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Abstract: MicroRNA (miRNA)-disease association (MDA) prediction is critical for disease prevention,
diagnosis, and treatment. Traditional MDA wet experiments, on the other hand, are inefficient and
costly.Therefore, we proposed a multi-layer collaborative unsupervised training base model called
SGAEMDA (Stacked Graph Autoencoder-Based Prediction of Potential miRNA-Disease Associa-
tions). First, from the original miRNA and disease data, we defined two types of initial features:
similarity features and association features. Second, stacked graph autoencoder is then used to learn
unsupervised low-dimensional representations of meaningful higher-order similarity features, and
we concatenate the association features with the learned low-dimensional representations to obtain
the final miRNA-disease pair features. Finally, we used a multilayer perceptron (MLP) to predict
scores for unknown miRNA-disease associations. SGAEMDA achieved a mean area under the ROC
curve of 0.9585 and 0.9516 in 5-fold and 10-fold cross-validation, which is significantly higher than
the other baseline methods. Furthermore, case studies have shown that SGAEMDA can accurately
predict candidate miRNAs for brain, breast, colon, and kidney neoplasms.

Keywords: miRNA; disease; association prediction; stacked graph autoencoder; higher-order features

1. Introduction

MicroRNA (miRNA) is a single-stranded small molecule RNA with a length of about
19–25 nucleotides that is encoded by endogenous genes [1,2]. MiRNAs are linked to
and play a crucial part in many vital human body processes, such as cell proliferation,
differentiation, immunity, and metabolism [3]. As a result, miRNAs have received increased
attention, particularly in the field of associations between miRNAs and complex human
diseases. Overexpression and downregulation of miRNA expression in humans have been
linked to a variety of complex diseases, according to research [4,5]. Upregulation of miR-
17-5p expression, for example, has a greater effect on pancreatic cancer cell proliferation
and significantly increases the number of invading cells [6]. When compared to normal
breast tissue, abnormal expression of miRNAs such as mir-125b, mir-145, mir-21, and
mir-155 causes human breast cancer [7]. Cressatti et al. [8] discovered that miR-153 and
miR-223 could be used as biomarkers for Parkinson’s disease (PD) diagnosis through paired
regulation of α-synuclein. MiR-34, miR-124a, -146, miR-187, miR-199a-5p, miR-203, miR-
210, and miR-383 dysregulation all have a negative impact on pancreatic β-cell viability
and function, which leads to uncontrolled proliferation of insulin-secreting cells and the
development of diabetes [9,10]. In conclusion, miRNAs have been shown to be inextricably
linked to the emergence of many human complex diseases, making the prediction of
potential miRNA-disease association (MDA) a promising area of research. It can help
researchers comprehend the pathological mechanisms of complex diseases, which can be
beneficial in both the treatment and diagnosis of complex diseases.
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Traditional biological wet experiments, such as anchored polymerase chain reaction
and reverse transcription polymerase chain reaction, were used in the early years to iden-
tify the relationship between miRNAs and diseases, but they all have drawbacks such as
complicated experiments, long time periods, and high costs [11–13]. Several studies in the
field of bioinformatics have been developed in recent years, such as drug–drug interac-
tions [14], drug–target interactions [15], lncRNA–disease association prediction [16], and
lncRNA–miRNA interaction [17]. Each of these studies has added to our understanding
of computational approaches for predicting miRNA–disease connections. Many superior
computational methods for predicting potential miRNA–disease associations have been
proposed as more biological data sets have been collected, which not only saves significant
money and time but also provides researchers with a new perspective to further validate
the predicted potential associations. These MDA prediction computational approaches
can be roughly categorized into three categories [18]: machine learning-based predic-
tion models, deep learning-based prediction models, and matrix transformation-based
prediction models.

Machine learning has been widely applied in all areas, and numerous machine learning
models for predicting MDA have produced positive results. As there are not enough known
miRNA–disease connections, existing prediction models perform poorly, Zhou et al. [19]
presented a new model combining gradient boosting decision tree and logistic regression
(GBDT-LR) to rank miRNA candidates for diseases. The model can extract features and
then score them using logistic regression. Peng et al. [20] proposed a new prediction
model called Ensemble of Kernel Ridge Regression-based MiRNA-Disease Association
prediction (EKRRMDA), which used KRR to build two classifiers in miRNA space and
disease space, respectively, and combined them with ensemble learning to improve model
prediction accuracy. Liu et al. [21] created a computational model for the SMALF by learning
potential features from the original miRNA–disease association matrix and then predicting
unknown miRNA–disease associations using XGBoost. Tang et al. [22] developed an
ensemble learning method (PMDFI) based on higher-order feature interactions to predict
potential miRNA–disease associations. It uses stacked autoencoders to learn higher-order
features from the similarity matrix and then uses an integrated model combining multiple
random forests with logistic regression to predict an association. Liu et al. [23] proposed an
autoencoder-based deep forest ensemble learning model (DFELMDA), which was further
validated through case studies of colon, breast, and lung tumors with varying disease types.
Both PMDFI and DFELMDA use automatic encoders, but as they do not consider graph
structure information, they cannot learn the miRNA and disease feature representation
well. Although machine learning-based methods have demonstrated good performance,
they typically require domain knowledge to build sample features.

