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Abstract: Atherosclerosis (AS) is a lipid-induced, chronic inflammatory, autoimmune disease affecting
multiple arteries. Although much effort has been put into AS research in the past decades, it is still
the leading cause of death worldwide. The complex genetic network regulation underlying the
pathogenesis of AS still needs further investigation to provide effective targeted therapy for AS. We
performed a bioinformatic microarray data analysis at different atherosclerotic plaque stages from the
Gene Expression Omnibus database with accession numbers GSE43292 and GSE28829. Using gene
set enrichment analysis, we further confirmed the immune-related pathways that play an important
role in the development of AS. We are reporting, for the first time, that the metabolism of the three
branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) and short-chain fatty acids
(SCFA; propanoate, and butanoate) are involved in the progression of AS using microarray data of
atherosclerotic plaque tissue. Immune and muscle system-related pathways were further confirmed
as highly regulated pathways during the development of AS using gene expression pattern analysis.
Furthermore, we also identified four modules mainly involved in histone modification, immune-
related processes, macroautophagy, and B cell activation with modular differential connectivity in
the dataset of GSE43292, and three modules related to immune-related processes, B cell activation,
and nuclear division in the dataset of GSE28829 also display modular differential connectivity based
on the weighted gene co-expression network analysis. Finally, we identified eight key genes related
to the pathways of immune and muscle system function as potential therapeutic biomarkers to
distinguish patients with early or advanced stages in AS, and two of the eight genes were validated
using the gene expression dataset from gene-deficient mice. The results of the current study will
improve our understanding of the molecular mechanisms in the progression of AS. The key genes
and pathways identified could be potential biomarkers or new drug targets for AS management.

Keywords: atherosclerosis; microarray data; bioinformatics; gene network; gene connectivity

1. Introduction

Atherosclerosis (AS) is a chronic inflammatory disease of the arterial wall [1]. The
primary lesion of AS is characterized by lipid deposition and accompanied by the prolifera-
tion of smooth muscle cells and fibrous matrix, which gradually form into atherosclerotic
plaque [2]. Surface rupture of the plaque leads to cardiovascular and cerebrovascular dis-
eases such as ischemic attack and stroke [3,4]. The pathogenesis of AS is mainly involved in
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endothelial dysfunction, abnormal smooth muscle cell (SMC) proliferation and migration,
oxidized lipid deposition, vascular matrix changes, inflammatory cell infiltration, and
oxidative stress [5,6]. These processes mainly involve immune cells, foam cells, vascular
endothelial cells, and SMCs, and contribute to the formation of AS. Innate and adaptive
immune responses that trigger inflammation have been identified in AS, and thus may be a
target for developing a new therapy [7]. Vascular smooth muscle cells (VSMC) have also
been confirmed to play an essential role in the development of AS. SMC transdifferentiation
into macrophage-like and fibrochondrocyte-like cells has been demonstrated in AS [8,9].
Additionally, inhibition of VSMC phenotypic switching may be beneficial in the advanced
stages of AS [10]. Although several studies have vastly improved our understanding of
the pathogenesis of AS, AS is still the leading cause of death worldwide and poses heavy
economic and social burdens in society [11]. The pathogenesis of AS still needs to be further
explored to develop targeted treatment and early gene therapy.

Understanding the molecular and cellular processes that convert asymptomatic plaques
into symptomatic ones may facilitate the development of preventive pharmacotherapy
with unprecedented impact on cardiovascular mortality and morbidity. In recent years, a
series of genome-wide associations have been performed to identify genetic loci for human
cardiovascular diseases [12,13]. Microarray data have been widely used to measure the
expression of genome-wide genes in relevant tissues and to identify genes and pathways
associated with diseases such as heart disease [14], type II diabetes [15], and nonalcoholic
fatty liver disease [16]. Microarray data studies in AS with relevant tissues have demon-
strated that certain genes and pathways play a critical role in the progression of carotid
atherosclerotic plaque [17,18]. Studies confirmed a central role for lipid accumulation,
inflammation, and proteases in plaque instability, and highlighted hemoglobin metabolism
and bone resorption as critical enriched pathways in plaques [19]. SMC-related functional
categories were most significantly affected in plaques [20]. However, the differential gene
co-expression network modules connectivity in different atherosclerotic plaque stages of
AS and the key genes for immune-related pathways especially downregulated SMC-related
pathways were studied poorly in vascular disease. In addition, the molecular mechanisms
involved in the formation of atherosclerotic plaque have not been fully elucidated.

In this study, we performed bioinformatic analysis aiming to uncover the gene expres-
sion patterns of the development of AS in humans based on microarray data (GSE43292 and
GSE28829). The key genes were identified by integrating PPI, GO and WGCNA analysis,
and were validated based on the microarray data (GSE9083 and GSE168610) obtained from
Gene Expression Omnibus (GEO) database. Firstly, we compared the gene expression of the
non-plaque stage to the plaque stage and early stage to the advanced stage based on gene
set enrichment analysis (GSEA) (Materials and methods 2.2) and gene expression pattern
analysis (GEPA) (Materials and methods 2.3). Secondly, we constructed a weighted gene co-
expression network to investigate differential co-expression network module connectivity
in different atherosclerotic plaque stages. Then, we integrated the results of weighted gene
co-expression network analysis (WGCNA), protein and protein interaction network (PPI),
and go ontology (GO) analysis (Materials and methods 2.4–2.6) to reveal key genes that are
related to immune and muscle system pathways during the development of AS. Finally,
we performed the receiver operating characteristic (ROC) curves (Materials and methods
2.7) for key genes to classify early stage and advanced stage of AS and validated key genes
using the gene expression dataset from murine samples with specific gene deficiencies. The
analyses provide novel insight into the pathogenesis of atherosclerotic plaque and provide
valuable information for developing new targets and drugs in AS.

