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Abstract: Epigenetic clocks were initially developed to track chronological age, but accumulating
evidence indicates that they can also predict biological age. They are usually based on the analysis of
DNA methylation by genome-wide methods, but targeted approaches, based on the assessment of a
small number of CpG sites, are advisable in several settings. In this study, we developed a targeted
epigenetic clock purposely optimized for the measurement of biological age. The clock includes
six genomic regions mapping in ELOVL2, NHLRC1, AIM2, EDARADD, SIRT7 and TFAP2E genes,
selected from a re-analysis of existing microarray data, whose DNA methylation is measured by
EpiTYPER assay. In healthy subjects (n = 278), epigenetic age calculated using the targeted clock was
highly correlated with chronological age (Spearman correlation = 0.89). Most importantly, and in
agreement with previous results from genome-wide clocks, epigenetic age was significantly higher
and lower than expected in models of increased (persons with Down syndrome, n = 62) and decreased
(centenarians, n = 106; centenarians’ offspring, n = 143; nutritional intervention in elderly, n = 233)
biological age, respectively. These results support the potential of our targeted epigenetic clock
as a new marker of biological age and open its evaluation in large cohorts to further promote the
assessment of biological age in healthcare practice.

Keywords: biological age; epigenetics; DNA methylation; epigenetic clock

1. Introduction

During the last decade, DNA methylation (DNAm)-based biomarkers, designated
under the term “epigenetic clocks”, have been put forward as accurate aging biomarkers.
The first-generation epigenetic clocks were initially designed to predict chronological
age and they have proven to be the most accurate tool to do so [1,2]. These clocks can
also capture biological aspects of aging, although in some cases they exhibit only weak
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associations with measures of age-related decline [1,3]. Therefore, more recently, second-
and third-generation DNAm-based biomarkers have been purposely developed to predict
biological age and mortality risk [4–8]. These clocks vastly outperform the first generation
predictors as markers of biological age, given their consistent association with all-cause
mortality, age-related clinical phenotypes and cognitive performance measures [9–12]. A
recent research has also shown that epigenetic clocks are sensitive to interventions and they
can be a useful tool to screen the effectiveness of potential anti-aging drugs [13].

The epigenetic clocks described above are based on DNAm values of a large number
of CpG sites across the genome, measured by Illumina Infinium microarrays. Despite
their high accuracy and broad applicability to different tissues and cell types, these tools
have some limitations. Their technology is characterized by a relatively high cost, both
in terms of equipment and consumables, and limited accessibility. These issues could
represent a constraint to their use in the context of large human cohorts and to their
implementation in clinical settings. More cost-effective approaches, based on locus-targeted
DNAm analysis with fewer CpG sites, have been developed [14,15]. As an example, a
model built on DNA methylation values of whole blood at three CpG sites (Weidner’s
estimator) was published in 2014 [15]. Based on bisulfite pyrosequencing, this model
accurately predicted chronological age but not mortality in the Lothian Birth Cohort [16].
More recently, Han et al. developed targeted clocks in which DNAm was measured by
droplet digital PCR or bisulfite amplicon sequencing of seven and nine target regions,
respectively; these clocks showed excellent precision in the prediction of chronological age
but, to the best of our knowledge, they have not been tested for age-related phenotypes
indicative of biological age [14]. Large efforts toward the simplification of the epigenetic
clock models have been carried out in the field of forensics, given the relatively high amount
of input DNA necessary for the Illumina Infinium microarray protocol. Targeted predictive
models based on quantitative PCR, pyrosequencing or Agena EpiTYPER system have been
developed with promising results [17–23].

Here, we further add to this field by proposing a new epigenetic clock for human
whole blood that has two characteristics: (1) it is based on a limited number of CpG
sites, assessable by a fast and cost-effective method; (2) it reflects the duality between
an accurate estimation of chronological age on one hand, and the ability to predict age-
related health outcomes on the other hand. We have developed and validated such a
clock, exploiting well-characterized models of increased (persons with Down syndrome)
or decreased (centenarians and their offspring) biological and epigenetic age [24,25], and
further evaluated its capacity to detect the impact of a one-year nutritional intervention in
elderly subjects.