With the advent of Deep Learning, many methods of end-to-end computing have been
developed, and this novel prediction method predicts better than earlier traditional machine
learning methods. Xuan et al. [24] developed CNNMDA, a deep learning method that uses
two convolutional neural networks to efficiently learn the potential relationship between
miRNAs and diseases (CNN). Li et al. [25] created a GAEMDA model that takes miRNA
and disease similarity as feature information, aggregates it using a graph neural network-
based encoder to generate a low-dimensional representation of the nodes, and finally
predicts it using a bilinear decoder. Zhou et al. [26] proposed a deep self-coding multicore
learning approach (DAEMKL) the following year, which uses multicore learning to build
miRNA-disease heterogeneous networks and then uses regression models to learn their
feature representations. Li et al. [27] designed a computational framework based on graph
attention network fusion of multi-source information (GATMDA). It utilized the graph
attention network to aggregate information from neighbors with different weights to extract
nonlinear features of diseases and miRNAs, and then predicted MDA by efficiently fusing
linear and nonlinear features of diseases and miRNAs through a random forest algorithm.
Han et al. [28] proposed that LAGCN build a heterogeneous network by integrating miRNA
similarity, disease similarity, and miRNA-disease association information, and then use the
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attention mechanism to synthesize multiple CNNs to learn miRNA and disease embedding.
Although deep learning-based methods can learn feature representations automatically
and improve model prediction performance to some extent, they require a large number of
training samples and do not incorporate graph structure information, making it difficult to
capture neighborhood information in the network.

Furthermore, in recent years, several MDA prediction algorithms based on matrix
transformation have appeared. Yu et al. [29] proposed a prediction model based on matrix
completion and label propagation (MCLPMDA). It used matrix completion to reconstruct a
new miRNA and disease similarity matrix based on the miRNA-disease association matrix,
and then used the label propagation algorithm to predict MDA. Gao et al. [30] proposed the
Nearest Profile-based Collaborative Matrix Factorization (NPCMF) algorithm, which uses
L2,1-norm to complete the unknown association, using miRNA and disease nearest neigh-
bor information to construct similarity functions and thus find new MDAs. Chen et al. [31]
proposed the neighborhood constraint matrix completion algorithm (NCMCMDA), which
combined neighborhood constraints with matrix completion for assisted prediction before
transforming the prediction task into an optimization problem that could be solved by a
rapid iterative algorithm. Yin et al. [32] created a new computational model called Logistic
Weighted Profile-based Collaborative Matrix Factorization by combining two methods,
weighted profile and collaborative matrix factorization (LWPCMF). The findings show that
LWPCMF can accurately predict potential MDA. Although the matrix transformation-based
method overcomes the problem of feature representation using vectors in high-dimensional
space, its results are highly dependent on the initial solution selection, and it often fails to
converge, which is time-consuming.

Although the models presented above predicted MDA well, they do have certain
limitations. In recent years, autoencoders have been widely used in various fields [33,34] to
efficiently learn the feature representation of miRNAs and diseases without losing the graph
structure topology information, we propose a stacked graph autoencoder-based miRNA-
disease association prediction algorithm (SGAEMDA), as shown in Figure 1. All miRNA
features were then concatenated with disease features as miRNA-disease pair features. We
employed 5-fold and 10-fold cross-validation to evaluate the prediction performance of our
method. As a consequence, the AUCs of SGAEMDA in 5-fold and 10-fold cross-validation
were 0.9585 and 0.9616, respectively, much higher than the other baseline methods. In
addition, to demonstrate SGAEMDA’s performance, we conducted case studies on brain
neoplasms, breast neoplasms, colon neoplasms, and kidney neoplasms. According to the
findings, the bulk of our predicted possible miRNA-disease associations were verified
by the dbDEMC and miRCancer databases. This paper’s significant contributions are
summarized as follows.

(1) We integrated both association information and similarity information to construct the
initial features and could better learn the potential information in miRNA-disease pairs.

(2) We propose a stacked graph autoencoder prediction framework. Unlike previous
stacked autoencoders, which used layer-by-layer training, the stacked graph autoen-
coder uses multi-layer collaborative unsupervised training. It is capable of effectively
extracting potential, deep, and unknown feature information from the similarity net-
work to compensate for the shortcomings of previous models’ prediction results,
which are biased toward miRNAs and diseases with known associations.

(3) We use a multilayer perceptron (MLP) for prediction of the final results, which has
high fault tolerance and can learn feature information from miRNA-disease pairs
rapidly and efficiently to improve model prediction performance.
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Figure 1. SGAEMDA flowchart. (A) Construction of initial features and data processing. (B) Pre-
training to extract low-dimensional similarity features of miRNA and disease. (C) Fusion of learned
miRNA and disease features to generate miRNA-disease pair feature vector. (D) Association predic-
tion score by MLP.

2. Materials and Methods
2.1. Datasets for MDA Prediction

The Human miRNA-disease association dataset we used was downloaded from the
HMDDv2.0 database [35]. It contains 5430 known associations of 383 complex diseases and



Cells 2022, 11, 3984 5 of 18

495 miRNAs, and the rest are unknown associations. In the follow-up experiments, we
used a binary adjacency matrix A with nm rows and nd columns to storage all known and
unknown associations. Where nm and nd are the number of miRNAs and diseases in this
dataset, respectively. Specifically, this binary association matrix A is defined as follows:

A(i, j) =
{

1, if miRNA mi is associated to disease dj
0, otherwise

, (1)

2.2. MiRNA and Disease Informaton
2.2.1. MiRNA Function Similarity

Wang et al. [36] proposed a method to measure miRNA functional similarity and a
method to construct miRNA functional similarity networks based on the hypothesis that
functionally similar miRNAs are often associated with similar diseases. The functional sim-
ilarity information of miRNAs can be obtained from http://www.cuilab.cn/files/images/
cuilab/misim.zip (accessed on 23 May 2022). Then, based on the obtained information, we
built the miRNA functional similarity matrix MFS with nd rows and nd columns. Where
MFS(mi, mj) denotes the functional similarity score between miRNA mi and miRNA mj.