2. Materials and Methods
2.1. Microarray Data Collection

Gene expression data from human carotid macroscopically intact tissue (non-plaque
stage) and atheroma plaque (plaque stage) collected in 32 patients undergoing carotid
endarterectomy were obtained from GSE43292, which contained 32 normal carotid artery
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samples and 32 corresponding atherosclerotic plaque samples [21]. The data were analyzed
with Expression Console software (version 1.1, Stephen Fodor, San Francisco, CA, USA)
using the default RMA summarization method. Furthermore, we also downloaded gene
expression data of in early stage (n = 13) and advanced-stage (n = 16) atherosclerotic plaque
from human wastid which were obtained from GSE28829 [22]. To validate key genes, we
also downloaded the gene expression dataset of TYROBP gene (DAP12) deficient mouse
brain from GSE9083, and RNAseq data on mouse hearts for PLN gene-deficient mice
from GSE168610 [23].

2.2. Gene Set Enrichment and Differentially Expressed Genes Analysis

Gene set enrichment analysis (GSEA) was performed using GSEA software (version
4.1.0, Vamsi K Mootha, Cambridge, MA, USA) based on c5.bp.v7.0.symbols.gmt (GOBP)
and c2.cp.kegg.v7.0 symbols.gmt (KEGG) reference gene sets that were downloaded from
the official GSEA [24,25]. Briefly, GSEA is a computational method that determines whether
a priori defined set of genes show statistically significant, concordant differences between
two biological states. The number of permutations was set to 1000, and the permutation
type was set as “gene set”. The nominal p value < 0.05 is the significance threshold of the
gene set in GSEA analysis. Moreover, differentially expressed genes (DEGs) between two
groups were identified using the DESeq2 package in R. DEGs were defined as those with
adjusted p values < 0.05 (adjusted by the Benjamini Hochberg method) and fold change > 2.

2.3. Gene Expression Patterns Analysis

Gene expression patterns analysis (GEPA) was used to calculate the major regulated
pathways in the development of AS using R software (version 4.2.0, Ross Ihaka and
Robert Gentleman, Vienna, Austria ). First, we selected the top 500 most significantly
upregulated and downregulated genes (adjusted p value < 0.05) from the comparison of
non-plaque stage with plaque stage and early with advanced stage based on the datasets
of GSE43292 and GSE28829. Next, we obtained common significantly upregulated and
downregulated genes from selected top 500 differentially expressed genes. Finally, these
common upregulated and downregulated genes from non-plaque to plaque stage and early
stage to advanced stage were retained for subsequent analysis. The enrichment of GO and
KEGG pathways was performed using R package “clusterProfile” in R.

2.4. Constructing Weighted Co-expression Gene Networks

Weighted gene co-expression networks were constructed and analyzed using the
WGCNA [26] (Weighted Gene Co-expression Network Analysis) package in R, which
calculated topological overlap measures among genes and assigned the genes into different
modules through hierarchical clustering. A dynamic tree cutoff of 0.25 was set to merge
similar trees. Module eigengene was also calculated using WGCNA, which is the first
principal component of gene expression values in each module. Genes with more than
25% variance were used to construct the weighted gene co-expression network. Finally, a
weighted gene co-expression network was constructed using 14,256 and 16,220 genes in
GSE43292 and GSE28829 datasets, respectively. The enrichment of genes in each module
was analyzed using the R package “clusterProfile” [27]. Visualization of the network was
performed using Cytoscape (version 3.8.2, Paul Shannon, Washington, DC, USA) [28].

2.5. GO and KEGG Enrichment Analyses

The R package “clusterProfile” was used to perform Gene Ontology (GO) and Ky-
oto Encyclopedia of Genes and genomes (KEGG) pathway enrichment analysis [27].
The Benjamin–Hochberg approach was used to correct multiple tests. The adjusted
p value ≤ 0.05 was used as a threshold of significance for the enriched GO and KEGG
terms for target genes.



Cells 2022, 11, 3976 4 of 18

2.6. Protein-Protein Interaction Network Analysis

The search tool for retrieving interacting genes (STRING; https://www.string-db.org,
accessed on 10 June 2022) is a database of known and predicted protein-protein interactions
that can be used to predict and track the protein–protein interactions network. Analyzing
the interaction between different proteins can provide new insight into the mechanism
of AS. This study used the STRING database to construct the PPI network of common
upregulated and downregulated genes in different atherosclerotic plaque stages.

2.7. Logistic Regression Models with the ROC Curve

The logistic regression model was constructed using glm in R. The key genes were
identified as predictive variables, and the sample type with early stage or advanced stage
was considered a binary responsive variable. The 3-fold cross-validation was performed
to validate the accuracy of the logistic regression models by caret package in R. The re-
ceiver operating characteristic (ROC) curves were generated to evaluate the sensitivity and
specificity of the logistic regression models. The average area under the curve (AUC) was
calculated to assess the models’ accuracy.