2. Materials and Methods
2.1. Cohorts

To identify the genomic regions to be included in our targeted assay, we used two
datasets of genome-wide DNA methylation generated using the Illumina Infinium mi-
croarray (Illumina, San Diego, CA, USA; Supplementary Table S1). The first one includes
whole blood samples from 29 trios composed by one person with Down syndrome (DSP),
their siblings (DSS) and their mother (DSM), assessed using the Illumina Infinium450 k
beadchip and publicly available in Gene Expression Omnibus (GEO) database under acces-
sion number GSE39981 [26]. The second one is an unpublished dataset including whole
blood from 28 centenarians (CENT), 19 centenarians’ offspring (OFF) and 30 age-matched
controls (CTR), generated using the Illumina InfiniumEPIC beadchip according to manu-
facturer’s instructions. Briefly, raw data were extracted using the minfi Bioconductor and
normalized using the preprocessFunnorm function available in the same package [27]. To
perform the EpiTYPER experiments, we used DNA from whole blood samples collected
from subjects recruited in the Bologna area (Italy) in the framework of different studies
and belonging to different categories (Tables 1 and 2): (1) 315 healthy subjects from the
general population, ranging from 0 to 99 years old (CTR); (2) 62 DSP ranging from 12 to
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66 years old; (3) 106 CENT ranging from 100 to 112 years old; (4) 143 OFF, ranging from
55 to 89 years old. CTR, DSP, CENT and OFF samples used in the EpiTYPER experiments
partially overlapped with those assessed in the Illumina Infinium experiments described
above (Table 1). In addition, 124 Italian and 109 Polish old people from the intervention
arm of the NU-AGE project nutritional trial (clinicaltrials.gov (accessed on 1 October 2020),
NCT01754012) were included as an independent cohort to validate the clock (Table 2). This
cohort was previously described [28,29]. Briefly, 1141 volunteers aged 65–79 years from five
European countries (Italy, Poland, France, United Kingdom and the Netherland), free of
major overt chronic diseases, were randomly assigned (1:1) to the control group (habitual
diet) or intervention group (elderly-tailored Mediterranean Diet) for 1 year [30]. Baseline
and after intervention biological samples and data (nutritional, clinical, health, anthropo-
metric) were collected. Horvath’s epigenetic clock was also measured in 60 Italian and
60 Polish subjects undergoing the dietary intervention, representative of a Mediterranean
and a non-Mediterranean country, respectively [31]. In the present study, we aimed at
extending and confirming the previously published results.

Table 1. Datasets used for developing and validating the targeted epigenetic clock.

Group
N

(F: Females,
M: Males

Overlap with
Infinium Microarray

Data [26]

Age Range
(Years)

(Mean ± SD 1)

Epigenetic Age
(Years)

(Mean ± SD 1)

EAD 2 (Years)
(Mean ± SD 1) p-Value 3

Controls (entire cohort)
315

(132 F, 180 M,
3 NA)

32 subjects 0–98 years
(57.32 ± 18.71) - - -

Controls (age range
20–80 years)

278
(117 F, 161 M) 32 subjects 21–80 years

(54.96 ± 15.03) 54.96 ± 13.43 0 ± 6.04 -

Persons with
Down syndrome

62
(27 F, 35 M) 11 subjects 12–66 years

(33.97 ± 13.46) 49.23 ± 34.94 +11.02 ± 33.33 <0.001

Centenarians 106
(82 F, 24 M) 11 subjects 100–112 years

(101.5 ± 2.44) 85.66 ± 12.23 −6.45 ± 12.43 <0.001

Centenarians’ offspring 143
(81 F, 62 M) 19 subjects 55–89 years

(70.06 ± 6.69) 65.35 ± 9.75 −1.65 ± 8.96 0.015

1 SD: standard deviation. 2 EAD: Epigenetic age discrepancy. 3 p-value resulting from the comparison of EAD
values between each category of subjects and control subjects ranging from 20 to 80 years (Wilcoxon-Mann–
Whitney test).

Table 2. Dataset used for the independent validation of the targeted epigenetic clock.

All Italy Poland

Subjects (N) 233 124 109
Overlap with Infinium

microarray data [31] 120 60 60

Males/Females (N) 105/128 60/64 45/64
Chronological age at T0 (years)

mean ± SD 1 71.89 ± 3.91 72.16 ± 3.79 71.58 ± 4.03

Epigenetic age at T0 (years)
mean ± SD 1 71.89 ± 2.34 71.84 ± 2.19 71.94 ± 2.51

EAD 2 at T0 (years)
mean ± SD 1 0.00 ± 1.82 −0.14 ± 1.69 0.17 ± 1.96

Chronological age at T1 (years)
mean ± SD 1 72.93 ± 3.91 73.22 ± 3.78 72.59 ± 4.03

Epigenetic age at T1 (years)
mean ± SD 1 71.70 ± 3.11 71.51 ± 2.97 71.92 ± 3.26

EAD 2 at T1 (years)
mean ± SD 1 −0.58 ± 3.16 −0.87 ± 3.03 −0.23 ± 3.28

1 SD: standard deviation. 2 EAD: Epigenetic age discrepancy.

For all the samples, genomic DNA was extracted from whole blood from venous blood
samples, drawn on EDTA tubes, using the QIAamp DNA Blood Kit (Qiagen, Hilden,
Germany). Five hundred nanograms of DNA were bisulfite converted using the EZ
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DNA Methylation Kit (Zymo Research, Irvine, CA, USA) according to manufacturer’s
instructions.