2.2.2. Disease Semantic Similarity

Based on a previous study [37], disease semantic similarity was obtained based on
statistics disease ontology information. Specifically, all disease semantic similarities can be
calculated using medical subject headings (MeSH), where each disease di can be described
by several directed acyclic graphs (DAGs). The directed acyclic graph can be defined as
DAG(di) = (di, T(di), E(di)), where di denotes a specific disease, T(di) denotes the set
containing the disease node di and all its ancestor nodes, and E(di) denotes the set of
corresponding edges. According to the constructed directed acyclic graph of disease di, we
can calculate the semantic contribution value of disease dk to disease di as follows:

D1
di
(dk) =

 1, if dk = di

max
{

δ ∗ D1
di

(
d′
)
| d′ ∈ children of dk

}
, if dk 6= di

, (2)

where δ is the semantic contribution decay factor and based on a previous study, we set δ
to 0.5. We can then calculate the semantic value of the disease di.

DV1(di) = ∑
dk∈T(di)

D1
di
(dk). (3)

Based on the assumption that the more the overlapping parts of the DAGs of two
diseases are, the more similar they are. We can calculate the disease semantic similarity
between diseases di and dj, and define it as follows:

DS1(di, dj
)
=

∑d′∈T(di)∩T(dj)

(
D1

di
(d′) + D1

dj
(d′)

)
DV1(di) + DV1

(
dj
) , (4)

where DS1 is for storing the semantic similarity of the first kind of diseases.
However, the above calculation method has a disadvantage in that it does not account

for the different contributions of two diseases in the same layer of the DAG, and the disease
with a low frequency should contribute more than the disease with a high frequency. As a
result, we developed a second semantic similarity model. Specifically, we can calculate the
semantic contribution value of disease dk to disease di as follows:

D2
di
= − log

(
the number of DAGs including dk

the number of diseases

)
. (5)

http://www.cuilab.cn/files/images/cuilab/misim.zip
http://www.cuilab.cn/files/images/cuilab/misim.zip
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Likewise, we can obtain the semantic value of disease di:

DV2(di) = ∑
dk∈T(di)

D2
di
(dk). (6)

Based on the previously mentioned assumptions, we can calculate the second kind of
disease semantic similarity between diseases di and dj, which is defined as follows:

DS2(di, dj
)
=

∑d′∈T(di)∩T(dj)

(
D2

di
(d′) + D2

dj
(d′)

)
DV2(di) + DV2

(
dj
) , (7)

where DS2 is for storing the second kind of disease semantic similarity. To obtain the sound
disease semantic similarity, we combined the two types of disease semantic similarity
to obtain the final disease semantic similarity, and the final disease semantic similarity
between diseases di and dj can be calculated according to the following equation:

DSS
(
di, dj

)
=

DS1(di, dj
)
+ DS1(di, dj

)
2

. (8)

2.2.3. Gaussian Interaction Profile Kernel Similarity of miRNAs and Diseases

Inspired by past studies [38], based on the hypothesis that functionally similar miRNAs
may be associated with phenotypically similar diseases. We used Gaussian spectral kernel
similarity to calculate the similarity between each pair of miRNAs and between each pair
of diseases, which in turn complements the similarity information of miRNAs and diseases.
Specifically, the Gaussian interaction profile kernel similarity between miRNAs mi and mj
was calculated as follows:

GMS
(
mi, mj

)
= exp

(
−γm

∥∥IP(mi)− IP
(
mj
)∥∥2
)

, (9)

γm = γ′m/

(
1

nm

nm

∑
i=1
‖IP(mi)‖2

)
, (10)

where the parameter γm controls the kernel bandwidth, which can be obtained based on
the hyperparameter γ′m normalized by the average number of interactions for each miRNA.
According to previous studies, γ′m is set to 1. For diseases, similar to miRNAs, the Gaussian
interaction profile kernel similarity between diseases di and dj is calculated as follows:

GDS
(
di, dj

)
= exp

(
−γd

∥∥IP(di)− IP
(
dj
)∥∥2
)

, (11)

γd = γ′d/

(
1

nd

nd

∑
i=1
‖IP(di)‖2

)
, (12)

where,γ′d is set to 1.