3. Results
3.1. Identification of Key Gene Sets in Different Stages of Atherosclerotic Plaque

To explore the key gene sets in different stages of atherosclerotic plaque, we performed
the gene set enrichment analysis (GSEA) based on GOBP and KEGG gene sets, respectively.
Using a p value threshold of 0.05, a total of 339 and 1124 gene sets were significantly
enriched in non-plaque and plaque stages, respectively, when comparing non-plaque and
plaque stages. Similarly, a total of 292 and 1141 gene sets were significantly enriched
in early and advanced stages, respectively, when comparing early and advanced stages
(Figure 1). Among these, 120 common gene sets were identified between gene sets enriched
in non-plaque stage and early stage, and 870 common gene sets were identified between
gene sets enriched in plaque stage and advanced stage (Figure 1). Notably, an average of
52% significantly enriched gene sets was common from non-plaque stage to plaque stage
and early stage to the advanced stage of AS (Figure 1). This indicates the potential roles
of these gene sets driving the progression of AS. To better comprehend which regulated
gene sets play a more critical role in AS development, the top 10 GOBP and 10 KEGG gene
sets enriched in different stages of atherosclerotic plaque were retained for further analysis.
We found eight common enriched gene sets in non-plaque stage and early stage and
11 common enriched gene sets in plaque stage and advanced stage based on intersection of
the top 10 GOBP and 10 KEGG enriched gene sets in corresponding stages. (Figure S1). For
GOBP gene sets, myofibril assembly and cell communication by electrical coupling gene
sets were significantly enriched in the non-plaque stage and early stage when compared to
the non-plaque stage with plaque stage and early stage with advanced stage. Compared
with the corresponding non-plaque stage and early stage, the gene sets, including adaptive
immune response, leukocyte migration, positive regulation of leukocyte cell–cell adhesion
and positive regulation of cell activation gene sets were significantly enriched in the
plaque stage and advanced stage (Table 1). For KEGG gene sets, propanoate/butanoate
metabolism, cardiomyopathy and valine, leucine and isoleucine degradation gene sets
were significantly enriched in non-plaque stage and early stage when compared non-
plaque stage with plaque stage and early stage with advanced stage. Compared with the
corresponding non-plaque stage and early stage, cytokine–cytokine receptor interaction,
intestinal immune network for IGA production, B cell receptor signaling pathway and
Toll-like receptor signaling pathway gene sets were significantly enriched in the plaque and
advanced stages of AS (Table 1). These results indicated that apart from the immune-related
gene sets, the metabolism of short-chain fatty acids and branched-chain amino acids also
plays a key role in different stages of atherosclerotic plaque.

https://www.string-db.org
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Figure 1. The summary of GSEA analysis based on GOBP and KEGG gene sets. (A) Venn diagram of
gene sets enriched in non-plaque and early stage. (B) Venn diagram of gene sets enriched in plaque
and advanced stage. The red color represents gene sets enriched in the non-plaque and plaque stages
based on the dataset of GSE43292. The blue color represents gene sets enriched in the early stage and
advanced stage based on the dataset of GSE28829.

Table 1. The gene set enrichment analysis of gene expression omnibus database with accession
numbers GSE43292 and GSE28829.

GS Types p Value

Myofibril assembly GOBP <0.001 a and <0.001 b

Cell communication by electrical coupling GOBP <0.001 a and 0.005 b

Propanoate metabolism KEGG 0.018 a and <0.001 b

Butanoate metabolism KEGG 0.011 a and <0.001 b

Hypertrophic cardiomyopathy hcm KEGG <0.001 a and <0.001 b

Dilated cardiomyopathy KEGG <0.001 a and <0.001 b

Arrhythmogenic right ventricular cardiomyopathy arvc KEGG <0.001 a and 0.006 b

Valine leucine and isoleucine degradation KEGG 0.02 a and 0.006 b

Adaptive immune response GOBP <0.001 c and <0.001 d

Leukocyte migration GOBP <0.001 c and <0.001 d

Positive regulation of leukocyte cell cell adhesion GOBP <0.001 c and <0.001 d

Positive regulation of cell activation GOBP <0.001 c and <0.001 d

Leukocyte cell cell adhesion GOBP <0.001 c and <0.001 d

Cytokine cytokine receptor interaction KEGG <0.001 c and <0.001 d

Leishmania infection KEGG <0.001 c and <0.001 d

Intestinal immune network for iga production KEGG <0.001 c and <0.001 d

B cell receptor signaling pathway KEGG <0.001 c and <0.001 d

Hematopoietic cell lineage KEGG <0.001 c and <0.001 d

Toll-like receptor signaling pathway KEGG <0.001 c and <0.001 d

a represents the p value of gene set significantly enriched at the stage of non-plaque stage; b represents the p value
of gene set significantly enriched at the stage of early stage; c represents the p value of gene set significantly
enriched at the stage of plaque stage; d represents the p value of gene set significantly enriched at the stage of
advanced stage.

