER) and induces
endoplasmic reticulum-associated degradation (ERAD) pathway, leading to a decrease
protein level of ATP13A2. Loss-of-function mutation in ATP13A2 leads to increased ag-
gregation and limited secretion and extracellular clearance of α-synuclein. Moreover, a
decreased ATP13A2 protein level reduces the uptake of α-synuclein by astrocytes and
increased the accumulation of α-synuclein in the dopaminergic cells, resulting in its patho-
logical accumulation [137]. The accumulated α-synuclein protein can regulate P-bodies and
mRNA stability. α-Synuclein closely interacts with core proteins of mRNA decapping and
degradation, such as Edc3, Edc4, Dcp1, Dcp2, and Xrn1, and negatively regulates mRNA
stability in PD [138].

Dysfunctions of the UPS and autophagy caused by mutations of associated proteins in-
crease the levels of α-synuclein and PD-related aggregates. UCHL1 (also known as PARK5)
is a DUB enzyme and is highly expressed in neurons. In German familial PD, UCHL1 has
missense mutation, an I93M substitution [139]. In cells and mouse models, UCHL1I93M

mutant has highly affinity for LAMP-2A and blocks CMA-mediated degradation of α-
synuclein, increasing nigral cell death [140,141]. UCHL1 is a target of oxidative damage
and is modified by oxidation in aging. Oxidized UCHL1 interact with LAMP-2A, Hsp90
and Hsc70 and blocks CMA dependent degradation of α-synuclein in cells [140,142]. Muta-
tions of LRRK2 are closely correlated with PD. Mutations (I1371V, R1441G, Y1699C, G2019S,
I2012T and I2020T) in Rasp of complex proteins (ROC domain), C-terminal of Roc (COR
domain) and kinase domains of LRRK2 activates their kinase activities. These mutations of
LRRK2 cause the abnormal mitochondrial dynamics and the aberrant autophagic-lysosomal
pathway, leading to cell death and α-synuclein accumulation [143]. Nitrosative stress is
increased in aging and PD. Nitrosative stress induces S-nitrosylation of PINK1 and Parkin,
and these protein modifications disrupt mitophagy, accumulating damaged mitochondria.
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In addition, loss of function mutations in PINK1 and Parkin genes are major cause of
early-onset PD [144].

4.2.3. Huntington’s Disease (HD)

Huntington’s disease (HD) is a neurodegenerative disease caused by expansion of the
CAG trinucleotide repeat in the huntingtin gene (HTT). Mutant huntingtin (mHTT) has
an abnormally long polyglutamine tract and exhibits protein toxicity, leading to neuronal
dysfunction and death. In CMA (a type of autophagy), a chaperone protein selectively
recognizes KFERQ-like motif-bearing mHTT and forms a complex between Hsc70, mHTT,
and co-chaperones. This complex is delivered to the lysosomal membrane and interacts with
the CMA receptor, LAMP2A. mHTT is completely degraded in the lumen of the lysosome.
However, when cargo recognition is defective, mHTT is accumulated in HD [145,146].

4.3. Muscle Diseases

Poly(A) binding protein nuclear 1 (PABPN1) is a multifunction regulator of RNA sta-
bility. PABPN1 is decreased in muscles from oculopharyngeal muscular dystrophy (OPMD)
patients and aged people, and its reduced level is associated with muscle weakness [147].
PABPN1 regulates both distal polyadenylation site (PAS) utilization and proteasomal activ-
ity. Decreased PABPN1 levels are associated with reduced distal PAS utilization in the 3′

UTR of the OPMD-associated gene, Atrogin-1, resulting in its upregulation. Downregulated
PABPN1 also decreases proteasomal degradation and contributes to altering the MyHC
isotype pattern, leading to muscle fiber-type transition [148].

Skeletal muscle satellite cells (MuSCs) play a crucial role in muscle repair and mainte-
nance by undergoing division and differentiation. The regenerative potential of MuSCs
decreases with age, and their dysfunction is associated with the age-related muscle loss
known as sarcopenia [149,150]. The p38 α/βMAPK pathway induces the transcriptional
activities of MyoD and MEF2, leading to the myogenic differentiation of MuSCs. Triste-
traprolin (TTP), an mRNA decay factor, destabilizes the 3′ UTR of the MyoD mRNA, which
encodes a myogenic transcription factor and thereby prevents the activation of MuSCs [151].
TTP binds to AU-rich elements within the 3′ UTR of target transcripts and recruits mRNA
decay enzymes such as the deadenylase components, Not1 and Caf1 [152]. AU-rich mRNA
binding factor 1 (AUF1), an mRNA decay factor, is decreased in the skeletal muscle of
older mice. Gene transfer of muscle-specific AUF1 using an adeno-associated virus (AAV)
system increases muscle mass, exercise endurance, and satellite cell activation, and reduces
markers of muscle atrophy. AUF1 gene transfer increases the expression of pgc1a, which is
a regulator of mitochondrial biogenesis and oxidative metabolism, by stabilizing the pgc1a
mRNA. These findings indicate that AUF1 regulates the maintenance and differentiation of
MuSCs through the regulation of mRNA stability [153].