2.2.4. Integration of miRNAs and Diseases Similarity

Considering that some miRNAs have no function similarity to each other, and similarly,
some diseases have no semantic similarity to each other, this can lead to a large number
of sparse values in the miRNA function similarity matrix and disease semantic similarity
matrix. To solve the above problem, we define the integrated similarity between miRNA mi
and mj and the integrated similarity between diseases di and dj by integrating the Gaussian
interaction profile kernel similarity obtained from prior calculations as follows:

Sm
(
mi, mj

)
=

{
MFS

(
mi, mj

)
, if mi and mj have function similarity

GMS
(
mi, mj

)
, otherwise

, (13)
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Sd
(
di, dj

)
=

{
DSS

(
di, dj

)
, if di and dj have semantic similarity

GDS
(
di, dj

)
, otherwise

. (14)

2.3. SGAEMDA

To predict the potential association of miRNAs with diseases, we propose the stacked
graph autoencoder miRNA–disease association prediction model (SGAEMDA) in this
study. To successfully extract potential information in the similarity network and forecast
miRNA–disease associations, the model integrates a graph convolutional network-based
autoencoder with a multilayer perceptron. SGAEMDA is typically comprised of the
following steps: (1) Construct initial features. (2) Pre-train stacked graph autoencoder to
extract miRNA and disease similarity potential features. (3) Concatenate potential features
and association features. (4) Predict miRNA-disease.

(1) Construct initial features

We construct the initial features of miRNAs and diseases from two different perspec-
tives: association information and similarity information. First, for the miRNA-disease
association matrix A, each row can be regarded as the association feature of miRNA and
each column as the association feature of disease. For the miRNA integrative similarity
matrix Sm and the disease integrative similarity matrix Sd, each row of Sm can be regarded
as the similarity feature of miRNA, and each row of Sd can be regarded as the similarity
feature of disease. Specifically, the two initial feature vectors of miRNAs and diseases are
shown as follows:

F`
φ =

(
v1, v2, v3, . . . , vnφ`

)
, (15)

where ` ∈ {1, 2}, when ` = 1, F1
φ denotes the association feature of miRNA or disease, and

when ` = 2, F2
φ denotes the functional similarity feature of miRNA or semantic similarity

feature of disease. φ ∈ {m, d}, φ = m represents miRNA features and φ = d represents
disease features, and nm1, nd1, nm2, nd2 are the number of columns and rows of A, the
number of columns of Sm, and the number of columns of Sd, i.e., 383, 495, 495, and 383,
respectively.

(2) Pre-train stacked graph autoencoder

Referring to a previous study [39], graph autoencoder can learn the low-dimensional
feature representation of graph nodes to find the appropriate embedding. Since the infor-
mation in the similarity features of miRNAs and diseases is high-dimensional, this could
affect the prediction accuracy of the prediction model. We propose the stacked graph
autoencoder to extract the low-dimensional similarity potential features from it, which
has a stronger feature extraction ability than the traditional graph autoencoder. The graph
autoencoder is particularly suitable for datasets with large numbers of unlabeled data and
small numbers of labeled data due to its unsupervised training method. Specifically, the
encoder and decoder for each layer of the autoencoder are defined as follows:

Enc(A, Y) = tanh
(

A · ReLU
(

AYW0
)

W1
)

, (16)

and
Dec(A, Y) = sigmoid

(
A · ReLU

(
AYW2

)
W3
)

, (17)

where A, Y, W denote the adjacency matrix, feature matrix of the node, and the learnable
parameter matrix. Therefore, the feature representation of miRNA, Zl

m can be learned by
the above encoder–decoder structure as follows:

Zl
m = Encm(Am, Zl−1

m ), (18)

and
Xl

m = Decm(Am, Zl
m), (19)
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where l denotes the number of layers of the graph autoencoder, l = 1, 2 . . . L, Zl
m denotes the

low-dimensional feature representation learned by the lth layer of the graph autoencoder,
when 1 = 1, Z0

m, i.e., F2
m, Xl

m denotes the miRNA feature representation reconstructed by
the lth layer of the autoencoder, and Am denotes the Laplace-normalized miRNA adjacency
matrix. The formula is as follows:

Am = D−1/2
m SmD−1/2

m , (20)

where Dm is the degree matrix of miRNA-integrated similarity matrix Sm.
Similarly, we learn the low-dimensional feature representation Zl

d of the disease by
the stacked graph autoencoder of the same architecture as follows:

Zl
d = Encd

(
Ad, Zl−1

d

)
, (21)

and
Xl

d = Decd(Ad, Zl
d), (22)

where Zl
d denotes the low-dimensional feature representation learned by the lth layer

graph autoencoder, when l = 1, Z0
d, i.e., F2

d , Xl
d denotes the disease feature representation

reconstructed by the lth autoencoder, and Ad denotes the Laplace-normalized adjacency
matrix of the disease. The formula is as follows:

Ad = D−1/2
d SdD−1/2

d . (23)

In this study, SGAE is constructed by stacking three graph autoencoders, i.e., L = 3.
Specifically, the feature representation generated by the first graph autoencoder is taken
as input to the second autoencoder, which generates another feature representation of
lower dimensionality, and so on, until L graph autoencoders are constructed. Multiple
graph autoencoders are trained collaboratively based on the reconstruction loss function
to generate the final low-dimensional similarity feature representations of miRNA and
disease, ZL

m and ZL
d , with the following equations:

Lossm =
L

∑
l=1

∥∥∥Zl−1
m − Xl

m

∥∥∥2
, (24)

Lossd =
L

∑
l=1

∥∥∥Zl−1
d − Xl

d

∥∥∥2
. (25)

(3) Concatenate potential features and association features

We set the final embedding dimension to 64 in pre-training, and the training obtained
a low-dimensional similarity representation of all miRNAs and diseases, denoted as ZL

m,
ZL

d , respectively. To include more potential information in the feature representations of
miRNAs and diseases, we concatenated ZL

m and ZL
d with the association feature F1

m of
miRNAs and the association feature F1

d of diseases, respectively, and finally obtained a
447-dimensional miRNA embedding and a 559-dimensional disease embedding, as follows:

Vm = concatenating
(

ZL
m, F1

m

)
, (26)

and
Vd = concatenating

(
ZL

d , F1
d

)
, (27)

where Vm denotes the final embedding of miRNA and Vd denotes the final embedding of disease.