3.2. The Mainly Regulated Pathways in Different Stages of Atherosclerotic Plaque

To investigate the mainly regulated pathways in different stages of atherosclerotic
plaque, we selected the top 500 most significantly upregulated and downregulated genes
from non-plaque to plaque in the dataset of GSE43292 and early to advanced stage in
the dataset of GSE28829 (Table S1). Of them, 259 genes were significantly upregulated
and 218 genes were significantly downregulated from non-plaque to plaque and early
to advanced stage (Figure S2). Then, we performed GO and KEGG analysis for these
commonly regulated genes in different stages of atherosclerotic plaque. The 259 common
upregulated genes significantly enriched in 586 GOBP and 31KEGG signaling pathways
(Table S2). In addition, the 218 common downregulated genes significantly enriched
in 96 GOBP and 13 KEGG signaling pathways (Table S3). Interestingly, we found that
these 259 common upregulated genes were mainly involved in B cell receptor and NF-
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kappa B signaling pathways to regulate immune-related biological processes, such as
neutrophil activation in immune response, T cell activation, leukocyte cell–cell adhesion
and mononuclear cell proliferation, etc (Figure 2A,B; Table S2). We also found that these
218 common downregulated genes were mainly enriched in biological processes, including
muscle system process, muscle contraction and regulation of ion transmembrane transport,
etc (Figure 2C; Table S3). KEGG analysis of the 218 common downregulated genes identified
some pathways mainly associated with cAMP/cGMP-PKG signaling pathway and VSMC
contraction (Figure 2D; Table S3). The results identified these immune and muscle related
pathways as major regulated pathways in different stages of atherosclerotic plaque.
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Figure 2. The functional enrichment analysis of common upregulated and downregulated genes using
GO and KEGG analysis. (A,B) The top 10 enrichment pathways of 259 common upregulated genes
using GO and KEGG analysis, respectively. (C,D) The top 10 enrichment pathways of 218 common
downregulated genes using GO and KEGG analysis, respectively. The sizes of the dots represent the
counts of enriched genes, and the dot color represents the adjusted p-value.

3.3. Remodeling of the Molecular Interaction Structure in Atherosclerosis

The number of neighboring genes associated with a gene in a network was defined
as the connectivity of a gene which is an important index to identify the functional impor-
tance of a gene [29]. To characterize and compare the connectivity of genes in non-plaque
stage and plaque stage, we constructed a multiple stage-weighted gene co-expression
network encompassing 14,256 genes with the first 75% variance in 64 individuals and
identified 14 network modules containing 34 to 3815 gene members (Figure 3A,B). Next,
we used a metric known as modular differential connectivity (MDC) [30], which is de-
fined as MDC = |rA|/|rB|, where |rA| and |rB| indicate the average absolute correlation
coefficients of all pairwise gene members of a module in non-plaque stage and plaque
stage, respectively. Using an empirical p value of 0.05 determined by a 1000 permutation
test that shuffles the sample labels. Interestingly, we found that four modules were sig-
nificantly differences in the co-regulation of genes in non-plaque stage and plaque stage
(Figure 3C). Four modules are mainly related to histone modification (p = 1.0 × 10−10,
module 3), T cell activation (p = 2.7 × 10−24, module 5), macroautophagy (p = 7.0 × 10−3,
module 7) and B cell activation (p = 8.5 × 10−6, module 12) (Figure 3D; Tables S4 and S5).
In addition, we also constructed a multiple stage-weighted gene co-expression network
encompassing 16,220 genes with the first 75% variance in 29 individuals and identified
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15 network modules containing 33 to 2148 gene members (Figure 4A,B). We also found
that three modules related to immune-related processes (p = 9.8 × 10−41, module 4), B cell
activation (p = 4.9 × 10−10, module 11) and nuclear division (p = 2.5 × 10−15, module 15)
showed significantly diverse differential connectivity in the co-regulation of genes in early
and advanced stages using MDC analysis (Figure 4C,D; Tables S6 and S7). Notably, genes
with the function of immune-related processes, including macrophage, T cell and B cell
activation clustered in modules, displayed significantly modular differential connectivity
from non-plaque stage to plaque stage and early stage to advanced stage, respectively
(Figure S3). In addition, the genes with the function of nuclear division only showed
differential module connectivity in early stage and advanced stage. These results suggest
that the connectivity of genes involved in these pathways exhibits large differences in the
co-regulation of genes during the development of atherosclerotic plaque.
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Figure 3. Differential modular connectivity analyses for individual genes in non-plaque and plaque
stages. (A) Gene co-expression network module in different stages of atherosclerotic plaque. The
rows and columns represent the same set of 14,256 genes with the first 75% variance in the dataset
of GSE43292. (B) The numbers of modules and genes in weighted gene co-expression network
modules based on the dataset of GSE43292. (C) Differential connectivity modules are highlighted.
The y−axis represents the log2 transformed modular differential connectivity values. The x−axis
denotes the number of genes in the corresponding modules. (D) Heatmap of gene-gene correlation
in the differential connectivity of modules in the non-plaque stage (the upper right triangle of each
module) compared with that in the plaque stage (the lower left triangle of each module).
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Figure 4. Differential modular connectivity analyses for early and advanced stage individual genes.
(A) Gene co-expression network module in different stages of atherosclerotic plaque. The rows and
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dataset of GSE28829. (C) Differential connectivity modules are highlighted. The y-axis represents the
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in the corresponding modules. (D) Heatmap of gene-gene correlation in the differential connectivity
of modules in the early stage (the upper right triangle of each module) compared with that in the
advanced stage (the lower left triangle of each module).