2.2. EpiTYPER DNAm Analysis

DNAm analysis was performed using the EpiTYPER system (Agena Bioscience, San
Diego, CA, USA). Sequences of the regions of interest, flanking each selected CpG sites,
were retrieved from the UCSC genome browser (https://genome.ucsc.edu/; genome
assembly GRCh37/hg19, accessed on 1 September 2020). Primer design was performed
using Agena Bioscience EpiDesigner software (http://epidesigner.com/; Agena Bioscience,
San Diego, CA, USA; accessed on 1 October 2020), specifically optimized for the EpiTYPER
system (Table 3 and Supplementary Table S2). Supplementary Figure S1 reports a graphical
view of the CpG sites assessed by the EpiTYPER assay, including the positions of the
Infinium CpG probes. Locus-targeted DNAm analysis was performed according to the
manufacturer’s instructions. Ten nanograms of genomic bisulfite-converted DNA were
amplified using the bisulfite-specific primers, in a 5 µL total volume using a 384-well plate.
Unincorporated nucleotides and primers were then removed with the Shrimp Alkaline
Phosphatase (SAP) treatment, and reverse transcription/RNaseA cleavage were performed.
Finally, 20 µL of RNase-free ddH2O were added to each sample, as well as 6 mg of Clean
Resin in order to eliminate salts of sodium and potassium that could interfere with the
analysis. Sample dispensation on a SpectroCHIP was performed by the Nanodispenser,
and final detection was conducted with the mass spectrometer. For each target region, the
EpiTYPER software (Agena Bioscience, San Diego, CA, USA; software version 1.2) returns
DNAm data (expressed as beta-values ranging from 0 to 1, corresponding to 0% and 100%
methylated) of a number of CpG units (i.e., regions containing one or multiple CpG sites,
according to the sequence of the genomic region).

Table 3. CpG probes and genomic regions assessed in the targeted epigenetic clock.

CpG Probe Location Associated
Gene

Region Assessed in the
Targeted Assay

Assessable
CpG Units

cg16867657 chr6:11,044,877 ELOVL2 chr6:11,044,680–
11,045,053 15

cg22736354 chr6:18,122,719 NHLRC1 chr6:18,122,552–
18,123,149 21

cg07855221 chr17:79,877,314 SIRT7/MAFG chr17:79,877,158–
79,877,497 6

cg09253473 chr17:79,877,390 SIRT7/MAFG chr17:79,877,158–
79,877,497 6

cg10636246 chr1:159,046,973 AIM2 chr1:159,046,884–
159,047,270 7

cg09809672 chr1:236,557,683 EDARADD chr1:236,557,384–
236,557,805 5

cg26372517 chr1:36,039,159 TFAP2E chr1:36,038,876–
36,039,325 16

2.3. Predictive Model and Statistical Analyses

Missing values in EpiTYPER outputs were inputted using mice (Multivariate Impu-
tation by Chained Equations) R package [32]. Beta-values were converted to M-values
through a logistic transformation, included in the Bioconductor package lumi [33]. The
model to predict epigenetic age was built using a ridge regression model, included in
the R package caret (Classification and Regression Training) [34], to regress chronological
age on all the CpG units methylation levels, considering CTR from 20 to 80 years old.
The predictive model was first tested using a 5-fold cross-validation procedure, dividing
the cohort in training (80% of the samples) and test (20% of the samples) sets. Average
Spearman correlation coefficient between predicted and chronological age was 0.89 and
0.76 in the training and test sets, respectively, while average median absolute deviation

https://genome.ucsc.edu/
http://epidesigner.com/
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(MAD) was 4 and 5.8 in the training and test sets, respectively. We then recalculated the
model using all the 278 CTR from 20 to 80 years old (Spearman correlation p-value = 0.89,
MAD = 3.98) and applied it to the entire cohort including CTR, DSP, CENT and OFF.
For each point, epigenetic age discrepancy (EAD) was calculated as the distance between
epigenetic age and the regression between epigenetic age and chronological age in CTR.
Positive and negative EAD values correspond to increased and decreased epigenetic ages,
respectively. In the NU-AGE cohort the ridge regression model was calculated on samples
at T0, then applied to the entire cohort to obtain epigenetic age values. The regression
between epigenetic age and chronological age was calculated considering the samples at T0
and then used to calculate EAD values for the entire cohort. Similar results were obtained
when calculating ridge regression on the entire NU-AGE cohort (Supplementary Figure S2).