(4) Predict miRNA-disease association by multilayer perceptron



Cells 2022, 11, 3984 9 of 18

After obtaining the embedding of miRNAs and diseases, we concatenate the embed-
ding Vmi for each miRNA and Vdj

for each disease to form our complete dataset X, where

X ∈ R(495∗383)×(447+559), as follows:

Xij = concatenating
(

Vmi , Vdj

)
, (28)

where Xij denotes the characteristics of miRNA-disease pairs of miRNA mi and disease dj.
Then, we used a multilayer perceptron (MLP) to score the final miRNA-disease association
for prediction, as follows:

Xl = ReLU
(

Xl−1W l + bl
)

, (29)

and
ŷij = Sigmoid

(
X2W3 + b3

)
, (30)

where l ∈ [1, 2] denotes the number of layers of the hidden layer, Xl denotes the output of
the lth hidden layer, and W l , bl are the learnable parameter matrix and bias of the lth hidden
layer, respectively. ŷij is the prediction score of the final miRNA-disease pair. Finally, the
model is trained by minimizing the error of the Binary Cross-Entropy Loss function:

Loss = − 1
N

 ∑
(i,j)∈y+

yij log ŷij + ∑
(i,j)∈y−

(
1− yij

)
log
(
1− ŷij

), (31)

where (i, j) denotes the pair for miRNA mi and disease dj.y+ and y− subtables denote the
positive and negative sample sets. N denotes the number of all miRNA-disease pairs in the
positive and negative sample sets.

3. Results
3.1. Experiment Details

In our experiments, the SGAEMDA model is implemented based on the pytorch
framework and the scikit-learn framework. The Adam optimizer is adopted to minimize
the loss function both during the pre-training process and the MLP training process.
Due to the significant imbalance of positive and negative samples in the database of
HMDDv2.0, the number of known miRNA–disease associations is 5430 (positive samples),
and the rest of the 184,155 pairs are unknown associations (negative samples), and the
number of negative samples is about 34 times the positive samples. In order to have good
robustness of our model, we randomly selected negative samples equal to the positive
samples for MLP training, and randomly selected 10 times in the subsequent experiments
to ensure the reliability of our experiments. Our source code of HSSG is available online:
https://github.com/Lynn0424/SGAEMDA (accessed on 5 December 2022).

3.2. Evaluation Metrics

The area under the receiver operating characteristic curve (AUC) and area under
precision–recall curve (AUPR) were our main metrics to evaluate the overall model per-
formance. In classification problems, AUC is an essential method to evaluate the overall
performance of a model, and for unbalanced data sets, AUPR can evaluate the model
better than AUC. In order to be more comprehensive in evaluating the performance of
the SGAEMDA model, we also used several common evaluation metrics such as accuracy
(Acc), precision (Pre), recall (Rec), and F1-score. Several metrics are calculated as follows:

Acc =
TP + TN

TP + TN + FP + FN
, (32)

Pre =
TP

TP + FP
, (33)

https://github.com/Lynn0424/SGAEMDA
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Rec =
TP

TP + FN
, (34)

F1-score =
2× Pre× Rec

Pre + Rec
, (35)

where TP, TN, FP, FN denote true positive, false negative, false positive, and true
negative, respectively.

3.3. Prediction of miRNA–Disease Association Based on SGAEMDA

To obtain reliable experimental results of the model, we performed 5-fold cross-
validation and 10-fold cross-validation to evaluate the model performance of SGAEMDA.
In 5-fold CV (10-fold CV), all the training samples are randomly divided into 5 (10) subsets
of approximately the same number, 4 (9) of them are chosen for training and the remaining
1 is chosen for testing, and the process is repeated until all the subsets have been used for
the test set, and finally the obtained results are averaged as the final result. Figures 2 and 3
show the ROC curves and PR curves for the 5-fold CV and 10-fold CV and the area
under their curves. It can be seen that our model has an AUC above 0.95 for both 5-fold
CV and 10-fold CV, indicating the effectiveness of the model in predicting the potential
miRNA-disease association and implying that the model performance is not affected by the
amount of training data and test data in cross-validation. Table 1 shows the average results
of other evaluation metrics and their standard deviations for 5-fold CV and 10-fold CV,
indicating the ACC, Pre, Rec, F1-score of SGAEMDA at 5-fold CV (10-fold CV) of 0.9045
(0.9087), 0.9037 (0.8949), 0.9056 (0.9272), 0.9046 (0.9104). The SGAEMDA model was further
demonstrated to be effective for association prediction.

Table 1. The 5-fold and 10-fold cross-validation results of the SGAEMDA model.

Cross-
Validation Acc Pre Rec F1-Score

5-fold CV 0.9045 ± 0.003 0.9037 ± 0.008 0.9056 ± 0.010 0.9046 ± 0.004
10-fold CV 0.9087 ± 0.007 0.8949 ± 0.022 0.9272 ± 0.016 0.9104 ± 0.006

Figure 2. The 5-fold cross-validated ROC curve and PR curve of SGAEMDA model with AUC of
95.85% and AUPR of 95.50%.
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Figure 3. The 10-fold cross-validated ROC curve and PR curve of SGAEMDA model with 96.16%
AUC and 95.78% AUPR.