3.4. Identification of Key Genes As Potential Therapeutic targets for Atherosclerosis

To reveal key genes related to the immune and muscle system in the development
of atherosclerotic plaque, we integrated the results of GO, PPI, and WGCNA analysis.
First, we examined the 259 and 218 common upregulated and downregulated genes in the
context of network modules. The 259 common upregulated genes related to immune-related
pathways are significantly enriched in module 5 (GSE43292) and module 4 (GSE28829) with
modular differential connectivity in different stages of atherosclerotic plaque (Figure S4).
The 218 common downregulated genes related to muscle system related pathways are
significantly enriched in module 1 (GSE43292) and module 5 and 6 (GSE28829) (Figure S5).
The enriched genes in module 5 and 6 (GSE28829) ed modular differential connectivity
(Figure S5). These results further supported that these modules regulate the immune or
muscle system related pathways in the development of atherosclerotic plaque. Next, we
also performed the PPI analysis and calculated the number of immune-related pathways
involved in a single gene based on the results of GO analysis for the 259 genes. The same
analysis was performed in 218 genes to calculate the number of muscle system related
pathways. Finally, we integrated the results of these three analyses and defined the genes
with top 20 degree values in PPI network analysis, top 20 number of involved in the
most immune or muscle-related pathways and exhibit an absolute correlation coefficient
>0.85 within the eigengene of the enriched module as the key genes in the development
of atherosclerotic plaque. Five genes (PTPRC, FCGR2B, FCER1G, ITGB2 and TYROBP)
were identified as key genes mainly involved in immune-related pathways, and LMOD1,
CFL2 and PLN genes were identified as key genes for muscle system related pathways
in AS (Figure 5). These eight key genes were annotated using MGI and GWAS catalog
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databases (Table 2). We found that most of these key genes are involved in cardiovascular
system phenotype from MGI database and lipid-related phenotype from GWAS catalog.
Interestingly, we found that LMOD1 is a target gene for coronary artery disease from
GWAS catalog. Furthermore, we investigated the expression of key genes in different
tissues following GTEx expression database (Figure S6). We found that these key genes
were highly expressed in arteries, with LMOD1 and PLN gene expression particularly
higher when compared to other tissues (Figure S6). These results indicated that these key
genes might play essential roles in developing atherosclerotic plaque. Finally, we used
the 3-fold cross-validation method to evaluate the reliability of the model. The results
showed that the AUC of the three verification sets in the logistic model constructed by the
3-fold cross-validation method was 0.883, 0.925 and 0.808 with an average AUC of 0.872
which much higher than the average of AUC of 0.674 with randomly selected eight genes
(Figure 6). Taken together, these results suggest that these eight key genes could be used as
therapeutic target genes in different stages of atherosclerotic plaque.
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Figure 5. The eight essential genes were identified by integrating the results of PPI, GO, and Gene
co-expression module analysis. (A) The top 20 genes with the highest degree value of protein-protein
network interactions for 259 highly upregulated genes. (B) GO analysis demonstrates that the top
20 genes primarily involve immune-related pathways. (C) Five genes were identified as key genes
for immune responses based on PPI, GO, and Gene co-expression module analysis results. (D) The
top 20 genes with the highest degree value of protein—protein network interactions for 218 highly
downregulated genes. (E) The top 20 genes are involved in muscle-related pathways, as shown
by GO analysis. (F) The results of three genes were identified as key for muscle system-related
pathways based on PPI, GO, and Gene co-expression module analysis. Hub genes in modules
represent genes exhibiting an absolute correlation coefficient > 0.85 within the eigengene of the
modules related to immune or muscle-related pathways based on WGCNA analysis of GSE43292
and GSE28829 datasets. The dot represents different genes. The red dot represents the top 20 genes in
the corresponding analysis.
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Table 2. The detailed annotation of key genes based on MGI and GWAS Catalog databases.

Genes Full Name Related Pathway (Gene
Cards) MGI Phenotype Phenotypes from GWAS

Catalog

PTPRC Receptor-type tyrosine-protein
phosphatase C

B Cell Receptor Signaling
Pathway

cardiovascular system
phenotype

low density lipoprotein
cholesterol measurement

FCGR2B Low affinity immunoglobulin
gamma Fc region receptor II-b

B Cell Receptor Signaling
Pathway

cardiovascular system
phenotype lipid measurement

FCER1G High affinity immunoglobulin
epsilon receptor subunit gamma Innate Immune System cardiovascular system

phenotype lipoprotein measurement

ITGB2 Integrin Subunit Beta 2 ERK Signaling cardiovascular system
phenotype

high density lipoprotein
cholesterol measurement

TYROBP TYRO protein tyrosine
kinase-binding protein Innate Immune System immune system

phenotype NA

LMOD1 Leiomodin-1 Smooth Muscle
Contraction NA coronary artery disease

CFL2 Cofilin-2 NA muscle phenotype low density lipoprotein
cholesterol measurement

PLN Phospholamban Activation of
cAMP-Dependent PKA

cardiovascular system
phenotype resting heart rate
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Figure 6. Receiver operating characteristic curves of eight essential genes and randomly selected eight
genes. (A) The ROC curve of eight essential gene combinations is based on the logistic regression
model. (B) The ROC curve of eight randomly selected gene combinations is based on the logistic
regression model. The x-axis represented the 1-specificity of the negative–positive rate (false positive
rate FPR), and the y-axis represented the true positive rate (TRR) sensitivity. Different colors represent
the results of 3-fold cross-validation.