All the analyses were performed using R version 3.6.3 (The R Foundation for Statistical
Computing, Vienna, Austria).

3. Results and Discussion
3.1. Rationale for the Selection of Target Genomic Regions

The strategy that we used to select the target regions to be included in the clock was
aimed at identifying two types of candidates: (1) genomic regions whose DNAm status is
highly correlated with chronological age, in order to guarantee a good correlation between
predicted epigenetic age and chronological age; and (2) genomic regions whose DNAm
status is correlated with chronological age but at the same time modulated in categories of
subjects that, according to their clinical features or aging trajectories, have a biological age
higher or lower than expected.

As a representative of the first type of genomic regions, we selected the CpG island as
the promoter of ELOVL2 gene, which encodes for the elongation of very long chain fatty
acids protein 2. In 2012, we reported the strong correlation between DNAm of cg16867657
within ELOVL2 and chronological age in whole blood [35], and since then this region has
been confirmed as robustly associated with aging in several tissues [36,37]. The assessment
of ELOVL2 DNAm is largely employed in targeted epigenetic biomarkers developed for
forensic applications [38–41]. Although we previously reported that hypermethylation of
this genomic region in blood is associated with the prospective development of breast can-
cer [42], ELOVL2 DNAm seems to depend mainly on chronological age, and Spólnicka et al.
reported that no changes in ELOVL2 DNAm occur in Alzheimer’s and Graves’ diseases [20].

We then searched for candidates belonging to the second category. We focused on
the 353 CpG sites included in Horvath’s epigenetic clock, which were selected for their
association with age using a penalized regression model [43]. We evaluated their DNAm in
a dataset from persons with Down Syndrome and in a dataset from centenarians and their
offspring (Supplementary Table S1). These cohorts represent well-established models of
increased (Down syndrome) and decreased (long-lived individuals) biological age [44–46]
and are therefore suitable to study the epigenetic differences associated with the discrepancy
between biological and chronological age.

Down syndrome is characterized by signs of atypical aging at clinical, pathophysiolog-
ical and molecular levels, and it is regarded as a segmental progeroid syndrome that mainly
involves the immune and the nervous systems [44,47,48]. Several of the immunological
abnormalities observed in people with Down syndrome resemble those occurring during
immunosenescence and inflammation [47], and the increase in biological age is supported
by different types of biomarkers measured in blood (telomere length, glycomic and epige-
netic biomarkers) [25,49,50]. We and others previously demonstrated that the whole blood
DNAm landscape is profoundly remodeled in Down syndrome [26,48,49,51]. Although
most of these DNAm changes are distinct from those occurring during physiological age, it
is likely that a certain overlap between the two conditions exists. In fact, using Horvath’s
clock, we previously demonstrated that the epigenetic age of whole blood from people
with Down syndrome (DSP) is higher than expected [25], an observation confirmed in
subsequent studies [50,52]. Here, we considered the DNAm dataset generated by the
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Infinium 450 k microarray on whole blood from 29 DSP, their age-matched euploid siblings
(DSS) and their mothers (DSM) [26], in which Horvath’s clock was previously assessed [25].

The second cohort includes centenarians (CENT) and their offspring (OFF), considered
extraordinary models to study healthy aging. Centenarians have delayed morbidity, as
most of them avoided or largely postponed age-related diseases [45,53]. In addition, cente-
narians’ offspring are healthier than people of the same birth cohort, and they have a lower
risk of developing major age-related diseases and a higher probability of becoming long-
lived [46,54]. Using peripheral blood mononuclear cells (PBMC), we and others previously
demonstrated that long-lived individuals have lower epigenetic age than expected [24,55].
Here, we used an independent, unpublished DNAm dataset generated on whole blood
(instead of PBMCs) from 28 CENT, 19 OFF and 30 controls (CTR) matched for age to OFF,
using the Infinium EPIC microarray.