3.4. Effect of Similarity Feature Dimensions

To further illustrate the effect of the final dimensionality of the similarity features on
the model prediction performance, we set the dimensionality of the similarity features
learned by the stacked graph autoencoder to 16, 32, 64, 128, 256 for comparison experiments,
and calculate their AUC and AUPR, respectively. The experimental results are shown in
Figure 4, and both AUC and AUPR reach the highest value when the dimension is 64.
Therefore, we set the final learned similarity feature dimension to 64. In addition, we can
infer that if the dimension is too small, it cannot fully learn the similarity information;
while if the dimension is too large, there may be original redundant and noisy information,
leading to lower model performance.

Figure 4. AUC and AUPR in different similarity feature dimensions under 5-fold CV.
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3.5. Effect of Stacked Graph Autoencoder Pre-Training

In SGAEMDA, to verify the validity of our proposed stacked graph autoencoder for
miRNA–disease potential association prediction. We designed three groups of experi-
ments. The first one uses only the potential similarity features

(
ZL

m and ZL
d
)

obtained
by pre-training and uses them directly as the final embedding of miRNAs and diseases
for prediction, denoted as only-pre-training. The second group is a direct concatenation
of the original similarity features

(
F2

m and F2
d
)

and association features
(

F1
m and F1

d
)

for
prediction without using stacked graph autoencoder, denoted as non-pre-training. The
third group uses only the original association features

(
F1

m and F1
d
)

to predict the potential
association, which is denoted as only-original feature. The fourth group of experiments
uses pre-trained features

(
ZL

m and ZL
d
)

and association features
(

F1
m and F1

d
)
, i.e., the

SGAEMDA model.
Figure 5 and Table 2 show the prediction results of the four models. We can see that the

SGAEMDA model is only slightly lower than the only-original feature model in Recall, but
reaches the highest value in all the rest of the metrics. AUC and AUPR are more reflective
of the overall performance of the model, so integrating the features learned by stacked
autoencoder and association features can enable the model to achieve better performance.

Figure 5. Comparison of the prediction effect of different models.

Table 2. Comparison table of each evaluation metric for different models.

AUC AUPR Pre Rec F1-Score

only-pre-training 0.9031 0.9071 0.8394 0.8582 0.8486
non-pre-training 0.9402 0.9409 0.8530 0.8967 0.8739
only-original feature 0.9422 0.9442 0.8920 0.9076 0.899
SGAEMDA 0.9585 0.9562 0.9037 0.9056 0.9046

3.6. Comparison of Different Classifier Models

In the SGAEMDA model, we used a multilayer perceptron (MLP) classifier to predict
the potential miRNA–disease association. To confirm the reasonability of our adopted MLP,
we used cross-validation with the same dataset for comparison with four common classifier
models, which are random forest (RF), support vector machine (SVM), K-nearest neighbor
(KNN), and XGBoost algorithm. We refer to the Liu et al. [21] proposed model to select the
best parameters for different classifiers. In the RF algorithm, we set the maximum depth of
the tree to 10, the maximum features to 100, and the rest of the parameters to default values.
In the SVM algorithm, we use the RBF kernel and set C to 50. In the XGBoost algorithm,
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we set the number of trees to 1000, the learning rate to 0.1, and the rest of the parameters to
their default values. For the KNN classifier, we performed a parameter sensitivity analysis
and finally set the K value to 4, the p-value to 2, and the rest of the parameters to their
default values. Table 3 shows the prediction performance of these classifiers. It can be
seen that SGAEMDA achieves the highest results in four of the five evaluated metrics, and
only in the accuracy rate it is 2.07% lower than the KNN classifier. However, in terms of
potential association prediction, AUC and AUPR are more likely to show the overall model
performance. Therefore, we selected MLP as our final classifier.

Table 3. Five types of classifier evaluation metrics.

AUC AUPR Pre Rec F1-Score

RF 0.9356 0.9351 0.8505 0.872 0.8611
SVM 0.934 0.933 0.8601 0.8506 0.8553
KNN 0.9282 0.9399 0.9244 0.7703 0.8401

XGBoost 0.9538 0.9545 0.8876 0.8833 0.8854
SGAEMDA 0.9585 0.9562 0.9037 0.9056 0.9046

3.7. Comparisons with Existing SOTA Methods

To further prove the predictive performance of our proposed SGAEMDA model, we
compare it with nine state-of-the-art existing computational models, namely LAGCN [28],
GBDT-LR [19], EKRRMDA [20], MCLPMDA [29], GAEMDA [25], PMDFI [22], SMALF [21],
DAEMKL [26], and DFELMDA [23]. Since the AUC values provide a comprehensive
measure of the overall predictive performance of the models, we selected the AUC as a
metric to evaluate the performance of these models (all AUC values were selected from
their papers by taking their best values). In addition, the above models are all evaluated
based on HMDDv2.0 on the five-fold cross-validation basis. Table 4 shows the compara-
tive results of the models. From the table, we see that SGAEMDA achieved the highest
AUC value among the 10 models, which is 3.3% higher than the second-best model
(DFELMDA). In conclusion, SGAEMDA has very good results in predicting potential
miRNA–disease associations.