3.5. Validation of Potential Therapeutic Target Genes Using Gene Deficiency Mouse Expression
Pro-Files

To validate the potential therapeutic target genes, we obtained the gene expression
of TYROBP (DAP12) deficient mouse brain from the dataset of GSE9083, and RNAseq
on mouse hearts from PLN deficient mice from the dataset of GSE168610. First, we per-
formed gene set enrichment and differential gene expression analysis in these two datasets
(Figure S7). For TYROBP gene dataset, most of the significantly enriched immune-related
pathways in plaque and advanced stages are also significantly enriched in TYROBP-
deficient mice (TYROBP−/−) in the comparison of TYROBP−/− samples with TYROBP+/−

samples (Figure 7A). We found 873 significantly differentially expressed genes in compar-
ing TYROBP−/− samples with TYROBP+/− samples (Figure 7B). Furthermore, among the
259 common upregulated genes, 20 genes with the functions related to immune pathways
were also found in 873 significantly differentially expressed genes (Figure 7C,D). For PLN
gene dataset, we also performed gene set enrichment and differential gene expression
analysis between PLN−/− samples and PLN+/− samples (Figure S8). We found that the
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gene sets of butanoate/propanoate metabolism and valine/leucine/isoleucine degradation
significantly enriched in non-plaque stage and early stage when compared non-plaque
stage with the plaque stage early stage with advanced stage are also significantly enriched
in PLN+/− samples. Among the 218 gene-enriched pathways, cardiac muscle cell action
potential and contraction pathways were also enriched in PLN+/− samples (Figure 8A). In
addition, we found that 3542 genes exhibited a significantly differential expression between
PLN−/− samples and PLN+/− samples (Figure 8B). Among the 218 common downregulated
genes, 25% (55/218) of them with the function related to muscle system pathways also
display significantly differential expression in the comparison of PLN−/− samples and
PLN+/− samples (Figure 8C,D). These results further confirmed that TYROBP and PLN
genes could regulate immune and muscle-related pathways to affect the development of
atherosclerotic plaque.
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Figure 7. Validation of TYROBP key gene using gene expression profile of TYROBP+/− and TY-
ROBP−/− mouse brain tissue. (A) GSEA analysis showed gene sets in TYROBP−/− samples were
significantly enriched. (B) Volcano diagram of the differentially expressed genes comparing samples
from TYROBP+/− and TYROBP−/− mouse brain tissue. (C) Venn diagrams showing common genes
between DEGs and commonly upregulated genes in GSE43292 and GSE28829 datasets. (D) The
bubble diagram of GO-BP enrichment analyses of 20 common genes. Dot sizes represent counts of
enriched common genes, and dot colors represent adjusted p-value.
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Figure 8. Validation of PLN key gene using gene expression profile of PLN+/− and PLN−/− mouse
heart tissue. (A) Gene sets were significantly enriched in PLN+/− samples based on GSEA analysis.
(B) Representation of the differentially expressed genes comparing PLN+/− and PLN−/− mouse heart
tissue. (C) Venn diagrams showing the common genes between DEGs and commonly downregulated
genes in GSE43292 and GSE28829 datasets. (D) The bubble diagram of GO-BP enrichment analyses
of 55 common genes. Dot sizes represent counts of enriched common genes, and dot colors represent
adjusted p-value.

4. Discussion

This study investigated the gene expression profiles of different atherosclerotic plaque
stages with an accession number of GSE43292 and GSE28829. The key genes and pathways
were identified based on systematic bioinformatic analysis. Two of eight key genes were
validated using the gene expression dataset of gene-deficient murine samples, which are
valuable for understanding the molecular mechanism in the development of atheroscle-
rotic plaque.

Previous studies have used the microarray datasets of GSE43292 and GSE28829 to
screen DEGs, key genes, and pathways in a single atherosclerotic plaque stage [17,18,31–33].
In comparison, the current study comprehensively investigated the gene expression profiles
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of atherosclerotic plaque in the stages of non-plaque to plaque as well as early to advanced.
We report for the first time the differential modular connectivity in different stages of
atherosclerotic plaque based on differential modular connectivity (MDC) analysis. We
also performed gene set enrichment analysis (GSEA) in two databases, which can provide
complementary information for differential gene expression analysis. Compared to the
previous studies that identified key genes using PPI analysis [34,35], the current study
established key genes by integrating the results of protein and protein interaction network
(PPI), go ontology (GO), and modular differential connectivity (MDC) analysis in two
datasets. The common regulated pathways and key genes were identified using the bioin-
formatic analysis of two datasets, which can effectively reduce the impact of confounding
factors on the results of our study. We also validated two of eight key genes using the gene
expression dataset of deficiency genes in mice.