Among the Horvath’s 353 CpG probes, we selected those that were significantly asso-
ciated with chronological age in the group of DSS and DSM and that showed significant
DNAm differences in the two comparisons of DSP vs. DSS and OFF vs. CTR (Supplemen-
tary File S1). We further refined our search by selecting only the CpG probes showing the
expected sign of DNAm difference: for probes hypermethylated with age, higher DNAm
in DSP respect to DSS and lower DNAm in OFF respect to CTR; conversely, for probes
hypomethylated with age, lower DNAm in DSP respect to DSS and higher DNAm in OFF
respect to CTR. Only 2 out 353 probes (cg13899108 and cg26372517) satisfied all these con-
ditions. Among them, we decided to include in our targeted clock cg26372517, which maps
in TFAP2E (Transcription Factor AP-2 Epsilon) gene, given the larger DNAm difference
between the groups under investigation.

On the basis of the DNAm changes observed during aging and in the comparison
of DSP vs. DSS, we further selected two additional CpG sites among the top rankers of
our analysis, cg09809672 and cg22736354. The probe cg09809672 maps in the EDARADD
(EDAR Associated Death Domain) gene and has been previously reported to be associated
with aging in saliva samples [56]. EDARADD was also included in a panel of genes for
age prediction in forensics use [57]. The probe cg22736354, which maps in NHLRC1 (NHL
Repeat Containing E3 Ubiquitin Protein Ligase 1) gene, is included in a DNAm-based
forensic age predictor [58].

Finally, we decided to include in our targeted assay two additional genomic regions
emerged from a deep analysis of the literature. The first region maps in the SIRT7 (sirtuin
7) gene. Sirtuins have a crucial role in human aging and age-related diseases [59]. In
particular, SIRT7 protects from cellular senescence in human cells [60,61], and an age-
related hypomethylation of SIRT7 was described in mice livers [62]. In our datasets, we
found that two adjacent CpG probes within SIRT7 promoter (cg07855221 and cg09253473)
were negatively associated with age and were further hypomethylated in DSP compared
to DSS (Supplementary File S1). We therefore included these sites, which map also in the
promoter of the gene MAFG (MAF BZIP Transcription Factor G) in our list of targeted
loci. The second region maps in AIM2 (Absent in Melanoma 2) gene, which codes for an
interferon-gamma-induced protein involved in the innate immune response. DNAm at
CpG probe cg10636246 within AIM2 was found to be associated with C-Reactive Protein
serum levels [63], and it is likely to be informative of inflammation, the chronic, low-grade
inflammatory status characteristic of the elderly that largely contributes to age-related
diseases [64].

Notably, ELOVL2 did not show significant changes in DSP or OFF compared to age-
matched controls, confirming that its methylation is mainly associated with chronological,
rather than biological, age.

In summary, we selected 7 Illumina Infinium CpG probes mapping in 6 target regions
to be included in the targeted epigenetic clock (Figure 1).
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Figure 1. DNAm profiles of the 7 Infinium CpG probes selected for developing the targeted epigenetic
assay. Each dot represents a subject. Upper panels: scatter-plots of DNAm values vs. chronological
age in DSS and DSM; Spearman correlation coefficient and the equation of the regression line are
reported for each CpG probe. Middle panels: boxplots of DNAm in DSP, DSS and DSM. Lower
panels: boxplots of DNAm values in CENT, OFF and CTR. For the comparisons DSP vs. DSS and
OFF vs. CTR, asterisks indicate statistically significant differences (p-value < 0.05).

3.2. Design of the Targeted Assay

To evaluate the methylation of the selected CpG sites, we used the EpiTYPER assay, a
bisulfite sequencing method based on MALDI-TOF mass spectrometry for the quantitative
and high-throughput measurement of DNAm of target genomic regions amplified by
PCR. The EpiTYPER assay enables the quantification of DNAm not only of the CpG
sites corresponding to the Infinium probes, but also of most of the surrounding CpG
sites included in the same PCR amplicon (Table 3 and Supplementary Figure S1). As the
methylation of nearby CpG sites tends to be correlated [65], this approach allows de facto
to increase the number of CpG sites potentially contributing to the predictive model, thus
expanding the informativeness of the assay.

We designed an EpiTYPER assay based on 6 PCR amplicons, including 70 CpG units
(Section 2), corresponding to 121 unique CpG sites. The distribution of the 70 CpG units
was as follows: 15 CpG units for ELOVL2, 21 CpG units for NHLRC1, 6 CpG units for
MAFG/SIRT7, 7 CpG units for AIM2, 5 CpG units for EDARADD and 16 CpG units for
TFAP2E.