Table 4. Comparison of different methods based on 5-fold cross-validation.

Method AUC(%)

LAGCN 90.91
GBDT-LR 92.74

EKRRMDA 92.75
MCLPMDA 93.20
GAEMDA 93.56

PMDFI 94.04
SMALF 95.03

DAEMKL 95.38
DFELMDA 95.52
SGAEMDA 95.85

3.8. Case Studies

We selected four neoplastic diseases as case studies: brain neoplasms (Table 5), breast
neoplasms (Table 6), colon neoplasms (Table 7), and kidney neoplasms (Table 8). Specifically,
there are 5430 known miRNA-disease associations in the HMDDv2.0 database, while the
remaining 184,155 associations are unknown. The known associations obtained from
the database were used as the training set for SGAEMDA, and then we prioritized the
candidate miRNAs for several neoplasms based on the prediction scores and selected the
top 20 candidate miRNAs. We verified the predicted experimental results one by one by
using the dbDEMCv3.0 database [40] and the miRCancer database [41] as validation sets.
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Brain neoplasms are defined as a neoplasm growing in the cranial cavity, also known
as brain cancer and intracranial neoplasm. They are generally divided into two categories:
primary and secondary [42]. Statistics show that the incidence of brain neoplasm has
been increasing in recent years, and brain neoplasm accounts for about 5% of the total
body neoplasms, other malignant neoplasms in the body have a 20–30% probability to
metastasize into the skull, once the neoplasm occupies a certain space in the skull, regardless
of benign or malignant neoplasm, it will endanger the life of patients. According to statistics,
the incidence of brain neoplasms has been increasing in recent years. Brain neoplasms
account for about 5% of the whole-body neoplasms, and all other malignant tumors in the
body have a 20–30% chance of metastasizing to the skull. Therefore, a research priority
was given to investigate miRNAs that may be associated with brain cancer. The results are
shown in Table 5. Among the top 20 miRNAs associated with brain cancer, 19 of them are
confirmed by dbDEMC or miRCancer.

Table 5. Top 20 brain neoplasm-related miRNAs predicted by SGAEMDA based on HMDD v2.0.

TOP 1-10 miRNA dbDEMC miRCancer TOP 11-20
miRNA dbDEMC miRCancer

hsa-mir-221 Comfirmed Comfirmed hsa-mir-101 Comfirmed Uncomfirmed
hsa-mir-26b Comfirmed Uncomfirmed hsa-mir-184 Comfirmed Uncomfirmed

hsa-mir-106b Comfirmed Uncomfirmed hsa-mir-218 Comfirmed Uncomfirmed
hsa-mir-181a Comfirmed Uncomfirmed hsa-mir-146a Comfirmed Uncomfirmed
hsa-mir-155 Comfirmed Uncomfirmed hsa-mir-302b Comfirmed Uncomfirmed
hsa-mir-148a Comfirmed Uncomfirmed hsa-mir-206 Comfirmed Uncomfirmed
hsa-mir-125b Comfirmed Uncomfirmed hsa-mir-197 Comfirmed Uncomfirmed
hsa-mir-195 Comfirmed Uncomfirmed hsa-mir-196a Comfirmed Uncomfirmed
hsa-mir-210 Comfirmed Uncomfirmed hsa-mir-410 Comfirmed Uncomfirmed
hsa-mir-200c Uncomfirmed Uncomfirmed hsa-mir-214 Comfirmed Uncomfirmed

It is estimated that breast neoplasms account for 7–10% of all malignant tumors in the
body. Its incidence is generally associated with genetics and is higher in women between
40–60 years of age [43,44]. Thus, the discovery of potential miRNAs associated with breast
neoplasms provides direction for the treatment and diagnosis of breast neoplasms. The
results are shown in Table 6 and all 20 of the predicted miRNAs associated with breast
cancer are confirmed.

Table 6. Top 20 breast neoplasm-related miRNAs predicted by SGAEMDA based on HMDD v2.0.

TOP 1-10 miRNA dbDEMC miRCancer TOP 11-20
miRNA dbDEMC miRCancer

hsa-mir-192 Comfirmed Uncomfirmed hsa-mir-144 Comfirmed Comfirmed
hsa-mir-212 Comfirmed Comfirmed hsa-mir-185 Comfirmed Comfirmed
hsa-mir-138 Comfirmed Comfirmed hsa-mir-449a Comfirmed Comfirmed
hsa-mir-15b Comfirmed Uncomfirmed hsa-mir-98 Comfirmed Comfirmed
hsa-mir-150 Comfirmed Comfirmed hsa-mir-542 Comfirmed Uncomfirmed

hsa-mir-449b Comfirmed Comfirmed hsa-mir-424 Comfirmed Uncomfirmed
hsa-mir-106a Comfirmed Comfirmed hsa-mir-92b Comfirmed Uncomfirmed
hsa-mir-99a Comfirmed Comfirmed hsa-mir-181d Comfirmed Uncomfirmed
hsa-mir-99b Comfirmed Uncomfirmed hsa-mir-186 Comfirmed Comfirmed
hsa-mir-130a Comfirmed Comfirmed hsa-mir-376a Comfirmed Comfirmed

Colon cancer, also known as colorectal cancer, is a malignant neoplasm of the gas-
trointestinal tract that occurs in the colon area. The incidence of colon neoplasms is
statistically second only to gastric and esophageal cancers [45]. As shown in Table 7, it
can be seen that 19 of the top 20 miRNAs predicted to be potentially associated with colon
cancer are confirmed.
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Table 7. Top 20 colon neoplasm-related miRNAs predicted by SGAEMDA based on HMDD v2.0.