Using gene set enrichment analysis with GOBP gene sets, we found that adaptive
immune response, leukocyte migration, positive regulation of leukocyte cell-cell adhesion
and positive regulation of cell activation gene sets were significantly enriched in the stages
of plaque and advanced when compared to the corresponding stages of non-plaque and
early in AS. These results indicated that the adaptive immune response and immune cell
activation were turned on during the development of atherosclerotic plaque. Previous
studies have shown that immune cells, such as B and T cells, contribute to AS [36,37] by
playing an important role in the immune response and inflammation [17,38]. For KEGG
analysis, we found that cytokine-cytokine receptor interaction, intestinal immune network
for IGA production, B cell receptor signaling pathway, and Toll-like receptor signaling
pathway gene sets were significantly enriched in the early stage of plaque and advanced
lesions when compared to the corresponding stage of non-plaque and early plaque lesions,
respectively. These results further supported that immune cells and immune-related
pathways were activated in the development of atherosclerotic plaque. Interestingly, we
also found that propanoate/butanoate metabolism and valine, leucine and isoleucine
degradation gene sets were inhibited in the development of atherosclerotic plaque. It was
previously reported that short-chain fatty acid (propanoate and butanoate) and branched-
chain amino acid (valine, leucine, and isoleucine) are related to energy metabolism. For
example, propionate and butyrate, the major metabolites of dietary fiber, are the main
products of bacterial metabolism and constitute an essential source of energy [39]. The
function of three branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) can
work together to modulate the insulin signal and glucose use by skeletal muscle [40]. Recent
studies have suggested that the dysfunction of BCAA catabolism is associated with the risk
of cardiovascular disease [41,42]. Therefore, the regulation of metabolism of short-chain
fatty acids and branched-chain amino acids in the host may be a novel intervention strategy
to hinder atherosclerotic plaque development.

Using gene pattern expression analysis, we investigated the highly regulated path-
ways in different stages of atherosclerotic plaque based on two datasets. The 259 commonly
upregulated genes are mainly enriched in immune responses and immune cell activation
during the development of atherosclerotic plaque. Immune-related signaling pathways,
including B cell receptor and NF-kappa B, are classic signaling pathways widely reported in
AS [37,43]. We also found 218 commonly downregulated genes that are typically involved
in muscle system processes, muscle contraction, and regulation of ion transmembrane
transport. Furthermore, cAMP/cGMP-PKG signaling pathway and VSMC contraction
signaling pathways were enriched in the 218 commonly downregulated genes. VSMCs are
the major cell types present in all stages of atherosclerotic plaque and play an essential role
in the intervention of AS [44]. VSMC phenotypic switching affects plaque stability, and
inhibiting phenotypic switching may benefit advanced AS [45], as seen by a reduction in
atherosclerotic burden and improved fibrous cap stability when blocking [46]. Moreover,
VSMC contraction mediated by ion transmembrane transport is rarely mentioned based
on microarray data of different atherosclerotic stages. The intervention of ion transmem-
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brane transport may be an effective method for treating and preventing hypertension and
atherosclerosis. Previous studies also support that ion transmembrane transport [47].

Using modular differential connectivity analysis, we found that four modules dis-
played significant differential connectivity in non-plaque and plaque stages, and three
modules displayed significant differential connectivity in early stage and advanced stage.
The genes in modules 5 and 12 of multiple stages weighted gene co-expression network
based on GSE43292 dataset and modules 4 and 11 of multiple stages weighted gene co-
expression network based on GSE28829 dataset are mainly enriched in immune-related
pathways including macrophage, T cell, and B cell activation, and these modules displayed
modular differential connectivity. The genes associated with immune-related pathways
identified by the GSEA and GEPA analyses also showed modular differential connectivity
in corresponding modules by MDC analysis. These results further emphasized the impor-
tant role of immune-related pathways in different stages of atherosclerotic plaque. This is
consistent with the finding that innate as well as adaptive immune responses have been
identified in AS, with components of T cell activation and antibody production during
disease [7]. Our results demonstrated that modifying the co-regulation of immune-related
genes in corresponding modules may interfere with atherosclerotic plaque development.
We also found that the genes in module 7 of multiple stages weighted gene co-expression
network based on GSE43292 dataset related to macroautophagy showed differential connec-
tivity in the development of atherosclerotic plaque. The co-regulation of macroautophagy
was stronger in non-plaque stage when compared with plaque stage. A previous study
reported that the defective autophagy is one of the causes for atherosclerotic plaque [48].
The genes in module 15 of multiple stages weighted gene co-expression network based
on GSE28829 dataset with the function of nuclear division showed higher co-regulation
connectivity in advanced stage when compared to early stage, which indicates that nuclear
division could be stronger in the advanced stage. Since uncontrolled nuclear division is a
common feature of several human tumor cell lines [49], we speculated that the stronger
co-regulation of genes associated with nuclear division in the advanced stage is one of the
causes of the aneurysm. The regulation of co-expression of macroautophagy and nuclear
division modules may be a new strategy for treating AS. Interestingly, we also found the
biological pathway of B cell activation was enriched in modules 5 and 12 with differential
connectivity based on multiple stages weighted gene co-expression network in GSE43292
dataset (Figure S9). Similarly, the pathway of B cell activation enriched in modules 4 and
11 with differential connectivity based on multiple stages weighted gene co-expression
network in GSE28829 dataset (Figure S10). These results suggest that B cells have different
functions in the development of atherosclerotic plaque. Our results further support that
the B1 and B2 cells display unique functions in the development of AS [50]. The pathways
of macroautophagy and nuclear division were not previously revealed by microarray data
of different atherosclerotic stages, suggesting that MDC analysis provides new insights in
the development of atherosclerotic plaque.