3.3. Age Prediction Using the Targeted Epigenetic Clock

We applied the above-described EpiTYPER assay to whole blood samples from a large
cohort of healthy individuals (n = 315) ranging from 0 to 98 years old (Table 1).

For each of the 70 CpG units returned by the assay, we first evaluated Spearman
correlation between DNAm values and chronological age. A significant correlation (Spear-
man correlation p-value < 0.05) was found in 48 CpG units (1 in AIM2, 9 in NHLRC1, 6 in
MAFG/SIRT7, 15 in ELOVL2, 4 in EDARADD and 13 in TFAP2E). The CpG unit with the
most significant correlation with age in each target region is reported in Figure 2A.
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Figure 2. Age prediction using the targeted epigenetic clock. Each dot represents a subject. (A) Scatter
plots of DNAm values vs. chronological age for the 6 regions assessed by the targeted assay. For
each region, the CpG unit with the most significant Spearman correlation is reported. Blue lines
represent linear regressions. For each CpG unit, Spearman correlation coefficient and the equation
of the regression line are reported. (B) Epigenetic age (y-axis) vs. chronological age (x-axis) in CTR.
The blue line represents linear regression. Spearman correlation coefficient and the equation of the
regression line between epigenetic and chronological age are reported.

We then investigated the feasibility of building a predictor of age using the DNA
methylation values of the six selected regions. On the basis of previous studies indicating
that epigenetic age changes in a linear way between 20 and 80 years old [66], we restricted
our analysis to individuals in this age range (278 subjects). We then reiteratively divided the
dataset in train (80% of the total number of individuals) and test (20% of the total number
of individuals) subgroups, balanced for age (Section 2). In each iteration, we applied ridge
regression to the train dataset and inferred epigenetic age in train and test datasets. In the
training sets, the mean Spearman correlation coefficient between epigenetic and chrono-
logical ages was 0.89, while Mean Absolute Deviation (MAD) between epigenetic and
chronological age was 4 years. In the test sets, the mean Spearman correlation coefficient
and MAD were 0.76 and 5.8 years, respectively. MAD values tended to be slightly larger
but still comparable to those of previously published untargeted and targeted epigenetic
clocks [67], indicating that the DNAm of the regions that we selected can provide a reliable
age prediction.

We thus applied ridge regression to the entire dataset of 278 healthy individuals
from 20 to 80 years old. The model provided an accurate estimation of chronological age
(Spearman correlation coefficient = 0.89; MAD = 3.98 years) (Figure 2B).

3.4. Application of the Targeted Epigenetic Clock to Models of Increased and Decreased Biological Age

We then assessed whether the targeted epigenetic clock and the predictive model
described in the previous paragraph could be informative of biological age. To this aim,
we first considered the same categories of individuals investigated in the step of Infinium
probes selection but including a larger number of individuals (Table 1). We used the
targeted epigenetic clock to estimate epigenetic age in whole blood samples from 62 DSP,
106 CENT and 143 OFF, in addition to the 278 CTR evaluated above (Figure 3A). For 53 CTR,
11 DSP, 22 CENT and 53 OFF both the epigenetic ages estimated using Horvath’s clock and
the epigenetic ages estimated using our targeted clock were available. The two measures
were well correlated (Spearman correlation coefficient 0.81. p-value < 0.001; Supplementary
Figure S3), confirming the validity of our approach.
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Figure 3. Application of the targeted epigenetic clock to increased and decreased biological age
models. Each dot represents a subject. (A) Epigenetic age (y-axis) vs. chronological age (x-axis) in
CTR, DSP (model of increased biological age), and in OFF/CENT (model of decreased biological age).
Spearman correlation coefficient and the equation of the regression line are reported (B) Boxplots of
epigenetic age discrepancy (EAD) values in the four categories of subjects considered in the validation
of the targeted epigenetic clock; mean is indicated by the x symbol.

We calculated the epigenetic age discrepancy (EAD) for each sample as the residual of
the regression between epigenetic age and chronological age calculated in control samples
(Section 2, Table 1 and Figure 3B).

In DSP, mean EAD was of 11.02 years, significantly higher than in controls
(p-value < 0.0001, Wilcoxon-Mann–Whitney test). On the contrary, both CENT and OFF
resulted significantly epigenetically younger than CTR, with mean EAD equal to −6.45
(p-value < 0.0001, Wilcoxon-Mann–Whitney test) and −1.65 years (p-value = 0.015, Wilcoxon-
Mann–Whitney test), respectively (Table 1 and Figure 3B). Mean EAD values observed in
DSP, CENT and OFF were comparable to those previously obtained with the Horvath’s
clock in partially overlapping cohorts [24,25].