Skeletal muscle atrophy is caused by various conditions, including oxidative stress,
inflammation, and malnutrition. These stimuli activate transcription factors, including
FOXO1/FOXO3a, NF-kB, KLF15, Smad 3, and glucocorticoid receptor (GR), to increase the
transcription levels of muscle-specific E3 ubiquitin ligases, such as MuRF1 and Atrogin-1.
MuRF1 and Atrogin-1 are crucial for the regulation of protein degradation in skeletal muscle,
and are upregulated in skeletal muscle atrophy [154]. MuRF1 may regulate MHC-related
proteins to induce overall protein degradation, whereas Atrogin-1 degrades eIF3-f, myogenin,
and MyoD to affect protein synthesis and myogenic differentiation [155]. The expression
levels of MuRF1 and Atrogin-1 are significantly increased in the muscles of aged rats [156].
Another E3 ubiquitin ligase, tumor necrosis factor (a) receptor adaptor protein 6 (TRAF6), has
been found to be associated with skeletal muscle atrophy. TRAF6 is upregulated in skeletal
muscle atrophy, and its inhibition suppresses myosin heavy chain proteolysis and rescues
muscle atrophy in denervated skeletal muscles [157]. In mice model, targeted ablation of
TRAF6 prevents the expression of muscle atrophy regulators, such as Beclin1, p62, and LC3B,
in starvation-induced muscle atrophy, and skeletal muscle-specific TRAF6 knockout rescues
the muscle atrophy induced by denervation and starvation [157,158].
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Autophagy in skeletal muscle is tightly regulated by diverse pathways, including
AMPK/mTOR, GR, and NF-kB signaling. It is crucial for generating and consuming
energy in skeletal muscle, and autophagy dysfunction can lead to skeletal muscle dis-
ease by inducing cellular alterations, such as cell death, mitochondrial damage, and ER
stress. Autophagy must be properly controlled to maintain cellular homeostasis in skeletal
muscle [159]. In muscle diseases, impaired mitophagy (i.e., the removal of dysfunctional
mitochondria) induces muscle loss and weakness. Several autophagy/mitophagy-related
genes, including Beclin-1, BNIP3, Parkin, and ATG7, are downregulated in skeletal mus-
cle of older women. It has been suggested that autophagy/mitophagy-related genes are
correlated with decreased physical function in frail elderly women, reflecting impairment
of mitochondrial removal [160]. Atg7-deficient mice show muscle atrophy, inflammation,
and muscle weakness due to enhancements of mitochondrial dysfunction and oxidative
stress [161].

4.4. Cardiovascular Diseases

Cardiac aging is associated with cardiovascular diseases, including fibrosis, hyperten-
sion, stroke, and atherosclerosis. Atherosclerosis is an age-related cardiovascular disease
caused by cholesterol plaques. The dysfunction of endothelial cells (ECs) leads to high-level
expression of adhesion molecules such as VCAM-1 for the progression of atherosclerotic
plaques [162]. miR-21 can affect the dysfunction of ECs and the formation of atherosclerosis.
miR-21 induced by oscillatory shear stress represses PPARa by directly binding to its 3′

UTR, and thereby increases the expression of VCAM-1 and MCP-1. These factors promote
the dysfunction of the ECs and the initiation of atherosclerotic plaques [163]. Conversely,
downregulation of miR-126 increases proinflammatory TNF-α, which stimulates the activity
of NF-kB and VCAM-1. These effects induce EC dysfunction and promote atherosclero-
sis [162]. The RBP, zinc finger protein 36, is increased in coronary arteries from patients
with atherosclerosis. Upregulation of ZFP36 decreases inflammation in vascular endothelial
cells by negatively regulating the mRNA stability of cytokines, including MCP-1 and IL-6.
ZFP36 also represses the transcriptional activation of NF-kB by reducing its nuclear import,
suggesting that ZFP36 is a potential target for preventing atherosclerosis [164].