Immune and muscle system pathways play an important role in the development
of atherosclerotic plaque. To uncover key genes related to immune and muscle system
pathways in the development of atherosclerotic plaque, we integrated the results of GO,
PPI and WGCNA analysis. PTPRC, FCGR2B, FCER1G, ITGB2, and TYROBP were identified
as key genes regulating immune related pathways. PTPRC gene is an essential regulator
of T and B cell antigen receptor-mediated activation [51], and its dysfunction can result in
immunodeficiency, autoimmunity, or malignancy [52]. FCGR2B gene is mainly involved in
a variety of effector and regulatory functions, such as phagocytosis of immune complexes
and modulation of antibody production by B-cells [53]. The function of FCER1G gene
is essential in chronic inflammation by correlating immune reactions [54]. ITGB2 gene
can mediate leukocyte migration through adhesive interactions between leukocytes and
inflamed endothelial cells, which are critical for defense against bacteria and wound
healing [55]. TYROBP gene is an adaptor in TREM2 signaling, and its activation can
modulate cell proliferation, survival, and inflammation pathways [56]. Previous studies
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have reported TREM2 as a key player in Alzheimer’s disease [57] and TYROBP as key
gene for AS [17,58]. Therefore, we speculate that AS and Alzheimer’s disease may have
similar TREM2 signaling regulatory mechanisms. Likewise, LMOD1, CFL2, and PLN
were identified as key genes in functions related to muscle processing systems. LMOD1
gene has been identified as a causal gene for coronary artery disease by maintaining the
differentiated SMC phenotype [59]. Mutations in CFL2 gene mutations have been associated
with congenital myopathies, including nemaline and myofibrillar myopathy [60]. PLN
gene is an important regulator for sarcoendoplasmic reticulum (SR) calcium transport
ATPase (SERCA), which uptakes Ca2+ to SR during the diastolic phase of cardiomyocytes
to maintain intracellular calcium homeostasis [23]. Notably, TYROBP and PLN gene
deficiency was validated in this study by analyzing gene expression in experimental mice.
These genes will provide valuable information to understand the mechanisms underlying
the progression of AS. The expression of key genes in multiple tissues based on GTEx
expression database suggests that these key genes are highly expressed in arteries, with the
expression of LMOD1 and PLN genes being especially higher in arteries than in other tissues
(Figure S6). The results further indicate that LMOD1 and PLN genes may regulate the
functional changes of VSMCs, thereby participating in the development of atherosclerotic
plaque. Furthermore, we identified that the AUC of logistic regression model based on eight
key gene combinations was 0.883, 0.925, and 0.808 with an average AUC of 0.872, much
higher than the average AUC of 0.674 with randomly selected eight gene combinations.
These results indicate that our logistic regression model for these key genes can reliably
predict the stages of patients with AS.

The present study has several limitations. Firstly, compared to RNAseq, the microarray
data might lead to some bias, which might affect the interpretation of the results. Secondly,
there may be some confounding factors, including age and sex, which might affect gene
expression, and could not be considered in this study. Thirdly, the key genes identified in
the current study were not validated in animals in vivo or humans. Future studies using
genetically modified animal and atherosclerotic animal models are warranted.

5. Conclusion

In summary, this study provides a comprehensive view of the molecular mechanisms
at different stages of atherosclerotic plaque. It identifies several molecular mechanisms
that potentially link the progression of atherosclerotic plaque. The differential modular
connectivity in different stages of atherosclerotic plaque was first reported in this study.
In addition, the eight key genes related to immune or muscle system pathways were
considered to play a critical role in the development of atherosclerotic plaque. The eight
key gene combinations can reliably predict the stages of patients with AS. Among these
eight key genes, TYROBP and PLN genes were validated using the gene expression dataset
of deficiency genes in mice. These results may help us better understand the functional
mechanisms of AS in different atherosclerotic plaque stages. The essential genes and
pathways found in this study might be potential biomarkers or drug targets for diagnosing
or treating AS.
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common gene sets for the top 10 GOBP and 10 KEGG enriched gene sets in different atherosclerotic
plaque stages based on the dataset of GSE43292 and GSE28829; Figure S2: The common genes for
the top 500 most significantly differential expression genes in different atherosclerotic plaque stages
based on the dataset of GSE43292 and GSE28829; Figure S3: The connectivity of genes related to
macrophage cell activation in modules; Figure S4: The 259 common upregulated related to immune
responses pathways in the co-expression modules; Figure S5: The 218 common downregulated
related to muscle system pathways in the co-expression modules; Figure S6: The expression profiles
of eight key genes in human tissues (from GTEx Portal: https://gtexportal.org/home/); Figure S7:
The summary of GSEA analysis based on the dataset of GSE9083; Figure S8: The summary of GSEA
analysis based on the dataset of GSE168610; Figure S9: The connectivity of genes related to B cell
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activation in module 5 and 12 based of multiple stages weighted gene co-expression network based
on the dataset of GSE43292; Figure S10: The connectivity of genes related to B cell activation in
module 4 and 11 based of multiple stages weighted gene co-expression network based on the dataset
of GSE28829; Table S1: The differential genes with FDR < 0.01 in different stages of atherosclerotic
plaques based on the dataset of GSE43282 and GSE28829; Table S2: The GO and KEGG analysis
of the 259 common upregulated genes; Table S3: The GO and KEGG analysis of the 218 common
downregulated genes; Table S4: The results of modular differential connectivity analysis based on
dataset of non-plaque and plaque stage; Table S5: The enrichment pathways of module 3, 5, 7 and
12 using GO analysis; Table S6: The results of modular differential connectivity analysis based on
dataset of early and advanced stage; Table S7: The enrichment pathways of module 4, 11 and 15 using
GO analysis.
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