Collectively, these data show that the targeted epigenetic clock that we developed
recapitulates previous studies in which Horvath’s epigenetic clock was applied to the same
categories of subjects [24,25]. Although this result supports the potential of our targeted
epigenetic clock as marker of biological age, it should be considered that DSP, CENT and
OFF were used for the selection of the CpG sites that we included in the target assay. For
this reason, we validated the targeted epigenetic clock in a completely independent cohort,
as discussed in the next session.

3.5. Application of the Targeted Epigenetic Clock to an Independent Validation Dataset

We previously described the impact of a one-year Mediterranean-like diet on epi-
genetic age acceleration measures assessed with Horvath’s model [31]. Briefly, within
the framework of the European project NU-AGE [28], we observed an epigenetic reju-
venation of participants (60 Italian and 60 Polish subjects) after one year of nutritional
intervention [31].

We measured our new targeted epigenetic clock in whole blood samples from the
same study, but increasing the number of subjects analyzed (124 Italian and 109 Polish
subjects; Table 2). For each individual, we calculated the epigenetic age at baseline (T0) and
after one year of nutritional intervention (T1), as well as the measures of EAD at both time
points (Section 2, Table 2).

Epigenetic age was significantly associated with chronological age at T0
(p-value < 0.001, Spearman correlation coefficient = 0.62, MAD = 2.2 years) (Figure 4A).
We then evaluated the impact of one-year Mediterranean-like diet by comparing for each
subject EAD values at T0 and T1. We found that EAD values were significantly lower at
T1 with respect to T0 (Figure 4B), both when performing an unpaired (Wilcoxon-Mann–
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Whitney test p-value = 0.004; Welch’s t-test p-value = 0.016) and a paired (Student’s paired
t-test p-value = 0.007) analysis. This result indicates that our targeted epigenetic clock
detects a significant rejuvenation after one year of nutritional intervention. The mean
of the differences between EAD values at T1 and EAD values at T0 for each subject was
−0.58 years, a value comparable to the extent of rejuvenation that we previously observed
using Horvath’s clock in the same cohort [31]. Collectively these results suggest that our
targeted epigenetic clock is effective in detecting small changes in epigenetic age, such as
those expected after a one-year nutritional intervention.

Figure 4. Application of the targeted epigenetic clock to an independent validation dataset. Each dot
represents a subject. (A) Epigenetic age (y-axis) vs. chronological age (x-axis) in NU-AGE subjects
at T0 and T1. Spearman correlation coefficient and the equation of the regression line are reported.
(B) Boxplots of epigenetic age discrepancy (EAD) values at T0 and T1; mean is indicated by the
x symbol.

The rejuvenation effect was also evident when subdividing the cohort by country
(Italy and Poland) and sex, although it reached statistical significance only in Italian and in
Italian males (Student’s paired t-test p-value = 0.03; Supplementary Figure S4).

4. Conclusions

Targeted epigenetic clocks are cost-effective and high-throughput alternatives to algo-
rithms based on DNAm measurement by genome-wide and whole genome approaches.
Several targeted epigenetic clocks have been developed so far, selecting the genomic regions
in order to maximize the accuracy of prediction of chronological age [67]. While these
clocks have a remarkable relevance in the forensics field, their informativeness in the study
of human aging and age-related diseases is limited, as the main aim in this case is the
prediction of biological age, over chronological age.
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In the present study, we developed and applied a targeted epigenetic clock purposely
optimized for the measurement of biological age. The strategy that we used to select the
targets of our assay was to combine genomic regions with a high degree of correlation
between DNA methylation and chronological age, together with genomic regions that
could also reflect differences in aging trajectories among individuals. The resulting clock,
based on the methylation of six genomic regions, showed a good accuracy in predicting
chronological age in healthy individuals. Most importantly, we demonstrated that the
deviation between epigenetic and chronological age was informative of the biological age
of individuals in three different conditions (Down syndrome, longevity and nutritional
intervention optimized for the elderly population) that were assessed with Horvath’s clock
in previous studies [24,25,31]. The results of the targeted epigenetic clock were comparable
to those of Horvath’s clock in terms of both direction and extent of the deviation between
biological and chronological age.