The E3 ubiquitin ligase, NEDD4L, is involved in the development of both essential and
salt-sensitive hypertension [165]. In salt-sensitive hypertension, glucocorticoid regulated
kinase 1 (SGK1) phosphorylates and inactivates NEDD4L, finally disrupting NEDD4L-
mediated degradation of epithelial sodium channel (ENaC). The abnormal regulation of
ENaC contributes to the development of salt-sensitive hypertension [166]. SMAD-specific
E3 ubiquitin protein ligase 1 (SMURF1) is associated with pulmonary arterial hypertension
(PAH). The expression level of SMURF1 is upregulated in blood samples of patients with
PAH. Reduced BMP signaling is a pathological finding in PAH, and the downregulation
of SMURF1 stimulates BMP signaling by inhibiting BMPR2 degradation in vitro and in
preclinical models [167].

Autophagy and mitophagy are important for maintaining cardiovascular homeosta-
sis. Autophagy decreases with age, and mitochondrial dysfunction is increased in aging
heart. Therefore, activation of autophagy inhibits cardiovascular aging and increases the
lifespan [168]. Although the mechanisms of age-related decreases in autophagy remain
unknown, it may be reasonable to address it by manipulating the longevity pathways,
including mTOR, AMPK, IGF-1/PIK2/Akt, and Sirtuin signaling. Several studies involv-
ing the depletion of autophagy-related genes in animal models show the importance of
autophagy and mitophagy in cardiovascular homeostasis and diseases [169]. In general,
suppression of autophagy promotes cardiovascular aging and diseases: Atg5-deficient
mice exhibit cardiovascular diseases, including cardiac hypertrophy, contractile dysfunc-
tion, and left ventricular dilatation [170]. Knockout of Pink1, a mediator of mitophagy,
induces cardiac hypertrophy and left ventricular dysfunction through impaired mito-
chondrial biogenesis in mice [171]. Mice with cardiomyocyte-specific depletion of the
mitophagy-relevant protein, Mnf2, show respiratory dysfunction and cardiomyopathy
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due to inhibition of mitochondrial QC [172]. Conversely, activation of autophagy by ge-
netic, nutrient, or pharmacological stimulations might decelerate cardiovascular aging and
disorders. Cardiomyocyte-specific overexpression of Parkin improves cardiac function
and reduces the positivity of senescence-associated β-galactosidase (SA-β-Gal) through
increasing Parkin-mediated mitophagy in aged mice [173]. Overexpression of Atg5 acti-
vates autophagy, delays cardiac aging, and extends the lifespan in mice [174]. Treatment of
rapamycin promotes autophagy and inhibits cardiac hypertrophy through inhibition of
mTOR [175].

5. Conclusions

QC (QC) of RNAs and proteins is key biological process in maintaining physiological
and cellular homeostasis. Increasing evidence supports the idea that QC of RNAs and
proteins is dysregulated during cellular senescence and contributes to multiple age-related
diseases, such as cancers and neurodegenerative, metabolic, muscle, and cardiovascular
diseases. The results of the existing studies reveal that diverse mechanisms of RNA and
protein QC are associated with aging (Table 1). However, open questions remain regarding
the molecular targets, mechanisms, and signaling pathways of RNA and protein QC in
cellular senescence and aging. In this review, we summarize the molecular targets of RNA
and protein QC in cellular senescence, aging, and age-related diseases, such as cancer and
neurodegenerative, muscle, cardiovascular diseases. Continued discovery of novel targets
and further understanding of the molecular mechanisms of RNA and protein QC in cellular
senescence and aging will be necessary for the development of effective therapies against
age-related diseases.

Table 1. Molecular pathways of RNA and proteins related to age-related diseases.

RNA or Proteins Mechanisms of Regulation References

Cancer

Linc-ASEN Degradation of p21 mRNA by cooperating with NMD factors, UPF1 and DCP1A. [85]
TRIM71 NMD-mediated p21 mRNA decay with NMD factors, UPF1 and SMG1 [86]
Wig1 Destabilize p21 mRNA by recruiting Ago2, a major component of RISC [87]
HuD/ELAVL4 Negatively regulation of CCL2 mRNA by directly binding to 3’UTR of the CCL2 mRNA [89]
TRIM25 Reduction of Keap1, a Nrf2 inhibitor, by its ubiquitination and degradation [91]
TRIM32 Decrease ARID1A protein level via ubiquitin-mediated degradation [92]
Skp2 Degradation of p21, p27, FOXO1 and PDCD4 through ubiquitination [93–101]
MDM2 Ubiquitination and degradation of p53 [102]

NEDD4-1 Degradation of PTEN, CNrasGEF, N-Myc, Her3 and Ras via K48-linked ubiquitination.
Stabilization of MDM2 via K63-linked ubiquitination [103]