TOP 1-10 miRNA dbDEMC miRCancer TOP 11-20
miRNA dbDEMC miRCancer

hsa-mir-15a Comfirmed Comfirmed hsa-mir-19b Comfirmed Comfirmed
hsa-mir-106b Comfirmed Uncomfirmed hsa-mir-195 Comfirmed Comfirmed
hsa-mir-29b Comfirmed Uncomfirmed hsa-mir-122 Comfirmed Uncomfirmed
hsa-mir-92a Comfirmed Uncomfirmed hsa-mir-26a Uncomfirmed Uncomfirmed
hsa-mir-20a Comfirmed Comfirmed hsa-mir-125a Comfirmed Comfirmed
hsa-mir-16 Uncomfirmed Comfirmed hsa-mir-93 Comfirmed Comfirmed

hsa-mir-214 Comfirmed Comfirmed hsa-mir-141 Comfirmed Comfirmed
hsa-mir-18a Comfirmed Comfirmed hsa-mir-20b Comfirmed Uncomfirmed
hsa-mir-148a Comfirmed Uncomfirmed hsa-mir-10a Comfirmed Uncomfirmed

hsa-mir-21 Comfirmed Comfirmed hsa-mir-30b Comfirmed Uncomfirmed

Kidney neoplasms have a high incidence in western countries [46]. In addition,
about 95% of renal neoplasms are malignant, the pathology of kidney tumors is more
complex, and it is more challenging to treat kidney tumors. Table 8 shows that 19 of the top
20 miRNAs were validated by the database.

Table 8. Top 20 kidney neoplasm-related miRNAs predicted by SGAEMDA based on HMDD v2.0.

TOP 1-10 miRNA dbDEMC miRCancer TOP 11-20
miRNA dbDEMC miRCancer

hsa-mir-145 Comfirmed Comfirmed hsa-mir-200b Comfirmed Uncomfirmed
hsa-mir-29b Comfirmed Uncomfirmed hsa-mir-126 Comfirmed Uncomfirmed
hsa-mir-214 Comfirmed Uncomfirmed hsa-mir-210 Comfirmed Comfirmed

hsa-mir-106b Comfirmed Uncomfirmed hsa-mir-195 Comfirmed Uncomfirmed
hsa-mir-122 Comfirmed Uncomfirmed hsa-mir-23a Comfirmed Uncomfirmed
hsa-mir-15b Comfirmed Uncomfirmed hsa-mir-155 Comfirmed Uncomfirmed
hsa-mir-106a Comfirmed Uncomfirmed hsa-mir-375 Comfirmed Comfirmed
hsa-mir-143 Comfirmed Uncomfirmed hsa-mir-31 Comfirmed Uncomfirmed
hsa-mir-1 Uncomfirmed Uncomfirmed hsa-mir-223 Comfirmed Comfirmed

hsa-mir-429 Comfirmed Uncomfirmed hsa-mir-212 Comfirmed Uncomfirmed

In addition, to further validate the performance of our model, we downloaded miR-
NAseq data for BRCA (breast invasive carcinoma) and COADREAD (colorectal cancer)
from the TCGA database. Based on the downloaded data, we compared the differential
expression between the top 10 miRNA paracancer sample groups that we predicted. The
results of differential expression are shown in Figure 6.

(a) (b)

Figure 6. The result of the miRNA differential expression. (a) miRNAs ranked 1–10 for breast cancer.
(b) miRNAs ranked 1–10 for colon cancer.
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4. Discussion

In the past, many studies have shown that aberrant miRNA expression is often as-
sociated with many biological processes as well as the occurrence of complex diseases in
humans with considerable impact. Thus, predicting potential miRNA-disease associations
can help medical professionals provide molecular insight into the pathogenesis of various
complex diseases and thus develop relevant new drugs. In this paper, we propose the
SGAEMDA model, a novel model based on a stacked graph autoencoder. Unlike previous
stacked-autoencoders, SGAE is not trained layer-by-layer but in collaboration with each
layer, which makes up for the drawback of weak coding ability due to greedy training
of previous stacked-autoencoders. It can extract potential feature representations from
miRNA similarity networks and disease similarity networks at a deeper level. The extracted
features are concatenated with the corresponding association features and then MLP is used
to predict the association between miRNA and diseases. After experiments, it is shown
that the highest AUC value of SGAEMDA, which reached 0.9585 under the 5-fold and
10-fold cross-validation. is much higher than the other baseline methods. The case study
analysis experimentally confirmed that our model can effectively predict the potential
miRNA-disease association. However, our work still has some areas for improvement:

(1) The model is not trained end-to-end, and our model may be lower in robustness.
(2) The data used in the experiments are fewer and unable to extract more information

about miRNAs and diseases from more perspectives.

In future studies, we will fuse more miRNA and disease similarity information to
further improve the performance of our prediction models. Moreover, we will utilize a
scheme similar to the EGES model [47] to allow embedding to cover more miRANs and
diseases, thus addressing the cold-start problem in genetic disease association prediction.
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