Respect to genome-wide epigenetic clocks, which include CpG probes widespread
across the genome, targeted epigenetic clocks have the advantage of measuring DNAm
of several CpG sites adjacent in the same genomic region, whose methylation is likely to
be highly correlated. This is cost-effective, as a large number of CpG sites (in our case
70 CpG units) measured with few assays (in our case six) can contribute to the prediction
model. Furthermore, it should be considered that in genome-wide clocks the CpG sites
included in the model represent a small fraction of the total number of probes of the
microarray. Therefore, if the aim of the analysis is not an epigenome-wide association
study but exclusively the evaluation of the epigenetic age of an individual, the cost of the
genome-wide approach is not justified. The targeted epigenetic clock that we developed in
the present study represents, therefore, a high-throughput and cost-effective alternative for
the evaluation of biological age.

We acknowledge that our study presents some limitations. The analyses that we
performed do not take into account potential confounding factors such as changes in
blood cell counts, as this information was not available for many of the evaluated samples.
Alterations in blood cell counts can affect DNAm measurements [68] and the prediction
of the epigenetic age [69]. Therefore, future studies should assess our targeted epigenetic
clock using blood counts as covariates, using experimentally derived data or predicting
this information by targeted DNAm assays, as recently suggested [70]. The target regions
included in our clock were selected from datasets generated in whole blood, which is
currently the tissue most frequently used to assess biological age. However, future studies
should evaluate their performance in other accessible tissues, such as saliva, buccal swab
and peripheral blood mononuclear cells (PBMC), for which at present large epigenome-
wide studies on aging are not available. In addition, our clock was trained and tested
in a relatively small cohort of controls and validated only in three conditions, two of
which were used to develop the clock itself. The association between epigenetic age
predicted by our targeted epigenetic clock and chronological age should be tested in larger
cohorts. Most importantly future studies should validate the targeted epigenetic clock in
other human models of increased and decreased aging (possibly already evaluated by the
canonical Horvath’s epigenetic clocks) and assess its potential as a biomarker of morbidity
and mortality.

To the best of our knowledge this is the first example of an epigenetic clock specifically
designed to measure biological age by the assessment of DNAm of a small number of
genomic regions. We used the EpiTYPER assay to measure DNAm, but other analogous
experimental approaches, such as targeted next-generation bisulfite sequencing, could
be used to quantify DNAm of the genomic regions included in our biomarker at single-
base resolution.

Biological age evaluation has the potential to complement chronological age in risk
assessment in a broad spectrum of diseases and conditions. To reach this goal it is manda-
tory to investigate such a class of markers in very large cohorts of individuals. In this
perspective, biological age protocols capable of reducing the cost and time for the analysis,
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such as the one that we presented here, could have a massive effect on the introduction of
such measurements in a broad spectrum of clinical areas. In conclusion, we believe that
our study could pave the way for the optimization and application of targeted epigenetic
markers of biological age in large human cohorts and in drug-discovery pipelines.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cells11244044/s1, Table S1: Datasets used to select the
Infinium CpG probes to be included in the targeted epigenetic assay. Table S2: Primers used to
amplify the target genomic regions. Supplementary File S1: Analysis of Horvath’s 353 CpG probes
in Illumina Infinium datasets of models of increased and decreased biological age. Supplementary
Figure S1: Graphical overview of the CpG sites assessed by the EpiTYPER assay. The position of the
CpG sites included in each target region is indicated with a rectangle. Black rectangles indicate the
positions that can be assessed by the EpiTYPER assay, red rectangles indicate the positions that cannot
be quantified by the assay. Each panel on the right reports the CpG units (single CpG sites or groups
of adjacent CpG sites) that were analyzed to build the prediction model. Supplementary Figure S2:
Results on NU-AGE cohort, obtained when calculating ridge regression on the entire NU-AGE cohort
(a) Epigenetic age (y-axis) vs. chronological age (x-axis) in NU-AGE subjects at T0 (blue) and T1
(red). (b) Boxplots of epigenetic age discrepancy (EAD) values at T0 and T1; mean is indicated by the
x symbol. EAD values were significantly lower at T1 respect to T0 (Wilcoxon-Mann–Whitney test
p-value = 0.019; Welch’s t-test p-value = 0.032; paired Student t-test p-value = 0.005). Supplementary
Figure S3: Correlation between epigenetic ages estimated using Horvath’s clock and epigenetic ages
estimated using the targeted epigenetic clock. Supplementary Figure S4: Boxplots of epigenetic age
discrepancy (EAD) values at T0 and T1 in NU-AGE samples subdivided according to country and
sex. The reported p-values are those resulting from the paired Student t-test.
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