FBXW7 Ubiquitin-mediated degradation of cyclin E, Aurora A, Notch1, mTOR, c-Myc, Mcl-1
and Jun [104–108]

TRIM59 Increase the stability of PDCD10 by inhibiting RNFT1-mediated K63 ubiquitination and
SQSTM1-mediated autophagic degradation [110]

Neurodegenerative diseases-Alzheimer’s diseases (AD)

HuD/ELAVL4 Increase the stability of APP mRNA, BACE1 mRNA, and BACE1-AS lncRNA [114]
FMRP Recruiting the APP mRNA into P-bodies to inhibits its translation. [116–118]
hnRNPC Binding to APP mRNA and enhancing APP translation. [116]
RNF182 Ubiquitination and degradation of ATP6V0C [120]

USP11 Increase of tau stability and aggregation. Involve in the process of tau acetylation (K281
and K274) [121]

NBRP1 Degradation of BRI2 and BRI3 [122]
FKBP51 Inhibition of tau clearance and increase of tau aggregation by cooperating with Hsp90. [123]
CHIP Ubiquitin-mediated degradation of Aβ42 peptide, phosphorylated tau and β-secretase 1 [124–127]
PINK1 Degradation of dysfunctional mitochondria via mitophagy [128]
Presenilin-1 Cleaves of βCTF to produce Aβ. [129]
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Table 1. Cont.

RNA or Proteins Mechanisms of Regulation References

Beclin-1
Beclin-1 mRNA and protein levels are also reduced in human aged brain, independent
of AD pathology. Decreased Beclin-1 expression impairs autophagosome formation and
leads to the accumulation of Aβ

[130]

CCT/TRiC CCT expression is reduced in aging and neurodegenerative diseases. Decreased CCT
promotes LC3 degradation, improper autophagosome formation, and tau folding [131–133]

Neurodegenerative diseases-Parkinson’s disease (PD)

ATP13A2/PARK9 Preventing the accumulation and aggregation of α-synuclein in the dopaminergic cells [137]
UCHL1/PARK5 Role as deubiquitinase or hydrolase enzymes in the UPS. [139–142]

LRRK2 Mutation of LRRK2 cause the abnormal mitochondrial dynamics and the aberrant
au-tophagic-lysosomal pathway, leading to cell death and α-synuclein accumulation [143]

PINK1, Parkin S-nitrosylation of PINK1 and Parkin disrupt mitophagy, accumulating
damaged mitochondria. [144]

Neurodegenerative diseases-Huntington’s disease (HD)

HTT Modulator of selective autophagy. Required for autophagy recognition and activating
machinery (p62 and ULK1). [145,146]

Muscle disease

PABPN1 Regulation of distal polyadenylation site and proteasomal activity [147,148]
TTP Destabilize MyoD mRNA by recruiting the deadenylase components, Not1 and Caf1 [151,152]
AUF1 Maintenance and differentiation of MuSCs via the regulation of mRNA stability [153]
MuRF1 Regulation of MHC-related proteins to induce overall protein degradation [154–156]

Atrogin-1 Degradation of eIF3-f, myogenin, and MyoD to affect protein synthesis and
myogenic differentiation [154–156]

TRAF6 Prevention of Beclin1, p62, and LC3B through ubiquitination [157,158]

ATG7 Atg7-deficient mice induces muscle atrophy, inflammation, and muscle weakness by
mitochondrial dysfunction and oxidative stress [160,161]

Cardiovascular disease

miR-21 Repression of PPARa mRNA by directly binding to 3’UTR [162,163]
miR-126 Repression of proinflammatory TNF-α mRNA [162]
ZFP36 Regulation of MCP-1 and IL-6 mRNA stability [164]
NEDD4L Degradation of epithelial sodium channel (ENaC) through ubiquitination [165,166]
SMURF1 Degradation of BMPR2 through ubiquitination [167]

ATG5
Atg5-deficient mice exhibit cardiovascular diseases, including cardiac hypertrophy,
contractile dysfunction, and left ventricular dilatation. Overexpression of Atg5 activates
autophagy, delays cardiac aging, and extends the lifespan in mice

[170,174]

PINK1 Knockout of Pink1 induces cardiac hypertrophy and left ventricular dysfunction
through impaired mitochondrial biogenesis in mice [171]

Parkin
Cardiomyocyte-specific overexpression of Parkin improves cardiac function and
reduces the positivity of senescence-associated β-galactosidase (SA-β-Gal) through
increasing mitophagy in aged mice

[173]

Mnf2 Protein required for mitochondrial dynamics and associated with mitophagy [172]
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